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Abstract— This paper proposes an algorithm that combines
Fast Moving Horizon Parameter Estimation and Model Pre-
dictive Control subject to an observability constraint designed
to ensure a lower bound on the performance of the parameter
estimator. Output-feedback stability is proved through input-
to-state stability of the state/error system under a small noise
and initial error assumption. Numerical experiments have been
carried out in the case of Active Simultaneous Localisation and
Mapping (SLAM).

I. INTRODUCTION

Optimisation-based estimation techniques like Moving
Horizon Estimation (MHE), in which one tries to recover
the trajectory of a system through solving an optimisation
problem, are arousing growing interests in both their theory
[17], [18] and their practical implementations [6]. System
identification is benefiting from these advances too, see [14]
for example. The main advantage of MHE is that it can deal
with nonlinear systems and constraints while also aiming for
tractability. Indeed, only the measurements coming from a
time window of fixed size are used at each time step. A
variation of MHE, called Fast MHE, involves solving the
associated optimisation problem partially. One only performs
a few iterations of a dedicated optimisation routine at each
time step and uses the current estimate as the initial guess for
the next problem. Much work has been done in this direction,
see [1], [2], [13], [21] and [22]. In all this work, the MHE
scheme is enabled by the so-called N -step observability
condition. It states that a small output error on a rolling time
window must lead to a small estimation error uniformly with
respect to time if one starts sufficiently close to the reference.
These conditions are also often assumed to hold uniformly
with respect to the input applied to the system. However, in
the general nonlinear case, the input might have an influence
on the observability condition and thus the quality of the
estimation process. In adaptive control, where one tries to
regulate a system while also identifying its dynamical model,
this phenomenon has been well known since the seminal
work of Feldbaum [8]. He stated that adaptive controllers
must be designed to guide the system in a standard way, as
well as to probe information and excite the system, which
leads to good parameter estimation. This is known as the
dual effect of the controller. See [16] for a survey. It implies
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that the separation principle, which claims that independent
design of the control and estimation schemes can be efficient,
does not hold in a general nonlinear case. In the context
of Moving Horizon Estimation, some work has been done
to combine it with Model Predictive Control (MPC). In
the manner of MHE, MPC consists in solving a finite-
horizon optimal control problem on a rolling basis. In [5],
a minimax MHE-MPC output feedback scheme is presented
although the observability assumption is assumed to hold
independently of the feedback scheme. In [7], the authors
successfully mix an Economic MPC scheme with a specific
MHE technique that requires a high-gain observer under
feedback. However, the construction of such a feedback is
not specified in general and seems non-trivial. In [3], a
MPC with a Persistence of Excitation condition is combined
with a recursive parameter estimation algorithm. Still, the
influence of the parameter on the dynamics is supposed to
be affine and a periodic persistent state trajectory is also
required. That is why, in this paper, we present a dual
output-feedback scheme for nonlinear discrete-time systems
with noisy measurements, based on a fast MHE algorithm
for parameter estimation and on an MPC with a constraint
on the predicted Observability Grammian. The design of
the controller and the estimator are coupled in the sense
that, at each time step, the MPC algorithm aims to ensure
good estimation performance at the following step through
an appropriate enforced observability condition. Contrary to
[3], our method does not require periodicity or any explicit
property as the required excitation coming from the input is
generated by a general implicit constraint.

The remainder of the paper is structured as follows.
Section II gathers standard notations that will be used the
entire paper. Section III describes the setup of a nonlinear
parametrised discrete-time system with noisy measurements.
Section IV presents a typical Moving Horizon Parameter
Estimation Problem and its fast implementation. In Section
V, our dual MPC scheme with an observability constraint
is set. In Section VI, output-feedback stability is established
in terms of input-to-state stability of the state/error system
under a small noise and initial error assumption. Finally, our
estimation and control scheme is applied in Section VII to the
problem of Active Simultaneous Localisation and Mapping
(SLAM).

