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ABSTRACT 

Oblivious Sensor Fusion via Secure Multi-party Combinatorial Filter Evaluation 

William E. Curran 
Department of Computer Science 

Texas A&M University 

Research Faculty Advisor: Dr. Dylan Shell 
Department of Computer Science 

 Texas A&M University 

This thesis examines the problem of fusing data from several sensors, potentially 

distributed throughout an environment, in order to consolidate readings into a single coherent 

view. We consider the setting when sensor units do not wish others to know their specific sensor 

streams. Standard methods for handling this fusion make no guarantees about what a curious 

observer may learn. Motivated by applications where data sources may only choose to participate 

if given privacy guarantees, we introduce a fusion approach that limits what can be inferred. Our 

approach is to form an aggregate stream, oblivious to the underlying sensor data, and to evaluate 

a combinatorial filter on that stream. This is achieved via secure multi-party computational 

techniques built on cryptographic primitives, which we extend and apply to the problem of 

fusing discrete sensor signals. We prove that the extensions preserve security under the semi-

honest adversary model. Though the approach enables several applications of potential interest, 

we specifically consider a target tracking case study as a running example. Finally, we also 

report on a basic, proof-of-concept implementation, demonstrating that it can operate in practice; 
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which we report and analyze the (empirical) running times for components in the architecture, 

suggesting directions for future improvement.   
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1. INTRODUCTION 

It is natural for humans to be mutually distrusting of each other. It is often a matter of 

safety for communities to act with an abundance of caution towards others who hold unknown 

motives. Yet, cooperation is also essential to achieving many of our goals. We humans have a 

limited number of tools to deal with our frequent mutual distrust of one another, and often 

distrust manifests in stalemate or conflict, each without satisfactory resolution. As robots become 

more important to how people interact with the world, human problems become robot problems, 

and robots also need ways to handle distrust of each other. This thesis documents attempts to 

ameliorate a fraction of distrust amongst robots, enabling mutually distrusting discourse via 

cryptographic toolsets founded on mathematical certainty. 

The main work of this thesis is concerned with processing streams of input, originally 

from distributed sources. This kind of aggregation and analysis is done frequently today. One 

name for distributed networks of devices is the Internet of Things, describing the many internet-

connected sensing and acting devices distributed throughout the world. With billions of 

connected devices thrown into the fray, each belonging to some owner(s) with unknown 

agendas, a vast landscape of fragmented data is produced. Oftentimes, data must be shared or 

traded between devices to create a more complete picture (consider implied or explicit contracts 

between smartphone users and application providers, exchanging data for utility). Other times, 

centrally owned networks of devices must be made robust against potential attack by assuming 

that any device might be compromised in some way by an adversary. In either case, individual 

devices can be considered reluctant to share their private data with another party. (We are 

actually concerned with the entity ‘in control’ of a particular device, whomever that may be, and 
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each will generally be deemed a party). In many cases today, parties either exchange their 

private data with some regret or choose to not trade their data at all. Our work is focused on 

enabling meaningful exchange of analyses on data, without disclosing any private data, thus, 

always allowing a policy of healthy distrust amongst parties. 

A relevant real-world issue is how assisted living or elderly care might be aided by 

technology. Consider the following as a case study: Parker’s grandma Susie lives independently 

in her home but might need additional help from time to time. Parker wishes to ensure Susie’s 

safety and comfort, but Parker cannot always visit in-person. Therefore, they have agreed to 

allow a series of devices present in Susie’s smart home to collect data, and report if she needs 

immediate care. A possible basic functionality might have sensors track her movement in the 

home, flagging any abrupt changes, such as, “Susie was standing in the kitchen and is now on the 

floor.” To many, this is likely a shocking proposition. Permitting a sensor array to invade one’s 

most private spaces, possibly broadcasting this data for further analysis, is a troubling solution to 

the problem. However, the main work present in this thesis presents cryptographic protocols, 

which prove that privacy of the devices’ inputs can be preserved in scenarios like this one, while 

still revealing the desired outputs. 

The following subsections of Section 1 introduce the reader to concepts essential to the 

main work of this thesis, namely combinatorial filters and secure Multi-Party Computation. 

1.1 Filtering 

A filter is a function which consumes a stream of input and produces a corresponding 

stream of output. A popular category of filters is the probabilistic kind, such as the well-known 

Kalman Filter [2]. The Kalman Filter is used in robotics for purposes such as sensor fusion to 

produce a state estimation result which is more accurate than individual sensors could produce. 
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We consider a different class of filters, combinatorial filters [10], which have simpler discrete 

inputs and outputs. A combinatorial filter can be represented by a graph with a finite number of 

nodes and edges (also called states and transitions, respectively), plus a corresponding “coloring” 

for the nodes, i.e., the output for a given state. 

Today, the Internet of Things has been realized by a multitude of small sensors, which 

often provide simple data on their own, and fusing them together via a simplistic stateful filter 

may be the best choice in many scenarios. 

Research on combinatorial filters, thus far, has considered a central computational entity 

which owns the input data sources, but we consider the case where data sources are independent 

parties, each with possibly ulterior objectives than just reporting to a central entity. We wish to 

establish security for a protocol which evaluates a combinatorial filter on the aggregate, but 

without disclosing any information about private events to anyone involved in the protocol. To 

do this, we make use of special cryptographic protocols. 

1.2 Cryptography 

Cryptography is generally concerned with making certain functionalities robust to attack 

by potential adversaries. Cryptographic protocols make use of the assumption that 

computationally “hard” problems exist. Once a problem is thought to be hard, it can be harnessed 

to keep important data away from adversaries.  

A classical problem in cryptography is keeping data secure over a potentially insecure 

communication channel. We will call the sender Alice and the receiver Bob, while Charlie 

wishes to listen in on their conversation and learn any details he can. For Alice and Bob to 

succeed in having a private discussion, Alice must encrypt her message, turning the plaintext into 

a ciphertext before transmitting it to Bob. At this stage, the goal is for Bob to be able to decrypt 
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the message back into the original plaintext, while leaving Charlie completely in the dark. In 

other words, we wish the ciphertext to look indistinguishable from any random message in the 

ciphertext space, so Charlie won’t be able to decrypt it with ease. From a computer science 

perspective, we are satisfied with the notion of computationally indistinguishability to protect 

against this kind of snooping. Additionally, Charlie should not be able to harm the integrity of 

the data without detection by Bob. In this example, we also see that randomness plays a large 

role in cryptography. Indeed, secure generators of (practically) random numbers are an important 

building block of many protocols. 

1.2.1 Computational Indistinguishability 

Computational Indistinguishability is the most atomic cryptographic concept studied in 

this thesis, and it is harnessed in proofs of security in Section 2 and Section 3. Computational 

indistinguishability, defined in [3], is used to compare two probability ensembles, which are each 

sequences of probability distributions. We consider probability distributions, which, given a 

domain of natural numbers, describe the probabilities of sampling each value in this domain. We 

will consider probability ensembles 𝑋 = {𝑋!}!∈# and 𝑌 = {𝑌!}!∈#. Each 𝑋! and 𝑌! are 

distributions with sampling domains {1, … , 𝑛}. 𝑋 and 𝑌 are computationally indistinguishable if 

for every probabilistic polynomial-time algorithm 𝐷 every polynomial 𝑝, and all sufficiently 

large 𝑛,  

 |Pr[D(𝑋!) = 1] − 𝑃𝑟[𝐷(𝑌!) = 1| < 	
1

𝑝(𝑛) (1.1) 

Imagine the bell curve of a normal distribution and the flat line of a uniform distribution. 

Clearly, there is a trend in the normal distribution that is not present in the uniform distribution. 

Looking at the sequence of infinite variations on these distributions, there are bound to be many 

times when the two are distinguishable. In contrast, two computationally indistinguishable 
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probability ensembles would mirror each other to the extent that a computational entity could not 

tell any difference between the two. 

𝐷 of Equation 1.1 can be thought of as a distinguisher entity who has realistic 

computational bounds. Essentially, the definition says that even the best distinguisher that could 

possibly be designed could not consistently tell two distributions apart over the range of possible 

𝑛. For a distinguisher’s algorithm to output ‘1’ is not necessarily meaningful in itself, but when 

the distinguisher outputs the same value 1 for two distributions, there is a similarity observed.  

A probabilistic polynomial-time algorithm is one which runs in time proportional to a 

polynomial of 𝑛, except for a low probability. This is the upper bound of computational ability 

we need to consider for any adversary, so long as 𝑛 is sufficiently large (algorithms which 

asymptotically dominate polynomial time are considered infeasible for large input if 𝑃	 ≠ 𝑁𝑃). 

1.2.2 Pseudorandom Generators 

Pseudorandom generators have become essential to cryptography, as they make 

practically random values accessible to implementations and proofs of cryptographic protocols. 