II. NOTATIONS

We respectively denote by N and N∗ the set of non-
negative and positive integers. For some n ∈ N∗ and m ∈ N∗
and x ∈ Rn, ‖x‖ denotes the Euclidian norm of x. For
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x ∈ Rn and R > 0, sB(x,R) denotes the closed ball of
radius R centered at x. For L ∈ N∗ and a finite sequence
of vectors X ∈ (Rn)

L, ‖X‖= max(‖X1‖, . . . , ‖XL‖). For
a bounded infinite sequence of vectors X ∈ (Rn)N, ‖X‖∞
denotes its `∞-norm. For a linear operator A from Rn to Rm,
‖A‖ denotes the operator norm induced by the Euclidian
norm. For i ∈ N∗, a function F : Rn → Rm is called a
Ci function if it is ith-times continuously differentiable. Its
ith-differential is denoted by ∇iF with the simplification
∇1F = ∇F . In the sequel, � denotes the partial order on
positive semi-definite matrices and I denotes the identity
matrix. A function α : R+ → R+ is called a K-function
if it is continuous, increasing and such that α(0) = 0. It
is called a K∞-function if it is also unbounded. A function
β : R+ × R+ → R+ is called a KL-function if for any
t ≥ 0, β(·, t) is a K-function and if for any r ≥ 0, β(r, ·) is
decreasing and converges to 0 at infinity.

III. PROBLEM SETUP

Consider the following nonlinear discrete-time partially
observed dynamical system, defined for any t ≥ 0:

xt+1 = f(xt, ut, p̄), y0t =

„

x0t
yt



, (1)

where x0 ∈ Rnx is given, x0t = xt + v0t and yt = h(xt, p̄) +
vt. Moreover, xt is a state variable valued in Rnx , p̄ is an
unknown parameter valued in a given set P ⊂ Rnp and ut
is a control variable valued in a given set U ⊂ Rnu . Note
that x0t is a measurement of the state, yt is an observation
valued in Rny involving also the parameter p̄ and vt and v0t
are unmodelled bounded disturbances on the observations
respectively valued in Rny and Rnx . The dynamics of the
system f : Rnx×Rnu×Rnp → Rnx is such that f(0, 0, p̄) =
0 and h : Rnx × Rnp → Rny is the observation function.

Assumption 3.1: Functions f and h are C3 functions, U
is a compact set and P is a closed convex set.

Assumption 3.2: There exists ν > 0, such that for any
t ≥ 0, ‖vt‖≤ ν and , ‖v0t ‖≤ ν.
In the rest of the paper, we assume that Assumption 3.2 holds
and ν is given.

IV. MOVING HORIZON PARAMETER
ESTIMATION

A. Setup

In this section, we present a perturbed and unperturbed
Moving Horizon Parameter Estimation (MHPE) and show in
Proposition 4.3 the existence and uniqueness of the solutions
of these problems as well as a bound between their optimiser
that holds under an observability condition. Fix L ∈ N∗.
In the following, for any t ≥ 0, any disturbance sequence
vt,L = (vt−L+1, . . . , vt) ∈ (Rny )L, any control sequence
ut,L = (ut−L+1, . . . , ut−1) ∈ (Rnu)L−1, any starting state
xt−T+1 ∈ Rnx , and any parameter p ∈ Rnp , we define the
cumulative output error, C as follows:

C(p, xt−L+1, ut,L, vt,L) =

t∑
k=t−L+1

‖yk − h(xk, p)‖2+θ(p),

where θ is a penalty function and the state sequence xt,L =
(xt−T+1, . . . , xt) follows the dynamics (1) with input ut,L
and initial condition xt−L+1. We also define the noise-free
output error, sC as follows:

sC(p, xt−L+1, ut,L) = C(p, xt−L+1, ut,L, 0),

=

t∑
k=t−L+1

‖ȳk − h(xk, p)‖2+θ(p),

where ȳk = h(xk, p̄).
Thus, the MHPE problem can be defined as follows:

C∗(xt−L+1, ut,L, vt,L) = min
p∈Rnp

C(p, xt−L+1, ut,L, vt,L)

s.t. xk+1 = f(xk, uk, p)
(2)

as well as the noise-free MHPE:
sC∗(xt−L+1, ut,L) = min

p∈Rnp

sC(p, xt−L+1, ut,L)

s.t. xk+1 = f(xk, uk, p)
(3)

Assumption 4.1: Function θ is a non-negative smooth
convex penalty function such that θ(p) = 0 for any p ∈ P .