This thesis will make frequent use of pseudorandom generators for foundational assumptions of 

security. A family of pseudorandom functions 𝐹$: {0,1}% → {0,1}&, indexed by a seed 𝑠 ∈ {0,1}!, 

is pseudorandom if it is efficient to compute a value 𝐹$(𝑥), given 𝑥 and 𝑠, and is computationally 

indistinguishable from a uniformly random distribution, even if a distinguisher has access to 

pairs 9𝑥' , 𝐹$(𝑥'): and is able to adaptively choose 𝑥'′𝑠 [5]. In the remainder of the thesis, a 

family of pseudorandom functions which also keeps track of its internal state will be called a 

pseudorandom generator 𝐺, which can be indexed by a seed to obtain a generator function 

G(s): {0,1}( → {0,1}) and can be invoked to obtain a pseudorandom 𝑙-bit value 𝑟 ← 𝐺(𝑠).  
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1.3 Security Models 

Our goal is to securely compute a filter amongst multiple parties. Before we can create 

secure protocols to do this, we need to define what ‘secure’ means. There are multiple security 

models to choose from, and we briefly discuss two of them: differential privacy and secure 

Multi-Party Computation (MPC). 

Differential privacy is a security model which attempts to minimize output leakage, i.e., 

what can be learned about individuals, given the outputs of functionalities and protocols [3]. 

Differential privacy does not provide concrete claims about what can be learned by a 

computational entity during the execution of protocols. Therefore, differential privacy is largely 

an outward-facing security model. 

Secure Multi-Party Computation, an inward-facing security model, considers 

computation amongst several parties who wish to operate on their combined private data without 

divulging their individual data to any other parties. Under MPC, a protocol is secure if and only 

if the protocol correctly computes a functionality amongst some parties, and nothing can be 

learned from the execution of the protocol other than what can be learned by an individual’s 

inputs and outputs alone. MPC is a strong way to pointedly break down the security of a 

protocol, leaving the output leakage problem for another time. However, the user of an MPC 

protocol must understand that MPC does not provide a privacy panacea. The simplest example of 

a possible MPC protocol which does not preserve the privacy of its participants is one which 

simply provides all ‘private’ inputs as public output. Clearly, the output leakage question is 

worth further exploration, as is noted in Section 3.1.10, but this thesis will use MPC framework. 
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MPC provides several tiers of security, which is practical for building protocols brick-by-

brick, rather than trying to achieve lockdown security all at once. We can achieve security in the 

semi-honest adversary model or the malicious adversary model. 

1.4 Secure Multi-Party Computation 

The semi-honest model of secure Multi-Party Computation is the first touchstone a 

protocol tries to reach before achieving higher levels of security. To achieve security against a 

malicious adversary, one must prove that a more active adversary could not violate the protocol’s 

privacy or correctness properties. 

1.4.1 Security by Simulation 

Once we understand what an MPC protocol is (i.e., what can be learned is limited to the 

input and output alone), we need to be able to show that a protocol satisfies this property. To do 

this, we first must make some assumptions about our adversarial counterparts.  

In all 2-party cases, we are up against a single adversary, who has corrupted one party. If 

both parties were simultaneously corrupt, then the protocol cannot be guaranteed to protect us. 

(Consider that if both parties are corrupt, they could even be under the control of the same 

adversary. In this case, the two parties may be considered under the umbrella of one party in a 

sandbox world, where “anything goes.”)  

We give an upper bound to the strength of the adversary by assigning them the labels 

semi-honest or malicious. Security against a semi-honest adversary is the weaker claim; it says 

that the corrupted party is cooperative, but curious, in that it will execute the protocol to 

specification, but it may try to learn extra information “on the side.” Security versus a malicious 

adversary means that the protocol is robust against even the most aggressive attacks by 

participants. For instance, a malicious adversary might send malicious data intended to harm the 
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other party, or such an adversary might drop the connection on a whim. Even simply dropping 

connection can obliterate the security of a protocol which is only secure against semi-honest 

adversaries. As such, we see that the semi-honest claim can appear quite weak in comparison. 

However, a protocol secure under the semi-honest model can be transformed into one under the 

malicious security model via various methods, and it is typically a checkpoint along the way to 

more robust enhancements. (A protocol secure under the malicious adversary model is also 

secure against semi-honest adversaries.) 

One generalized way that protocols secure versus semi-honest adversaries can be 

upgraded to secure against malicious adversaries is by using the process called the GMW 

Compiler. Essentially, this methodology proscribes taking your semi-honest protocol and buffing 

it up with zero-knowledge proofs [4]. 

In our case, we only concern ourselves with semi-honest adversaries, though the 

existence of the malicious adversary model is important to understand possible next steps 

forward in our research. 

Once an adversary model is chosen, one needs to prove the MPC property that nothing is 

learned by involved parties other than their respective private inputs and outputs. This is done via 

the simulation paradigm [7], which compares the view during execution of a potentially 

corrupted party in the real world with a view generated by an imaginary simulator. A party’s 

view during execution is the collection of its inputs, outputs, and any intermediate messages it 

may receive from other parties. A proof by simulation for security against a corrupt party is done 

by allowing the theoretical simulator access to only the party’s inputs and outputs. If the 

simulator can generate faked versions of any other intermediate information which would fool a 

distinguisher (computationally indistinguishable), when only given the input and output, then 
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this proves that the intermediate information obtained does not give away anything more than the 

input and output does. 

1.4.2 Public-key Cryptosystems 

Public-key cryptosystems are schemes which describe how to encrypt and decrypt data, 

such that data in its ciphertext form is computationally indistinguishable from uniformly random. 

They make use of trapdoor permutations [6] to make encryption (𝑓(𝑥) 	= 	𝑦) efficient to 

compute and decryption (𝑓*+(𝑦) = 𝑥) impossible to compute in polynomial time, unless given a 

secret trapdoor τ. We can use public-key cryptosystems as a building block to construct more 

complex MPC primitives. In oblivious transfer, for example, classic implementations of the 

functionality use public-key cryptosystems. While public-key cryptosystems are quite popular, it 

is often a goal to minimize public-key operations, as they are still computationally expensive.  

1.4.3 Oblivious Transfer 

Oblivious transfer (OT) was first theorized by Rabin [9], who imagined a random transfer 

of one of two bits from a sender 𝑆 to a receiver 𝑅, such that neither 𝑆 nor 𝑅 know which bit was 

received. The concept has been expanded upon much since then, including variations with 

implementations and optimizations [6] [11]. 1-out-of-2 oblivious transfer is one of the most 

widely used variations on OT. This is where 𝑅 supplies a choice bit, 𝑏, to select a message 

(generalized to any number of bits) out of the two messages 𝑚,, 𝑚+, which 𝑆 provides. 𝑅 is 

guaranteed to get its choice of messages, m-.  

A lesser-known OT variant, which we call upon, is called 1-out-of-2 OT with joint choice 

(𝑂𝑇./) [11]. This version dictates that both 𝑆 and 𝑅 input choice bits 𝑏$ and 𝑏0, respectively, and 

𝑅 receives the message of joint choice. In this case, the idea of “joint” choice means that the 

choice bits from 𝑆 and 𝑅 will be added with modulo 2, such that 𝑆 receives 𝑚1"⊕1#. 𝑂𝑇./  is 
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especially helpful, we have found, to integrate an MPC protocol that uses an additive secret-

sharing scheme with another protocol that requires oblivious transfers. 

One simple semi-honest protocol for to accomplish 1-out-of-2 OT is this: 𝑅 generates a 

keypair (𝑠𝑘, 𝑝𝑘) with a public-key cryptosystem and generates a random 𝑝𝑘’ in the range of the 

public key generator [4]. If R’s choice bit 𝑏 = 0, then send (𝑝𝑘, 𝑝𝑘’) to 𝑆. If 𝑏 = 1, send 

(𝑝𝑘’, 𝑝𝑘) instead. 𝑆 will receive (𝑝𝑘,, 𝑝𝑘+), encrypt its messages 𝑚,, 𝑚+ with the respective 

keys, then send the resulting ciphertexts (𝑐,, 𝑐+) back to R. Finally, 𝑅 decrypts 𝑐1 with 𝑝𝑘, 

obtaining 𝑚1. 

Informally, this protocol is secure under the semi-honest model because if the parties 

behave according to the protocol, 𝑅 will be able to decrypt only the message of its choice, 

achieving correctness under the semi-honest model. The protocol also achieves security under 

the semi-honest model because 𝑅 does not have a key to decrypt the other message, and 𝑆 cannot 

tell 𝑝𝑘 from 𝑝𝑘’. It is trivially insecure in the malicious model, though, as a corrupt 𝑅 might 

generate two keypairs (𝑠𝑘, 𝑝𝑘), (𝑠𝑘’, 𝑝𝑘’), which would then allow 𝑅 to recover both messages.  

To do 1-out-of-2 OT with joint choice, 𝑆 and 𝑅 may do the same as above, except 𝑆 will 

swap its messages if its choice bit is 1 before it encrypts them. 𝑅 obtains the result as before, but 

now the message obtained is 𝑚1"⊕1# [11]. 

1.4.4 Garbled Circuit Protocols 

Andrew Yao designed the first MPC protocol, which uses a garbled circuit to obfuscate 

intermediate computation from the two parties executing the protocol. Yao’s garbled circuit 

protocol compiles a deterministic functionality into a ‘garbled’ boolean logic circuit. Two parties 

participate in this protocol, and it can be extended to multiple parties, but with additional work 

[4]. 
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GMW Protocol, also using garbled circuits, arose in the wake of Yao’s grand entrance. 