Lemma 4.1: Under Assumption 3.1, for any vt,L ∈
(Rny )L, ut,L ∈ (Rnu)L, and xt−T+1 ∈ Rnx ,

sC∗(xt−L+1, ut,L) = sC(p̄, xt−L+1, ut,L) = 0,

∇p sC(p̄, xt−L+1, ut,L) = 0,

and C and sC are C3 functions. In particular, p̄ is a global
minimiser of Problem (3).

Proof: The first item follows from the definition and the
non-negativity of C̄ and the second one from the regularity
assumptions.

Proposition 4.2: Under Assumptions 3.1 and 4.1, for any
vt,L ∈ (Rny )L, ut,L ∈ (Rnu)L, xt−T+1 ∈ Rnx , and p ∈ Rnp

∇2
pC(p, xt−L+1, ut,L, vt,L) = O(p, xt−L+1, ut,L) +∇2θ(p)

+R(p, xt−L+1, ut,L, vt,L),

∇2
pC̄(p̄, xt−L+1, ut,L) = O(p̄, xt−L+1, ut,L) +∇2θ(p̄),

where O = NNT is called the Observability Grammian with
N depending only on first order terms with respect to p and
where R(p, xt−L+1, ut,L, vt,L) is a second order term with
respect to p.

Proof: This can be derived from classical online
Moving Horizon Estimation results. For example see [6]

We now show the existence and uniqueness of solution of
Problem (2). We first need to introduce an assumption on
the Observability Grammian at p̄.

Definition 4.1 (L-step observability after feedback): For
M > 0, δ̄ > 0 and t ≥ L − 1, system (1) is said to be
L-step observable after feedback on sB(0,M) at time t with
level δ̄, iff xt−L+1 ∈ sB(0,M) implies that there exists a
control sequence ut,L ∈ UL that satisfies:

O(p̄, xt−L+1, ut,L) � δ̄I. (4)
Proposition 4.3 (Local existence and uniqueness): For

M > 0 and δ̄ > 0, assume that system (1) is L-step
observable after feedback on sB(0,M) at time t with level



δ̄. Under Assumptions 3.1, 3.2 4.1 there exist K(M,ν) ≥ 0
that is non decreasing with respect to ν such that if:

K(M,ν)ν < δ̄ (5)

then for any xt−L+1 ∈ sB(0,M) and ut,L ∈ UL satisfying
Equation (4) and for any ‖vt,L‖≤ ν, C(·, xt−L+1, ut,L, vt,L)
admits a unique minimiser on sB(p̄, ν) denoted by p∗t,ν .
Moreover, p∗t,ν is a strict local minimiser of Problem (2).

Proof: The result follows from (4) and the local
Lipschitz property of O, R and θ around (xt−L+1, p̄, vt,L)

The existence and uniqueness result is standard, see [9].
The major point of Proposition 4.3 is that the existence
and uniqueness result that holds under (5) is time invariant.
Indeed, Proposition 4.3 means that if the noise on the
measurements is sufficient small, Problem (2) has a locally
unique solution that is close to p̄ uniformly with respect to
xt−L+1, ut,L and vt,L. In the following, p∗t,ν will denoted
by p∗t when it exists.

B. Fast estimation algorithm

Classical MHE algorithms aim to compute p∗t precisely
which may require to perform numerous iterations of some
optimisation routine, ψt : Rnp → Rnp . As a consequence,
cheap techniques where one computes an estimate of p∗t
denoted by p̂t by performing a few iterations of the opti-
misation routine have been introduced. See [6] for a review
on fast MHE. Therefore, we make the following assumption:

Assumption 4.2 (Optimisation algorithm):
There exist r̄ > 0, γ > 0 such that for any t ≥ L − 1, if

p∗t exists then for any p ∈ sB(p̄, r):

‖ψt(p)− p∗t ‖≤ γ‖p− p∗t ‖ (6)
Under Assumption 4.2, for any t ≥ L− 1 and some p̂L−1 ∈
sB(p̄, r̄), we define the online estimate of p̄ as follows:

p̂t+1 = ψt(p̂t). (7)

Note that p̂t can be defined without requiring p∗t to exist.
The goal of the following is to design a controller that
satisfies Equation (4) along the trajectories of (1) while also
stabilising it at 0.

V. OBSERVABILITY SEEKING MODEL
PREDICTIVE CONTROL

The controller presented in this section is composed of
two parts: a controller that is input-to-state stabilising with
respect to perturbation on the control and a non-destabilising
observability-seeking controller. We first recall the notion of
Regional ISS stability for nonlinear discrete-time systems
and then define our ISS stabilising controller.

A. Regional ISS-stability for nonlinear discrete time systems

The definitions from this section are taken from [15]. For
(n,m) ∈ (N∗)2, consider a system of the following form for
t ≥ 0:

χt+1 = gt(χt, wt), (8)

where χt ∈ Rn is the state and wt ∈ W ⊂ Rm is a
disturbance such that 0 ∈ W and gt : Rn × Rm → Rn
satisfies g(0, 0) = 0.

Definition 5.1 (Robustly positively invariant (RPI) set):
Let Ω ⊂ Rn. The set Ω is called a (uniformly) Robustly
Positively Invariant set for system (8) iff for any t ≥ 0,
χ ∈ Ω and w ∈ W , gt(χ,w) ∈ Ω.

Definition 5.2 (Regional Input-to-State Stability):
Consider a RPI set Ω for System (8) such that 0 ∈ int(Ω).
System (8) is said to be Input-to-State Stable (ISS) in
Ω if there exist a KL-function β : R+ × R+ → R+ and
a K-function γ : R+ → R+ such that for any bounded
sequence w ∈ WN and χ0 ∈ Ω and any t ≥ 0:

‖χt‖≤ β(‖χ0‖, t) + γ(‖w‖∞) (9)

If (9) holds for Ω = Rn, then System (8) is said to be
globally ISS.

Definition 5.3 (Regional ISS-Lyapunov function):
Consider a RPI set Ω for System (8) such that 0 ∈ int(Ω).
A function V : Rn → R+ is called a ISS-Lyapunov function
in Ω if there exist two K∞ functions α and ᾱ such that for
any χ ∈ Ω:

α(‖χ‖) ≤ V (χ) ≤ ᾱ(‖χ‖),

and there exist a K∞-function α and a K-function σ such
that for any t ≥ 0, χ0 ∈ Ω, one has along the trajectories of
system (8):

V (χt+1)− V (χt) ≤ −α(‖χt‖) + σ(‖wt‖).

If these items hold for Ω = Rn, V is called a global
ISS-Lyapunov function.

Proposition 5.1: For any RPI set Ω, if system (8) admits
a ISS-Lyapunov function in Ω then it is ISS in Ω.

Proof: See [15]
In the sequel, we assume that there exists a feedback

controller that makes system (1) globally ISS with respect
to disturbances in the input with the nominal parameter p̄.

Assumption 5.1: There exist a globally Lipschitz nominal
state-feedback κ : Rnx × Rnp → U with Lipschitz constant
Lκ such that κ(0, p̄) = 0 and a function V : Rnx → R+

such that the system defined for any t ≥ 0, x0 ∈ Rnx and
dt ∈ Rnu by:

xt+1 = f(xt, κ(xt, p̄) + dt, p̄), (10)

admits V as a global ISS-Lyapunov function.
In the rest of the paper, we assume that Assumption 5.1 holds
for system (1). We fix κ and V as in Assumption 5.1 and
the associated α, ᾱ, α and σ from Definition 5.3.