GMW Protocol is used in Section 2.5.1. This protocol makes use of additive secret shares, which 

are simple shares 𝑟 and 𝑥	 ⊕ 𝑟 of a value 𝑥. These are made by obtaining a random (or 

pseudorandom) number and adding the random number with the value to be shared, then taking 

the modulo 2 of the sum (XOR operation). The result looks just as random as the random 

number, and now both shares look computationally indistinguishable from uniformly random. 

One of these shares can be exchanged with another party to share the value, and the scheme is 

generalizable to many parties. The value 𝑥 is retrieved by combining shares 𝑥 = (𝑥 ⊕ 𝑟)⊕ 𝑟. 
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2. OBLIVIOUS SENSOR FUSION VIA SECURE MULTI-PARTY 

COMBINATORIAL FILTER EVALUATION†  

2.1 Introduction 

Many practical applications of either humanitarian or military relevance - including 

situational awareness, sense-making, and activity modeling problems - involve checking 

properties, answering queries, and drawing conclusions, from a stream of sensor readings. 

Motivated by pervasive sensing scenarios, the present paper studies a setting in which multiple 

sensors, physically distributed across an environment, employ communication and computation 

form a consolidated estimate by fusing their sensed data. In contrast to prior work on such 

problems, we are interested in circumstances where the elements comprising the system need not 

fall under aegis of the same authority. Though participating as honest parties, they may be 

inquisitive (e.g., where one purchases access to data streams in a market of competing service 

providers). Or they may have been compromised so as to disclose data, or to stash information 

they handle to divulge later (e.g., to an adversary who can instrument but not modify devices or 

communication channels). The objective, then, is to fuse data from multiple devices, while also 

limiting what additional information may be learned by such devices (here, ‘additional’ is taken 

as meaning over-and-above what is known from their individual views). 

Our treatment focuses on a class of finite-state transducers called combinatorial filters 

[25]. Effectively, these act as discrete state estimators: converting a stream of inputs into a 

stream of outputs, where the former stand for sensor readings, while the latter form estimates of 

properties of interest, encoded abstractly. Figure 2.1 [left] provides a (simple) concrete example: 

 
† © 2021 IEEE. Reprinted, with permission, from [32]. 
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two agents move freely about an environment, each tracing a continuous path and occasionally 

crossing one of the three beam sensors (labeled ‘a’, ‘b’, and ‘c’). As the agents move they 

interact with the sensors, thereby generating a sequence symbols. Processing this sequence by 

tracing over the correspondingly labeled edges, the 4-state filter in Figure 2.1 [right] concisely 

answers the query are the two agents together or not? 

 

Figure 2.1: A simple scenario: we track the state of two agents moving in a rectangular room that contains a single 
central obstacle. A small combinatorial filter fuses information obtained from three break-beam sensors (‘a’, ‘b’, 
and ‘c’) to determine whether the agents are together or not. [left] A screenshot of our python-based simulator 

showing the environment---the red dots are the agents, the cyan line segments are the beams. [right] A 
combinatorial filter with 4 states that, from any given initial configuration, tracks whether the agents are together 

(yellow) or apart (green). 

In this basic example, we imagine that in an implementation the beam sensors are 

realized as three different embedded devices connected via a communication network, and each 

has basic compute capabilities. In addition to the sensors, some separate device (or party) holds 

the graph structure that describes the filter. Finally, there is a querier, some party who is 

interested in the current output of the filter (i.e., the color: yellow or green, together or apart). 

This paper shows how to ensure the querier learns only the colors, neither the input symbols, nor 

the filter structure. The device possessing the filter learns neither the input symbols nor the 

output stream. And, individually, the devices governing the sensors learn nothing other than their 

own sensed readings. 
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Using secure Multi-Party Computation (MPC) techniques, we process a stream of events: 

pooling data from the various sensors and then evaluating the given combinatorial filter 

incrementally. The security of this scheme is established via proofs in the semi-honest model, 

which is appropriate for devices considered cooperative but curious, devices constrained to obey 

the prescribed protocol. This model allows claims to be made about information that the protocol 

leaks (in contradistinction to that which implicitly disclosed via the input-output relationships).  

Though it is more common for MPC operations to treat data in a batch fashion, 

incremental stream-based evaluation is a fundamental part of real-time filtering. The approach 

we will describe pools, via a mechanism that ensures privacy, data that the sensor monitoring 

devices aggregate locally. This happens at some fixed rate, for transmission cannot depend on 

the data received because otherwise the rate and/or quantity of communication would leak 

information about how much activity is occurring. 

Nevertheless, in the encoding we employ, when events are known a priori to occur 

infrequently (for instance, when the velocity of the agents in Figure 2.1 [left] is bounded) this 

can reduce communication. 

On the basis of our implementation, we explore treatments for the dense and (known) 

bounded-sparse regime, showing that they have different computational requirements and 

behavior. 

The primary contribution of this paper is the application and integration of MPC 

protocols, including extensions to techniques, to the practical problem of secure filtering for data 

sensor fusion. Where our protocol extensions warrant it, we present security proofs for the 

modification. The final section also describes our proof-of-concept implementation and 
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examines its performance, providing an empirical view of the compromise between 

communication and computation costs. 

2.2 Related Work 

This paper addresses a discrete estimation problem in an unconventional computational 

setting, drawing on multiple MPC techniques and related concepts. Primarily to provide context, 

here we provide a brief and basic overview to help situate the present work within the broader 

literature. More and deeper technical connections will be made in the sections that follow, once 

the basic definitions and problem formalization have been introduced. 

2.2.1 Filters, Estimators, and Trackers 

Combinatorial filters, a term introduced in [25] and related to discrete event systems [7], 

are estimators which process a stream of symbols to produce output encoding structural or 

stateful properties of interest. These filters are ideal for processing simple sensor inputs [4], and 

have been the subject of study under the broader banner of minimalism [16]. We are not aware of 

prior work which has considered multi-sensor or decentralized fusion for such filters; this differs 

markedly from the case of traditional probabilistic filters [6]. 

A notable piece of work, within the probabilistic filtering setting, is that of Ny and 

Pappas [17], which relates to our work in that it considers multiple participants contributing 

input data and is concerned with privacy. In their work, the differentially private model [7] is 

employed, seeking to limit information about the individual contributions to the output. The 

MPC approach, being built with cryptographic primitives, offers stronger guarantees. 

For the discrete setting, several pieces of work consider notions of opacity [14], 

obfuscation [26], and discreetness [22]. Some work has also examined privacy-preserving 

tracking problems [29]. 
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2.2.2 Secure Multi-Party Computation 

Secure MPC deals with situations where multiple parties, each possessing some input 

data, wish to compute some function of the union of the inputs, but while having their input 

remain private [8]. Each party only learns the output of the computation, even when inimical 

participants collude in to trying learn more about the inputs of the others. 

An early problem examined by Andrew Yao [28] is the ‘Millionaire's problem’, where 

two individuals determine who has greater wealth (evaluating a ‘≤’), but without revealing their 

own bank balances. Yao's solution involved one party generating a truth table with all possible 

outcomes, encrypting the outputs, and generating a permutation to produce what is known as a 

‘garbled circuit.’ The garbled circuit and keys needed to decrypt the output are then shared. Next, 

a process termed ‘oblivious transfer’ (OT) is used to provide the inputs needed to evaluate the 

garbled circuit. 

Oblivious transfer involves a sending party transmitting a set of items as a message, 

while remaining unaware of which were received by the receiver (typically only a strict subset). 

They form an important building block for Secure MPC protocols and, in reporting the 

performance of our implementation, we will report the quantity of primitive OTs involved. 

2.2.3 GMW Protocol 

Within the semi-honest setting considered herein, several general protocols to compute 

deterministic functions exist [12]. We make use of the Goldreich-Micali-Wigderson (GMW) 

Protocol [11] in which two parties with, respectively, private inputs 𝑥 and 𝑦 wish to evaluate a 

public function 𝑓(𝑥, 𝑦) via an agreed-upon circuit 𝐶 [8]. The core idea behind this protocol is 

that each party supplies additive shares for circuit inputs, and they evaluate 𝐶 on shared values 

[3][13].  
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2.2.4 Privacy in Robotics & Control 

Recently, researchers have begun to apply MPC to problems in robotics, control, and 

estimation [18], [1], [30]. 

2.3 Preliminaries 

2.3.1 Basic Notation 

Let 𝑥 ←3 {0,1}! represent the generation of a random binary string of length 𝑛 using a 

cryptographically secure random number generator. Let 𝐺: {0,1}! → {0,1}4 be a pseudorandom 

number generator with 𝑛-bit seed and 𝑚-bit output. Let 𝑢||𝑣 represent the concatenation of 

binary bit strings 𝑢 and 𝑣. We write 𝑢	 ⊕ 𝑣 for the bitwise XOR operation on binary bit strings 𝑢 

and 𝑣. Finally, in cases where we wish to explicitly represent an empty input or empty output, 

we follow the convention of using the symbol ‘⊥’. 

The term ‘party’ is conventional in the cryptographic literature to describe a 

computational actor that possesses its own view of the world, information potentially unknown 

to others, and possibly its own objectives [3]. 

Our setting will consider 𝑛 + 2 devices, each with access to some partial share of the 

information, which we treat as private. Interaction between these devices is primarily pairwise, 

so that two-party functionalities are our natural focus. 