B. Model Predictive Control with maximum level of observ-
ability

The purpose of this section is to design an MPC controller
that corrects the feedback controller κ and ensures that
Assumption 4.1 is satisfied one step forward in the future
while also keeping the system stable. We assume that the
control horizon is one even if it means to consider augmented



controls and observations. Thus, the predicted Observability
Grammian O will be considered on [t − L + 2, t + 1].
Notice that O as defined in Proposition 4.2, can also be
seen as a function of some state sequence xt,L, some input
sequence ut,L and some parameter p even if xt,L does not
satisfy (1). Specifically, in this section, we consider O at the
measured states x0t,L. With a slight abuse of notation, O can
be decomposed by definition as follows, for any p ∈ Rnp :

O(p, x0t+1,L, ut+1,L) = Γ(p, x0t,L−1, ut,L−1) (11)

+ S(p, x0t+1,L, ut+1,L),

where Γ(p, x0t,L−1) � 0 depends only on the parameter
and the present and past measured state trajectory and
S(p, x0t+1,L, ut+1,L) � 0 depends on the whole trajectory
of measured states and the parameter. By omitting the
dependency on the past trajectory and injecting (1), we define
Sf (p, x0t , ut) = S(p, f(x0t , ut, p), ut). The MPC problem
can then be formulated as follows for any t ≥ L − 1 and
some 0 < µ < 1, δ′ > 0:

min
δ,uobs

t

− δ + c(ut) (12a)

s.t. κ(x0t , p̂t) + uobs
t ∈ U , (12b)

‖uobs
t ‖≤ σ−1

ˆ

µ

2
α

ˆ

1

2
‖x0t‖

˙˙

, (12c)

pΓt + Sf (p̂t, x
0
t , κ(x0t , p̂t) + uobs

t ) � δI, (12d)
δ ≥ δ′ (12e)

where pΓt = Γ(p̂t, x
0
t,L−1, ut,L−1) is given and ut,L−1

denotes the sequence of previous controls. In the following,
we fix a initial control sequence ûL−1,L. Note that Constraint
(12b) ensures control admissibility, Constraint (12c) ensures
that uobs

t does not destabilise system (15), Constraint (12d)
ensures that δ is lower bound on the smallest eigenvalue on
the Observability Grammian, Constraint (12e) ensures that δ
is bounded from below by δ̄ uniformly in t. The cost (12a)
is a combination on the lower bound on the Observability
Grammian and a cost on uobs

t denoted by c. In the sequel,
we make a feasibility assumption on Problem (12).

Assumption 5.2: For any M > 0, there exists δ′(M) > 0
and 0 < µ(M) < 1 such that for any t ≥ L−1 if ‖xt−L+2‖≤
M then Problem (12) is feasible.
In the rest of the paper, we suppose that Assumption 5.2
holds and we denote by ûobs

t (x0t,L, p̂t,M) a feasible point of
Problem (12) for any M > 0. Finally, for M > 0, the total
control applied to system, denoted by ût for any t ≥ L− 1,
can be written as follows:

ût(x
0
t,L, p̂t,M) = κ(x0t , p̂t) + ûobs

t (x0t,L, p̂t,M). (13)

Remark 5.1: Note that when it is defined the sequence of
input ût,L satisfies by construction:

O0 = Γ(p̂t, x
0
t,L−1, ût,L−1) + Sf (p̂t, x

0
t , ût) � δ′I (14)

Problem (12) is a nonlinear Semi-Definite Program because
of Constraint (12d) and is generally very hard to solve.

However, thanks to Constraints (12d) and (12e), it will be
sufficient for ûobs

t to just be feasible in order to maintain
observability. Assumption 5.2 can be seen as a one step
reachability assumption of the set defined by Constraints
(12d) and (12e) using small inputs from U .