Abstractly, a two-party functionality is a function 𝑓: {0,1}∗ × {0,1}∗ → {0,1}∗ × {0,1}∗, in 

which 𝑓 = (𝑓+, 𝑓6). The input to the functionality 𝑓 are pairs 𝑥, 𝑦 ∈ {0,1}! and the output is 𝑓 =

9𝑓+(𝑥, 𝑦), 𝑓6(𝑥, 𝑦):. The first party, with input 𝑥, wants to obtain 𝑓+(𝑥, 𝑦) and the second party, 

with input 𝑦, wants to obtain 𝑓6(𝑥, 𝑦). In the case of the functionality just described, thus, 𝑥 and 

𝑦 respectively represent private inputs. Protocols, denoted π, are used to calculate functionalities. 
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2.3.2 Security Model 

Throughout we restrict our attention to the semi-honest model of adversaries [3]. In such 

settings, each party is obligated to follow the prescribed protocol but may attempt to learn as 

much as possible during the computation. To ensure some protocol implements some 

functionality under the semi-honest model securely, proof via the simulation paradigm is used 

[19]. Section 2.5.2 includes the construction of a simulator in order to establish the security of 

the protocol that we propose for oblivious Moore machine evaluation. 

2.3.3 Combinatorial Filters 

Following the formulation in [23], we consider a structure that processes sequences of 

events (typically interpreted as observations or actions or both). We are interested in representing 

sets of such sequences and do this via a graph where each reachable vertex corresponds to an 

equivalence class of sequences. The vertices are termed information states or I-states for short.  

Definition 1: An I-state graph 𝐺 = (𝑉, 𝐸, 𝑙: 𝐸 → 𝑌, 𝑣,) on event set 𝑌 is an edge labeled, 

directed graph with an initial vertex. Here 𝑉 is a finite set of vertices (the I-states), 𝐸 is a set of 

ordered pairs of vertices (directed edges), the function 𝑙 labels each edge with an event from 𝑌, 

and 𝑣, represents the starting I-state. 

Throughout, we consider only deterministic I-state graphs, namely those where no 

vertices have multiple outgoing edges labeled by the same event. Properties of interest which can 

be computed on I-states will be encoded as colors.  

Definition 2: A combinatorial filter 𝐹 is a deterministic I-state graph supplemented with 

an assignment of colors to its vertices, 𝐹 = (𝐺, 𝑐: 𝑉 → 𝑁), where 𝐺 is an I-state graph and 𝑐 

assigns a natural number to each vertex.  
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The output of filter 𝐹 = (𝐺, 𝑐) on input 𝑦+𝑦6…𝑦4 is the sequence of colors 

𝑐(𝑣,)𝑐(𝑣+)… 𝑐(𝑣4), where 𝑣, is the starting I-state of 𝐺, and each 𝑙9(𝑣'*+, 𝑣'): = 𝑦' for 𝑖 ∈

{1, … ,𝑚}. Abusing notation slightly, we will write the filter as if it were a function, so the output 

is 𝐹[𝑦+𝑦6…𝑦4]. 

2.4 Problem Formulation 

Sensors are each connected locally to a processor forming a single logical unit that we 

dub an event detector. We have 𝑛 such event detectors, 𝐷+, 𝐷6, … , 𝐷!, each of which senses or 

otherwise observes events in the world. After detecting the occurrence of an event, they yield an 

event symbol. Multiple event detectors may produce the same symbol, so we consider 𝑚	 ≤ 𝑛 

event symbols that (together with ϵ representing no event being observed) form our overall event 

space, denoted 𝑌 = {𝑦+, 𝑦6, 𝑦7, … , 𝑦4, ϵ}. For the example in Figure 2.2, we have 3 event 

detectors 𝐷+, 𝐷6, 𝐷7, each associated to a beam sensor. Here the overall event space is 𝑌	 =

	{𝑎, 𝑏, 𝑐, ϵ}. Each event detector 𝐷8 will have a local event space 𝑌8 = {𝑦' , ϵ}, where 𝑦' ∈ 𝑌 

represents an event gathered by 𝐷8. We impose the constraint that each event is covered by at 

least one event detector, i.e., 𝑌 = ⋃ 𝑌8!
89+ . 

For event detector 𝐷8, the local event history, denoted ℎ:c =

9(𝑡,, 𝑥,), (𝑡+, 𝑥+), … , (𝑡;*+, 𝑥;*+):, is a sequence representing the information collected at 𝐿 

distinct times, 𝑡' < 𝑡'<+, and where each 𝑥' ∈ 𝑌8 for 𝑖 ∈ {0, … , 𝐿 − 1}. In what follows, we will 

assume that times are numbers requiring τ bits of storage. Also, length 𝐿 will be a parameter  



24 
 

 

Figure 2.2: The overall architecture for MPC-based sensor fusion and combinatorial filter evaluation, shown via a 
schematic which emphasizes flow and sharing of information. On the far left, event detectors 𝑫$, 𝑫%, … , 𝑫!, queue 

readings for histories of length 𝐿. These are then transmitted as split shares to 𝑸 and 𝑶. (Visually purple 
decomposes into red and blue components.) The values are jointly sorted via a sorting network with a comparator 
circuit using GMW. The resulting time-ordered sequence, still split, is then jointly evaluated as a Moore machine. 
While 𝑶 knows the filter structure, 𝑸 (and 𝑸 alone) learns the sequence of output colors (yellow and green), but 
nothing more. The grey rectangles represent parties (𝑛 + 2 in total). Parameter 𝐿 describes size of local event 

histories which are pooled for each round. The box 𝐹&'!"
()*+, refers to batch oblivious transfer with joint choice [31]. 

used in the algorithms we present. Note, that since ϵ ∈ 𝑌8, one may always pad shorter histories 

to obtain ones of length 𝐿. The global event history, which we denote 𝑦h, is the union of all 

events, as a sequence ordered by time. 

We employ two phases: the first involves pooling data from detectors to construct a 

subsequence of the global event history; the second processes that subsequence of events, 

evaluating the filter. Both phases must keep the data private.  

2.4.1 Securely Pooling Event Sequences 

We consolidate local event histories into a single chronologically-ordered stream by 

batching subsequences and operating on windows of length 𝐿. Evaluation of the combinatorial 

filter over time then proceeds batch-by-batch. 
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To maintain the privacy of each detector's data, we employ a secret sharing approach: 

every 𝐷8 splits its event stream into two shares and sends these to two new parties. These two 

additional parties, designated 𝑶 and 𝑸, bear the burden of subsequent computation and are 

assumed to be more capable than our embedded event detectors. Parties such as 𝑂 and 𝑄 are 

commonly called privacy peers (see, e.g., [15]). 

These requirements are formalized as follows in Figure 2.3: 

 

Figure 2.3: Specification for Functionality 1: Event Sequence Pooling. 

2.4.2 Oblivious Combinatorial Filter Evaluation 

Once the event detector's streams have been pooled, the stream symbols need to be traced 

over a filter's labeled edges to generate the associated sequence of colors, i.e., to produce the 

filter's output. Since the symbols are split into pairs of shares, this tracing must be done in some 

joint fashion. We build on the ideas in [31] [20] to proposed our second desired functionality. 

In this case, there are two parties: the querier who has part of the sequence of symbols 

and wishes to know the output color stream. The filter owner, who knows the filter, and has part 

of the sequence of symbols. We have one of the privacy peers (𝑸) be the querier, while the other 

(𝑶) is the filter owner. The functionality is formalized next in Figure 2.4: 
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Figure 2.4: Specification for Functionality 2: Combinatorial Filter Evaluation. 

Next, we examine how to realize these two functionalities. 

2.5 Methods 

Figure 2.2 provides an encompassing diagram showing the 𝑛 + 2 parties involved: event 

detectors 𝐷+, 𝐷6, … , 𝐷! and querier 𝑸 and filter owner 𝑶. The first functionality is depicted in the 

portion of the diagram from the left, through splitting of local histories, to the subsequent sorting 

step (shown via twinned sketches of sorting networks and GMW comparators). The second 

functionality proceeds further to the right: the red and blue lines are come together to make a 

joint choice oblivious transfer, employing cryptographic keys which are used also in tracing 

through an encoding of the filter as a garbled adjacency matrix. We turn to each of these in detail 

next. 

2.5.1 Secure Event Sequence Pooling 

To implement Functionality 1 (Figure 2.3), we collect shares of each event history ℎ=c  into 

shares of an agglomerated history 𝑦h. The protocol operates in rounds run at a frequency 

appropriate for each event detector to have a local history with 𝐿 symbols. Every round, each 𝐷8 

splits its history ℎ:c  into additive secret shares using a secure random number generator (RNG) 

and the XOR operation. Then 𝐷8 sends these two shares, denoted ℎ:>l  and ℎ:
?l , to the respective 

privacy peers. In Figure 2.2, the ℎ:c  are illustrated by sensors' individual purple sequences, while 



27 
 

the transfer of	ℎ:𝑶l  and ℎ:
𝑸l  are illustrated by the red and blue arrows towards 𝑂 and 𝑄. Keeping 

these shares separate, 𝑶 and 𝑸 jointly sort the aggregate history using sorting networks and 

GMW Protocol. Finally, 𝑶 and 𝑸 obtain shares of a sorted stream of symbols 𝑦Bc . 

 

Figure 2.5: Specification for Protocol 1: Shared Sequence Assemblage. 