VI. OUTPUT-FEEDBACK STABILITY

For t ≥ L−1, let et = p̂t− p̄ be the parameter estimation
error. Roughly speaking, we show in this section that under
the control law (13), both xt and et satisfy some ISS property
for small initial estimation error and small measurement
noise. We first introduce the augmented system state/error.
For any t ≥ L − 1, provided that for any L − 1 ≤ k ≤ t,
‖xt−L+1‖≤M for some M > 0 and that ûk, p∗k+1 exist we
consider an augmented state χt = (xt, et) and an augmented
dynamics gt : Rnx+np × Rnx+np → Rnx+np such that for
any χL−1 = (xL−1, eL−1) ∈ Rnx+np , and t ≥ L − 1, the
state/error system can be written as follows:

χt+1 = gt(χt, wt), (15)

where gt(χt, wt) =

„

f(xt, ût(M,x0t ), p̄)
ψt(p̄+ et)



and wt = (p∗t+1−

p̄, v0t ). Note that the expression of gt(χt, wt) does not depend
explicitly of wt. However, wt is a disturbance term that will
be used to represent the effect of the measurement noise
in the right-hand side of (15) in the proof. We now define
the candidate ISS Lyapunov function W as follows, for any
χ = (x, e) ∈ Rnx+np and some λ > 0:

W (χ) = V (x) + λσ(‖e‖) (16)

We first introduce a technical assumption on σ.
Assumption 6.1: Function σ is K∞ and s-homogeneous

for some s > 0 meaning that for any λ1 > 0 and r ≥ 0,
σ(λ1r) = λs1σ(r).
Note that under Assumption 6.1, for any χ ∈ Rnx+np :

α1(‖χ‖) ≤W (χ) ≤ ᾱ1(‖χ‖), (17)

where for any r ≥ 0, α1(r) = min(α, λσ)( 1
2r) and ᾱ1(r) =

max(ᾱ, λσ)(r). Note that α1 and ᾱ1 are K∞-functions as
α, ᾱ and σ are K∞-functions.

Assumption 6.2: There exists M0 and δ̄0 such that
‖xL−1,L‖≤ M0 and System (1) is L-step observable after
feedback on sB(0,M0) at time L− 1 with level δ̄0.
For any R > 0, we set ΩR = {χ ∈ Rnx+np |W (χ) ≤ R}
We can now state the main result of the section.

Theorem 6.1: Under Assumptions 3.1, 3.2, 4.1, 4.2, 5.2
and 6.2, there exist M0 > 0, δ̄0 > 0 sR > 0, δ̄ > 0, r0 > 0,
s > 0, rmax > 0, λ > 0, νmax > 0, 0 < γ < 1

2 , a K∞-
function α1 and a K-function σ1 such that if the following
are satisfied:

ν ≤ νmax, r0 ≤ rmax, K(M0, ν)ν < min(δ̄0, δ̄), (18)

with K(M0, ν) from Proposition 4.3 and if ‖xL−1,L‖≤M0,
and χL−1 = (xL−1, eL−1) ∈ Ω

sR∩(Rnx× sB(0, r0)) then for
any t ≥ L− 1, ût and p∗t are well defined and the following



hold:

‖xt,L‖≤M0, ‖p∗t − p̄‖≤ ν, χt ∈ Ω
sR ‖et‖≤ r0,

(19)

‖et+1‖ ≤ γ‖et‖+(1 + γ)‖p∗t+1 − p̄‖ (20)
W (χt+1) ≤W (χt)− α1(‖χt‖) + σ1(‖wt‖). (21)

Proof: For the sake of conciseness, we only provide
a sketch of proof. It is made by strong induction. The ini-
tialisation is ensured by Assumption 6.2. Then, by assuming
that (19)-(21) hold for any L ≤ k ≤ t, one can prove that
ût+1 and p∗t+1 are well defined by invoking Proposition (4.3),
Assumption 5.2 and Constraint (12d). One further gets (20)
from (6) and (7) by the triangle inequality. Finally, from As-
sumption 5.1 and Constraint (12c) and several manipulation
of K-functions, one gets (21) which leads to (19) at time
t+ 1 thanks to the strong induction hypothesis and Remark
3.7 of [12].

One can further notice from the non-decreasing property
of K that the set of conditions (18) is feasible uniformly
with respect to t for ν and r0 sufficiently small.