The following subsections provide further explanation for the components of the method 

outlined in Figure 2.5.  

2.5.1.1 Padding Inputs 

Padding event detectors' inputs with ϵ symbols, as previously mentioned, ensures mℎ=c m =

𝐿, ∀𝑖 ∈ {1, … , 𝑛}. This is important so that information - such as the frequency at which 𝐷' 

detects events - is not revealed. 

2.5.1.2 Creating Secret Shares from Event Detectors 

An element of an event history ℎ=c [𝑘] is a tuple 9𝑡8 , 𝑠8:, where 𝑡8 is a time and 𝑠8 ∈ 𝑌. Any 

such tuple can be represented as an l-bit binary string, for l = 	τ +	⌈	log	 |𝑌|	⌉. Each detector 𝐷' 

for 𝑖	 ∈ {1, … , 𝑛} splits its history ℎ=c  into shares by generating random values 𝑟 ←3 {0,1}) for 

each element in its history. Then ℎ:𝑶l  is the resulting sequence of random values. Let each 

element ℎ:
𝑸	l [𝑘] = ℎ=>l[𝑘] ⊕ ℎ=c[𝑘]. Some (arbitrary) predefined ordering of detectors is known by 
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both 𝑶 and 𝑸, which collect the sequences to maintain pre-sorted subsequences, as is formalized 

next. 

2.5.1.3 Sorting 

𝑸 and 𝑶 will have concatenated all received histories into a shared agglomerated history, 

and they will proceed to sort the agglomerated history in increasing order by time. Jónsson, 

Kreitz, and Uddin [15], address sorting in the MPC context using sorting networks, and we use 

their work directly with only minor modifications. A sorting network is a structure which 

specifies an ordering of swaps to sort in place any sequence of pre-defined length. The networks 

are oblivious to the data of any input sequence. Jónsson et al. [15] use Batcher's odd-even merge 

sorting network [2] to specify swaps, and perform swaps via an MPC sub-protocol, compare-

exchange, utilizing MPC primitives. Because sub-sequences of our agglomerated history are 

already sorted, an odd-even merge network suffices. Also, as we are already employing additive 

secret shares, and they are very effective in practice [24], we use them throughout. Hence, we opt 

to have 𝑶 and 𝑸 evaluate the compare-exchange circuit jointly via GMW. Finally, 𝑶 and 𝑸 will 

strip the agglomerated history of its time keys, resulting in 𝑦h, an ordered event sequence, only 

shared amongst themselves. It remains to show that this protocol is correct and secure. 

Theorem 1: Protocol 1 is correct and secure. Both correctness and security flow from 

Jónsson et al. [15] and the fact that GMW Protocol is an MPC primitive. The other modifications 

introduced are entirely peripheral to security. 
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Figure 2.7: Oblivious evaluation of DFAs vs. Moore machines. 

2.5.2 Oblivious Combinatorial Filter Evaluation 

In this section, we build on prior results for Oblivious DFA evaluation [20] [31]. We 

extend that work to support oblivious Moore machine evaluation under the semi-honest model. 

First, to make the connection, we must translate an arbitrary combinatorial filter to a binary 

alphabet Moore machine. 

We define a binary Moore machine as 𝑀 = (𝑄, {0,1}, Δ, 𝑞,, 𝐶, 𝑐) composed of a finite set 

of states 𝑄, the symbols 1 and 0, a transition function Δ:	𝑄	 × Σ → 𝑄, an initial state 𝑞,, a finite 

set of colors 𝐶 and a coloring function 𝑐:	𝑄	 → 𝐶. 

As we create a binary Moore machine 𝑀 from a filter 𝐹, states and corresponding 

colorings for 𝑀 are given directly from the filter. Next, for each state 𝑞' ∈ 𝑄 ∩ 𝑉, add states and 

transitions to create a complete binary tree of depth ⌈	log	 |𝑌|⌉, with leaves transitioning to 

another original state, specified by the edges E. Create a new color grue, and assert that new 

states 𝑞8 ∈ 𝑄/𝑉 map to this color 𝑐:	𝑞_𝑗	 → 𝑔𝑟𝑢𝑒}. Note that in our construction, ϵ will result in 

a self-loop. An example of a translated filter is shown in Figure 2.7. The Moore machine 𝑀 
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constructed in this way from a filter 𝐹 has the property that for all 𝐹[𝑦h] = 𝑐,𝑐+…𝑐4 and 

𝑀�𝑏Cl� = 𝐶,𝐶+…𝐶D, where 𝑏Cl is the binary representation of 𝑦h with ⌈	log	 |𝑌|⌉-bits per symbol, 

then 𝑐, = 𝐶,, 𝑐+ = 𝐶⌈)FG|I|⌉, …, 𝑐% = 𝐶%⋅⌈)FG|I|⌉, …, 𝑐4 = 𝐶4⋅⌈)FG|I|⌉ = 𝐶D. 

 

Figure 2.7: The combinatorial filter shown in Figure 1.1 [right], but converted to use a binary alphabet. A new 
output (shown in grue) is introduced to indicate that the Moore machine is processing a syncopated step. 

Mohassel et al. [20] introduce the DFA Matrix (see Figure 2.6 [left]) as a building block 

to oblivious DFA evaluation. A binary DFA Matrix 𝑀 represents states 𝑠' = (𝑗, 𝑘) as pairs of 

transitions 𝑠' →, 𝑠8 and 𝑠' →+ 𝑠%, where 𝑠' ∈ 𝑄. Evaluating a binary DFA Matrix on a bit 

sequence 𝑏 involves choosing the 𝑏[𝑖]-th element of the current state pair at each row, then 

advancing to the next row. In the final row of the matrix, a string is either ‘accepted’ or ‘rejected’ 

by the DFA matrix. A DFA Matrix of size n × |Q| is needed to process sequences of length 𝑛 on 

a DFA with states 𝑄. In our case, we wish to have 𝑸 obtain the colors along the evaluation path 

in an incremental fashion. We can encode a binary Moore machine matrix in the same way as a 

DFA Matrix by simply adding a color label to each state pair to form a triple, 𝑠' = 9𝑗, 𝑘, 𝑐(𝑖):, 
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and by outputting colors 𝑀(𝑏) at each state rather than an producing only an ‘accept’/‘reject’ 

output in the last row (see Figure 2.6 [right]). 

Mohassel et al. go on to permute a DFA Matrix into a permuted matrix 𝑃𝑀 by shuffling 

the states randomly but keeping the correctness of the transitions. Thereafter, a garbled matrix is 

produced so that, for any particular input string, only an authorized evaluator can reveal the 

states along the evaluation path, while the rest of the matrix is computationally indistinguishable 

from random. The method for constructing a garbled binary Moore machine matrix that can be 

evaluated on the joint input of 𝑶 and 𝑸 is largely based upon [31], and has the following steps: 

First, start with binary Moore machine matrix 𝑀 of triples, and create a permuted matrix 

𝑃𝑀. Second, create a matrix 𝑅𝑀 of the same size, 𝑛 × |𝑄|, of random values 

𝑅𝑀[𝑖, 𝑗] ←3 {0,1}L, where κ is the security parameter. Then, for each row 𝑖, create a pair of 

garbled keys 𝑘,' , 𝑘+' ←3 {0,1}%<$, where 𝑘 = κ + log|𝑄| and 𝑠 is the statistical security 

parameter. 

We will use 𝑅𝑀 to obscure all matrix elements from each other, and employ garbled keys 

to obscure the two transitions in each triple from one another. 

The garbled matrix entries will be updated as follows:  

 𝐺𝑀[𝑖, 𝑗]- = B𝑃𝑀[𝑖, 𝑗]-C|𝑅𝑀[𝑖 + 1, 𝑃𝑀[𝑖, 𝑗]-]-|C0.F ⊕ 𝑘-/  
𝐺𝑀[𝑖, 𝑗]$ = B𝑃𝑀[𝑖, 𝑗]$C|𝑅𝑀[𝑖 + 1, 𝑃𝑀[𝑖, 𝑗]$]$|C0.F⊕ 𝑘$/  

GM[i, j]% = 𝑃𝑀[𝑖, 𝑗]% 
(2.1) 

When examining state 𝑗 in row 𝑖, 𝑃𝑀[𝑖, 𝑗] gives the transitions away from the state, and 

the color of this state. Matrix 𝑅𝑀 will be used to decrypt the elements 𝑃𝑀[𝑖, 𝑗] points to. Garbled 

keys are used to mask the values of these pair items, and 𝑠 zeroes are concatenated together at 

the end of the bit string, which the evaluator can use to determine whether or not they are 

decrypting the correct pair of items. 
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For each triple in each row, flip a coin and swap the first two items if the coin is heads. 

Now generate ciphers 𝑝,
',8 , 𝑝+

',8 ← 𝐺+(𝑅𝑀[𝑖, 𝑗]) to mask transitions and 𝑝6
',8 ← 𝐺6(𝑅𝑀[𝑖, 𝑗]) to 

mask colors, then mask the elements of each triple: 

 GM[i, j]- = GM[i, j]-⊕p-
0,2 

GM[i, j]$ = GM[i, j]$⊕p$
0,2 

GM[i, j]% = GM[i, j]%⊕p%
0,2 

(2.2) 

Once the construction of the garbled matrix is complete, 𝑶 sends 𝑸 the initial state index 

𝑞,, the pseudorandom generators 𝐺+ and 𝐺6 and the initial random value 𝑟 = 𝑅𝑀[1, 𝑞,]. 𝑸 

proceeds by retrieving stream ciphers 𝑝,
+,N3 , 𝑝+

+,N3 ← 𝐺+(𝑟), 𝑝6
+,N3 ← 𝐺6(𝑟). 𝑸 also needs garbled 

keys 𝑘CO'  for each bit in the shared input string 𝑦h. This is accomplished by batch oblivious transfer 

with joint choice (𝐹>P45
QRSTU). This MPC protocol, secure under the semi-honest model [31], entails 

𝑶 transferring its input string of joint choice 𝑘CO  to 𝑸 via both parties’ shares of the choice 𝑦>l  

and 𝑦?l .  

Given garbled keys, 𝑸 can evaluate the matrix row-by-row. At the first row, decrypt 

𝐺𝑀[1, 𝑞,]6 to obtain the initial color. Next, for each subsequent row 𝑖 and state 𝑗, 𝑸 decrypts 

𝐺𝑀[𝑖, 𝑗], = 𝑝,
',8 ⊕𝑘' ⊕𝐺𝑀[𝑖, 𝑗], and GM[i, j]+ = 𝑝+

',8 ⊕𝑘' ⊕𝐺𝑀[𝑖, 𝑗]+. Then, 𝑸 can observe 

which element of the pair provides a valid decryption. 𝑸 can repeat this procedure, finding the 

next stream ciphers 𝑝,, 𝑝+, 𝑝6 with every new state visited, and outputting the color 𝐺𝑀[𝑖, 𝑗]6⊕

𝑝6. This is formalized via Protocol 2, given by Figure 2.8. 
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Figure 2.8: Moore Machine Evaluation with Joint Input. 

We will next prove the correctness and security of the proposed protocol. For a protocol 

to follow the semi-honest model, it must produce the correct output, and guarantee nothing can 

be learned during execution other than what can be obtained from inputs and outputs. The 

simulation proof technique [19] prescribes an analysis of the inputs and outputs of a party by 

constructing a polynomial-time simulator of its real view, then asserting that all intermediate data 

obtained can be faked by the simulator, such that no polynomial-time distinguisher could tell the 

difference between simulated and real data. 

Theorem 2: Protocol 2 (Figure 2.8) is correct and secure in the semi-honest model. 

Correctness: Garbled Moore machine evaluation on joint input traces the same path 

through states as a corresponding garbled DFA evaluation would, since they use the same 

mechanisms for encoding and traversing a matrix. We have shown how our color output 

extension reports the correct color at a given state; thus, correctness follows from Oblivious DFA 

Evaluation on Joint Input. 
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Security: 𝑶 only interacts with 𝑸 during batch OT garbled key exchange, which Zhao et 

al., [31] have shown to be an MPC protocol. Therefore, we will examine 𝑸's view of execution 

by constructing simulator 𝑆𝑸: The simulator is given all inputs and outputs of 𝑸, the same inputs 

and outputs of oblivious DFA evaluation, with the exception of the output color stream 𝑀(𝑦h), 

replacing a solitary ‘accept’/‘reject’ output with a stream of colors. 𝑆𝑸 must fabricate messages 

received in real execution, namely the garbled keys 𝐾 and garbled matrix 𝐺𝑀D received from 𝑶. 

𝑆𝑸 will create a binary Moore machine matrix 𝑀B of the same size (the size can be computed 

from the common input) as the real matrix during execution, but with random states and 

transitions. Each element in row 𝑖 of 𝐺𝑀D
B  will be colored with 𝑀(𝑦h)[𝑖]. 𝑆𝑸 will also obtain a 

corresponding set of garbled keys, 𝐾B, which is indistinguishable from 𝐾 (trivially, as both are 

sets of random numbers). We have shown that a garbled matrix is computationally 

indistinguishable from randomness everywhere except along the evaluation path. The evaluation 

of 𝐺𝑀D
B  given garbled keys 𝐾B results in 𝑀[𝑦h], just as 𝐺𝑀D does with keys 𝐾, so 𝐺𝑀D

B  and 

𝐺𝑀D are indistinguishable. 

All messages during execution can be simulated by 𝑆?, so the protocol is secure. 

We emphasize an important difference between our sketch and the proof by Zhao et al. 

[31] for oblivious DFA evaluation. They take a random approach: the simulator generates a 

random garbled matrix; evaluates it; if the output is the same as the output in real execution, then 

the simulator can provide this garbled matrix, which is indistinguishable from that of real 

execution; otherwise, try again with another garbled matrix, until one is found with the correct 

output. 
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As a DFA matrix only outputs a single terminal bit, the above algorithm is probabilistic 

polynomial-time. In our case, since we need a |𝐶|-ary output at each row, their technique would 

become probabilistically 𝑂(𝐶!). Accordingly, we use a more direct approach. 

2.6 Experimental Results 

We have implemented a proof-of-concept version of the protocols just described in 

Python, in a simple multiprocessing environment, with 𝑸 and 𝑶 running as two processes on the 

same machine. 

2.6.1 Implementation Details 

We begin with a simulator shown in Figure 1 [left] that produces the crossing logs for 

individual event detectors in the environment. The logs are processed and transformed into 

shares by an individual process acting as an event detector and transmitted to 𝑸 and 𝑶. The 

primary work is a third multi-process program where 𝑸 and 𝑶 sort shares of the event history as 

per Protocol 1, then evaluate a combinatorial filter on the resulting event sequence, via Protocol 

2. We use an additional Python script to pre-compute oblivious transfers as an optimization 

technique. The code is instrumented to record running times and the number of OTs under 

different scenarios; a summary appears in Figure 2.9. 
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Figure 2.9: [left] A breakdown of pre-computed 1-bit random OTs consumed during run time, as the local history 
length 𝐿 is increased, and 26 = 𝐿. [right] The total number of OTs when sorting local histories where we vary the 
sparsity of events within the 𝐿-sized window. The red line allows for comparison to when we take single element 

windows and forgo sorting altogether. 

2.6.2 Results 

We set security parameter 𝑘	 = 	256 and statistical security parameter 𝑠	 = 	64. Run 

times were obtained by running our program on the following hardware: Macbook Pro 13-inch, 

2017. 2.3GHz Dual-Core Intel Core i5. 8GB 2133 MHz LPDDR3 RAM. 128GB memory. 

Figure 2.9 [left] gives a break-down of the consumption of OTs for different aspects of the 

protocol. Sorting requires OTs for the time (for τ width times) and for the symbols (2 bits for all 

examples). The parameter 𝐿 and τ increase to the right, with 2V = 𝐿. Each bar involves multiple 

rounds in order to consume the same total number of symbols. Notice, consequently, that the 

OTs for the Moore machine evaluation are constant, as this is a factor of the total sequence 

length. As 𝐿 increases, the cost to sort the inputs increases super-linearly. The conclusion from 

this appears to be that sorting is ineffective. Indeed, in scenarios where communication between 

detectors and privacy peers is an abundant resource, or the frequency of detection is low, a unary 

construction of Functionality 1 may be warranted. A unary variant would have a time window 

𝐿	 = 	1, and the sorting aspect of Functionality 1 becomes degenerate.  



37 
 

But the story is not so clean cut. Using the preceding data, we are also able to calculate 

the cost for use of the protocol when the relative density of symbols in the history varies. By 

pooling data from relatively large time windows but with small 𝐿 (i.e., 2τ ≫ 𝐿) we model 

filtering of sparse inputs. Figure 2.9 [right] shows that before a certain point (𝐿	 ≈ 54), when the 

input symbols are sparse enough, it is useful to represent these and sort them and only evaluate 

the fraction that are known to be non-ϵ values (e.g., owing to some a priori model of sparsity). 

Once 𝐿 exceeds 54, it is better to spend fewer resources on pooling, and simply evaluate the 

Moore machine on the inputs on 𝐿 = 1 slices. (For comparison, the red line in Figure 2.9 [right] 

is the same treatment as Figure 2.9 [left].) 

2.7 Conclusion 

This paper has presented an approach to aggregate and filter data from several sensors 

with privacy guarantees. We introduced and implemented protocol constructions based on the 

integration of known primitives (like OT and the GMW protocol) and techniques (like sorting, 

privacy peers and split secret shares) in Secure Multi-Party Computation. We extend prior work 

on joint DFA evaluation to the case of Moore machines, proving that security is preserved under 

the semi-honest adversary model. We implemented our MPC-based sensor fusion and evaluated 

it in a simple study case. There are several exciting avenues for future work. 

The implementation of Protocol 1 makes use of a low-depth comparison circuit [9] to 

minimize rounds of oblivious transfers between 𝑸 and 𝑶, but we do not take advantage of many 

of the optimizations to GMW Protocol that are available, including extending oblivious transfers 

[13], parallelizing oblivious transfers in batch, using multiplication triples [3] and performing 

load balancing [24]. Moore machine evaluation can be further improved by implementing 
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suggestions from [31]. Our implementation, though rudimentary, lays the foundation for future 

work in practical applications of oblivious sensor fusion. 
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3. CONCLUSION 

The research team’s primary work established a novel protocol for securely evaluating a 

combinatorial filter amongst many parties and implemented a proof-of-concept program to 

demonstrate its feasibility. Some important detail is left out of the above paper to maintain 

brevity and to not repeat what other researchers have already concluded. In the area of 

cryptography, however, correctness is vital, so more complete detail will be provided below to 

help establish the basis for claims of validity. First, it is worth exploring why we chose to use 

Mohassel et al.’s and Zhao et al.’s work. Second, a more concrete discussion of Moore machine 

evaluation is warranted. Next, we will provide more detail on the implementation. Finally, we 

discuss output leakage in more detail. 