Corollary 6.2: Under the assumptions and the settings of
Theorem 6.1, there exist sR > 0 and r0 > 0 such that system
(15) is ISS on Ω

sR ∩ (Rnx × sB(0, r0)). Moreover,

lim sup
t→+∞

‖et‖ ≤
1 + γ

1− γ
ν. (22)

Proof: From Equations (19) and (20), it is clear that
Ω

sR∩(Rnx× sB(0, r0)) is a RPI set. The ISS property follows
from (17), (21) and Proposition 5.1. Equation (22) is a direct
consequence of Equation (20).

Theorem 6.1 states that both the estimation error and the
state of system (1) are ultimately bounded by the magnitude
of the measurement noise ν. Corollary 6.2 expresses this fact
in terms of a Regional ISS property of system (15). It also
gives a more accurate ultimate bound on et

VII. APPLICATION: BEARING-ONLY ACTIVE
SLAM

In this section we consider a 2D robot represented by
position variables x = (x1, x2) and following a first order
dynamics defined for any t ∈ N by:

xt+1 = xt + ∆ut, (23)

where ut is a velocity input and ∆ > 0. The unknown
parameter in this context is the 2D position of a landmark
p̄ = (p̄1, p̄2). The state x and the parameter p̄ are supposed
to be observed through noisy bearing angle measurements,
denoted by y and which can be written as follows for any
t ≥ 0:

yt = h(xt, p̄) + vt =
p̄− xt
‖p̄− xt‖

+ vt, (24)

with ‖vt‖≤ ν. In this section, we focus on the sensor-centric
view of Simultaneous Localisation and Mapping (SLAM) in
which the state of the system xt is supposed to be already

estimated up to some level of precision. Therefore, one can
assume, as in section III, that a noisy measurement of xt,
denoted by x0t , is available so that x0t = xt+v0t with ‖v0t ‖≤
ν. The estimation algorithm presented in Problem (2) and
Equation (7) can be thought of as an online version of a
Graph SLAM, see [20]. With this in mind, the controller (13)
can be seen as an Active SLAM controller aiming to ensure
the good quality of Algorithm (7) through the resolution of
Problem (12) and especially Constraint (12d), see [4] for
more details. The controller κ has be chosen as a smoothly
saturated linear input and the Observability Grammian O can
be written as follows for any t ≥ L− 1:

O(p̄, xt+1,L, ut+1,L) =

t∑
k=t−L+1

H(xk, p̄)H
T (xk, p̄),

where:

H(x, p̄) =
1

‖x− p̄‖2

„

x2 − p̄2
−(x1 − p̄1)



.

The simulation has been carried out in MATLAB using the
PENLAB toolbox for nonlinear Programming and Semi-
Definite Programming to solve Problem (2) and (12), see
[10]. Note that ψt in this context represents 10 iterations
of the optimisation routine. Figure 2 represents a horizontal
trajectory where only the controller κ has been applied and
a trajectory resulting from (13). Figure 1 represents the
corresponding estimation errors in the landmark position.
Both the trajectories have been simulated with the following
choice of parameters: p̄ = (5, 8), ∆ = 0.1, L = 10, ν =
0.03, δ′ = 1, µ = 0.5, c = 0, p̂L−1 = (3, 10), x0 = (5, 10).
One can see that in this case the horizontal trajectory does not
allow the proper resolution of the MHPE problem and leads
to a diverging estimate. On the contrary, the observability-
seeking trajectory exhibits piece-wise circular behaviours
which are known to ensure observability [11], [19] and leads
to good estimation performance.

Fig. 1. Plot of the estimation error in the landmarks position for a horizontal
trajectory and a observability-seeking trajectory



Fig. 2. Comparison between a horizontal trajectory and an observability-
seeking trajectory obtained from the controller (13)

VIII. CONCLUSION

In this paper, an output-feedback algorithms for adaptive
control based on a fast MHPE scheme and an MPC with a
constraint on the Observability Grammian has proposed. The
closed-loop stability of the system has been proved in terms
of input-to-state stability of the augmented system composed
of the original state and the parameter estimation error. The
method has been numerically tested and validated on the
nonlinear application of Active SLAM.
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