3.1 Footnotes on the Paper 

3.1.1 Why Oblivious DFA evaluation with joint choice? 

The notion of joint choice is quite convenient to merge additive secret shares of a choice 

without actually exchanging the plaintext. Zhao et al.’s most interesting contribution to DFA 

evaluation, to us, is this idea oblivious transfer with joint choice. They create a new OT protocol 

with joint choice, which uses a partially-homomorphic encryption scheme to mix the choices. 

One thing we could do is use DFA evaluation (Figure 2.6 [left]) to get a colored output 

after processing all inputs. However, the stream of information which one obtains from a filter is 

desirable in many cases. 

3.1.2 Alternate solutions to secure combinatorial filter evaluation 

At the start of this document, one of the first things mentioned is Yao’s Garbled Circuit 

protocol. This is an extensively studied protocol, and many optimizations make it one of the 
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most feasible 2-party MPC general-purpose frameworks. One could also accomplish 

Functionality 2 (Figure 2.4) with a garbled circuit protocol. Mohassel et al. mention this 

possibility in their formulation for oblivious DFA evaluation, and in fact they can rephrase their 

protocol as a tweak on Yao’s garbled circuits. They use a custom DFA protocol for a few 

reasons. First, one would need a special circuit compiler to transform a DFA to a garbled circuit. 

Second, there are some structural aspects of the DFA which can be taken advantage of with a 

specialized protocol, which a generalized approach may be able to capture, but with some 

difficulty. In other words, since their construction of oblivious DFA evaluation is simple and 

features excellent performance, it is better to use this instead of a more complex formulation of a 

general garbled circuit. Third, Mohassel et al.’s construction creates a client-server relationship 

between the evaluator and DFA owner. 

The first two reasons still apply to Moore machine evaluation. In fact, the Moore machine 

does not suit itself to a garbled circuit as well as a DFA might. A DFA might be used to perform 

pattern-matching on an input string, and check if it belongs to a certain class of patterns. In a 

Moore machine, the output at each round of evaluation must be reported, which would require a 

more substantial modification to a garbled circuit method. 

As for the third reason, Zhao et al.’s implementation takes us further away from the 

notion of a client-server relationship, and we take it even further away, as we prefer to think of 

the privacy peers as equal participants, while the event detectors are more considered to be 

“clients.” 

A homomorphic encryption approach may also be considered, although these schemes 

generally involve more asymmetric operations than the best garbled circuit implementations. 
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3.1.3 Garbled Matrix Construction and Proofs 

In Section 2, we explain the construction of a garbled matrix to evaluate a Moore 

machine, rooted in Mohassel et al.’s construction for oblivious DFA evaluation, and Zhao et al.’s 

extension for DFA evaluation on joint input. 

First, let’s visit the intuition on the Oblivious Moore machine evaluation protocol (Figure 

2.6 [right]). The stream ciphers 𝑝,
',8,	𝑝+

',8 and 𝑝6
',8 provide the top layer of encryption for the 

garbled matrix. Without the random seed obtained from the previous state visited, one cannot 

decrypt any state except those on the evaluation path (pointed at from the previous state). The 

two garbled keys for each row 𝑘,'  and 𝑘+'  form the next layer of encryption. There are two 

garbled keys per row, one used to encrypt each ‘0’ transition, and one to encrypt each ‘1’ 

transition. Since garbled keys are random numbers, it is hard to guess one, so, the evaluator 𝑸 

needs to obtain the proper one in order to proceed. Therefore, the garbled keys protect the 

transitions away from each state. The garbled keys of joint input 𝑘CO'  are obtained via 𝐹>P45
QRSTU. The 

next level of obfuscation is accomplished by permuting the transitions and permuting the rows. 

A random permutation of the transitions protects the joint choice bit from being learned by 𝑸 

during evaluation. A random permutation of the rows of states protects the knowledge during 

evaluation of if a change in state occurred across a transition, and what the current state is. 

Both stream ciphers and garbled keys are related to security parameters κ and 𝑠. The 

security parameter κ is the length of the seed used in the pseudorandom generator to produce 

stream ciphers, which relates to the security of the protocol, as it must be sufficiently large, in 

practice, to protect against brute force attacks. (Computational indistinguishability provides 

protection in an asymptotic sense, but the value κ is public information amongst participants, and 

if κ is a small enough value, a corrupted party may have success in trying all possible seed 
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values.) The statistical security parameter 𝑠 is how many zeros are appended to the end of each 

transition to prove that it was the right transition. This is proportional to the correctness of the 

protocol. If given too small of an 𝑠, the protocol could often be terminated with failure. Note that 

the statistical parameter can be avoided altogether by using a more efficient ‘point-and-permute’ 

construction, given by Zhao et al., but we will not go into detail on this. 

 

Figure 3.1: Garbled binary Moore machine matrix construction summary 
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We will go in depth now in a full proof under the semi-honest model for the security of 

oblivious Moore machine evaluation, given a refresher on construction of a garbled binary 

Moore machine matrix (Figure 3.1). 

3.1.4 Detailed Security Proof for Protocol 2 (Figure 2.8) 

3.1.4.1 Correctness 

First, 𝑸 uses 𝐺+ and 𝐺6 to generate three stream ciphers using the initial seed.  

 𝑝-
$,7# ← 𝐺$(𝑅𝑀[1, 𝑞]) 
𝑝$
$,7# ← 𝐺$(𝑅𝑀[1, 𝑞]) 
𝑝%
$,7# ← 𝐺%(𝑅𝑀[1, 𝑞]) 

(3.1) 

Next, 𝑸 decrypts the first items. 

 𝑥- = GM[1, 𝑞-]-⊕𝑝-
$,7# ⊕𝑘$ 

𝑥$ = GM[1, 𝑞-]$⊕𝑝$
$,7# ⊕𝑘$ 

c = GM[1, 𝑞-]%⊕𝑝%
$,7# 

(3.2) 

𝑸 then checks 𝑥, and 𝑥+ for 𝑠 trailing zeros. The probability that the correct element 𝑥T 

has 𝑠 trailing zeros is 1, as 𝑥T = (𝑃𝑀[1, 𝑞]T||𝑅𝑀[2, 𝑃𝑀[1, 𝑞]T]T||0$) ⊕ 𝑘T+⊕𝑘+, where 𝑘+ =

𝑘T+. The element 𝑥+*T = (𝑃𝑀[1, 𝑞]+*T||𝑅𝑀[2, 𝑃𝑀[1, 𝑞]+*T]+*T||0$) ⊕ 𝑘+*T+ ⊕𝑘+ is 

computationally indistinguishable from random because 𝑘+*T+ ⊕𝑘+ is simply the XOR of two 

unrelated random numbers. 

Then, the probability that 𝑥+*' has s trailing zeros is the same as the probability of 

choosing 𝑠 bits uniformly at random. Therefore, the probability that any transition selection is 

correct is 1 − 2*$, 𝑠 > 0. Certainly, the correctness of the protocol is contingent upon all 

transitions being correct, even if a particular Moore machine produces the correct output along 

incorrect transitions. So, the probability of correctness of the protocol is 1 − |𝑦h|2*$, 𝑠 > 0. We 

rely on the assumption that |𝑦h| ≪ 2$. 
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3.1.4.2 Corrupted 𝑶 

Messages received during Protocol 2 are only those needed to evaluate 𝐹>P45
QRSTU. 𝑶 

receives no output from the protocol, and a garbled matrix can be constructed honestly to 

complete the view of 𝑶 during execution. Therefore, we rely on the correctness and security of 

𝐹>P45
QRSTU. The specification and security proof of 𝐹>P45

QRSTU is in the following subsection. 

3.1.4.3 Corrupted 𝑸 

We construct a simulator 𝑆𝑸 given common inputs, 𝑸’s inputs: 𝑦?l  and outputs: 𝑀(𝑦h). 

The simulator will provide a view indistinguishable from 𝑸’s real view using only the inputs and 

outputs available to it. In other words, we will show: 

  (3.3) 

The view of real execution can be written: 

  (3.4) 

𝑆𝑸 constructs 𝐺𝑀’, 𝐾’, 𝑞’, 𝑅𝑀[1, 𝑞]B as follows: Create a random binary Moore machine 

matrix 𝑀’, where MB[𝑖, 𝑗] = (𝑥, 𝑦,𝑀(𝑦h)[𝑖]), 𝑥 ←3 {1, … , |𝑄|}, 𝑦 ←3 {1, … , |𝑄|}, 

𝑞B ←3 {1, … , |𝑄|}.	𝐺𝑀’ is constructed honestly as 𝑶 would construct it, if given 𝑀’. 

Consequently, garbled keys 𝐾’ and 𝑅𝑀[1, 𝑞]B are obtained. 

First, 𝐾’, 𝑅𝑀[1, 𝑞]B and 𝑞’ are computationally indistinguishable from uniformly random 

even in a real execution, so a distinguisher will not find that these simulated versions are 

different from their real counterparts. 𝐺𝑀’ and 𝐺𝑀 are also filled with numbers which can be 

considered random, thanks to the pseudorandom generator assumption that the stream ciphers are 

computationally indistinguishable from random, in addition to the additive secret sharing scheme 

enabling us to make elements of 𝐺𝑀’ and 𝐺𝑀 also indistinguishable from random; therefore, 

elements of 𝐺𝑀’ and 𝐺𝑀 are indistinguishable from each other, with one exception. The 

{SQ(, s, |Q|, G1, G2, |ỹ|, ỹQ,M(ỹ))} c⌘ {view⇡
Q(, s, |Q|, G1, G2, |ỹ|, ỹQ,M(ỹ))}

<latexit sha1_base64="tJe6UDDhQVkuDA0GLZLBsZcXzJQ="></latexit>

{view⇡
Q(, s, |Q|, G1, G2, |ỹ|, ỹQ,M(ỹ))} = (GM,K, q,RM [1, q])

<latexit sha1_base64="Z9ZcCm5FIyYv2xsNhfrRGeAQRM4="></latexit>
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exception, of course, is that elements of 𝐺𝑀’ and 𝐺𝑀 are not indistinguishable along their 

respective evaluation paths, where stream ciphers and garbled keys are known, so plaintext 

information may be obtained. Note that the actual states traversed are randomly permuted, as are 

transitions within states, so these are indistinguishable. It only remains to show that the outputs 

along the evaluation paths of 𝐺𝑀’ and 𝐺𝑀 are identical. This is trivially the case, as all states in 

𝐺𝑀’ at row 𝑖 are colored 𝑀(𝑦h)[𝑖]. 

Note that in our implementation, we use garbled matrix evaluation to evaluate a Moore 

machine in iterative fashion. This proof of security can be extended to the entire execution by 

imagining concatenating all iterative rounds into one round. Messages inbound to 𝑶 are simply 

the communication involved in batch 𝑂𝑇./QRSTU (just a larger batch, which makes no difference to 

the proof). Messages inbound to 𝑸 are the concatenated garbled keys, the concatenated garbled 

matrix and the initial state and pad. Finally, the inputs and outputs are the same, so using the 

above proof in subsequent iterations is admissible, as it is just like increasing the length of input 

for one execution of the protocol. Therefore, Equation 3.3 holds, and Protocol 2 is secure under 

the semi-honest model. 

3.1.5 𝐹>P45
QRSTUProtocol and Security 

The following is a possible version of the semi-honest batch OT protocol described by 

Zhao. This proof is directly inspired by the basic OT proof in Chapter 3 of A Pragmatic 

Introduction to Secure Multi-Party Computation, cited above. The benefit of batching OTs is 

that fewer communication rounds are needed, and one can make use of OT reduction, which is a 

way to reduce the actual number of OTs needed, while still maintaining correctness and security. 

We will not describe this extension technique in detail; instead, we provide the general protocol 

specification (Figure 3.2) for batch OT with joint choice as if all OTs were done in practice. 



49 
 

 

Figure 3.2: 𝐹&'!"
()*+, Protocol 

3.1.5.1 Correctness 

Correctness is trivially obtained by exhausting 4 possibilities for the values of 𝑠' and 𝑟' 

for any pair 𝑖. 

3.1.5.2 Corrupted 𝑆 

Construct a simulator to simulate the view of 𝑆 during execution. 𝑆W will sample two 

random numbers (𝑝𝑘',’, 𝑝𝑘'+’) for 𝑖	 ∈ {1, … , 𝑛} from the range of the public key generator of the 

agreed-upon public-key cryptosystem, known a priori. The simulator gives these to 𝑆 just as they 

were received from 𝑅. To a distinguisher, there is no difference between these randomly 

generated keys and those given by 𝑅 during real execution, since it is assumed that the numbers 

are sampled uniformly at random from the public key space. Therefore, the view of 𝑆 during 

execution is indistinguishable from the view which 𝑆W produces. 
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3.1.5.3 Corrupted 𝑅 

Construct a simulator 𝑆3 given the input and output of 𝑅. The simulator will “run” 𝑅 as a 

subroutine, operating as usual, except that when it is to communicate with 𝑆, it instead will 

interact with its container 𝑆3, which fabricates each (𝑐',, 𝑐'+) = �𝐸𝑛𝑐(0, 𝑝𝑘' ’), 𝐸𝑛𝑐9𝑘$8⊕08
' , 𝑝𝑘':� 

if 𝑟' = 0 or (𝑐',, 𝑐'+) = �𝐸𝑛𝑐(0, 𝑝𝑘' ’), 𝐸𝑛𝑐9𝑘$8⊕08
' , 𝑝𝑘':� if 𝑟' = 1.  

3.1.6 MPC under the malicious model 

Mohassel et al. achieve security against malicious clients, and privacy against malicious 

servers. There is no security against malicious servers because the server may not be using the 

appropriate DFA, or even a real DFA at all. This could be “patched up” by using the GMW 

Compiler, for example. This essentially means add a zero-knowledge proof on top of the 

protocol to assert that the protocol which was agreed upon is indeed the one being executed. This 

requires additional overhead, and Mohassel et al. are concerned with achieving excellent 

performance, so they do not implement this.  

In order to make Moore machine evaluation secure against malicious adversaries, garbled 

key oblivious transfer would need to be secure under the malicious model. The reason why Zhao 

does not achieve security against malicious adversaries is that their protocols for oblivious 

transfer with joint choice are inherently semi-honest. Even if given a partially-homomorphic 

encryption scheme secure against malicious adversaries, the protocol for 𝐹>P45
QRSTU relies on both 

parties following the protocol in semi-honest fashion. Future research on Moore machine (or 

DFA) evaluation on joint input may entail constructing an OT with joint choice protocol which is 

secure under the malicious model. 



51 
 

3.1.7 Output Leakage 

The work of this thesis operates mostly on the set of MPC assumptions, which care only 

for the security of a protocol, in that nothing is learned by a party other than its inputs and 

outputs. In designing protocols with end-to-end security, however, it is important to identify any 

weak links. Even when a protocol is fundamentally secure in the eyes of the MPC framework, 

we must look elsewhere for weaknesses. In particular, what might be learned from the output of 

a functionality, and on a related note, what might be learned from the output, especially when 

given the input? 

There are multiple ways in which this train of thought impacts this research. In fact, the 

team has given the idea of output leakage some thought in designing the functionalities present 

in Section 2. For one, consider why the event detectors are specified as only providing inputs and 

obtaining no outputs. As a consequence of output opacity towards event detectors, there is room 

for potential discord, which is not present in many typical MPC protocols, which usually provide 

rewarding outputs to all participants. Indeed, it may not be realistic to expect detectors to be 

willing to participate, but we consider them to be compensated in some other way. If all event 

detectors also obtained the output stream of colors which 𝑸 obtains, what else might they be able 

to learn? It turns out that this is a hard question to answer with completeness. 

Imagine there are two event detectors a and b, whose beam sensors segment a rectangular 

room into 3 rooms, the red room, the yellow room and the green room (Figure 3.3). In this 

scenario, protocols 1 and 2 are used as normal, not sharing outputs with a and b. 𝑸 receives a 

stream of outputs {… , 𝑌𝑒𝑙𝑙𝑜𝑤, 𝑅𝑒𝑑}. 𝑸 might wish to know about the aggregate history of inputs 

of a and b. 
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Figure 3.3: Dotted vertical lines represent event detectors, realized as beam sensors. Purple circles represent the 
position of the single mobile agent at two points in time. 

If 𝑸 has no knowledge of the physical layout of event detectors in the environment, then 

perhaps this reveals nothing extra to 𝑸. However, if 𝑸 knows details about the physical layout, 

and which detectors are which, there actually is a breach to privacy, even if our secure protocols 

were used to evaluate the filter. 𝑸 sees that 𝑌𝑒𝑙𝑙𝑜𝑤 and 𝑅𝑒𝑑 were observed one after the other, 

so 𝑸 knows that a was triggered most recently. 

This example shows that one still must be careful to know when an MPC protocol alone 

is a full solution, and when it is not. In this case, the triviality of the question gives away 

information which individual detectors would have preferred to be private.  

A direction of further research in regard to end-to-end security for combinatorial filter 

evaluation might be making some predetermination on what is allowed to be learned from the 

filter and what is not. An ambitious goal might be designing an algorithm which, given a 

combinatorial filter, restructures it to minimize possible leakage of information from its output, 

while retaining most of the original correctness. 
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3.2 Closing Statements 

In conclusion, the research team assembled MPC protocols to securely evaluate 

combinatorial filters, then implemented these protocols from scratch. In the process, we learned 

about some of the nuance present in MPC, and we find that there may be future work ahead of us 

on processing streams of data using MPC protocols. People and their devices demand increasing 

amounts of privacy as the amount of data collected on the world, and consequently on people’s 

personal lives, continues to increase. This provides a wide landing zone for MPC protocols to 

deliver utility to people who need it. Works like this thesis are advancing MPC closer to wider 

adoption, fulfilling this need.  


