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Abstract— We propose a numerical method for the computa-
tion of the forward-backward stochastic differential equations
(FBSDE) appearing in the Feynman-Kac representation of
the value function in stochastic optimal control problems. By
the use of the Girsanov change of probability measures, it
is demonstrated how a rapidly-exploring random tree (RRT)
method can be utilized for the forward integration pass, as long
as the controlled drift terms are appropriately compensated
in the backward integration pass. Subsequently, a numerical
approximation of the value function is proposed by solving a
series of function approximation problems backwards in time
along the edges of the constructed RRT. Moreover, a local
entropy-weighted least squares Monte Carlo (LSMC) method
is developed to concentrate function approximation accuracy
in regions most likely to be visited by optimally controlled
trajectories. The results of the proposed methodology are
demonstrated on linear and nonlinear stochastic optimal con-
trol problems with non-quadratic running costs, which reveal
significant convergence improvements over previous FBSDE-
based numerical solution methods.

I. INTRODUCTION

The Feynman-Kac representation theory and its asso-
ciated forward-backward stochastic differential equations
(FBSDEs) has been gaining traction as a framework to
solve nonlinear stochastic control problems, including opti-
mal control problems with quadratic cost [1], minimum-fuel
(L1-running cost) problems [2], [3], differential games [4],
and reachability problems [1], [5]. FBSDE-based numerical
methods have also received interest from the mathematical
finance community [6], [7], [8]. Although initial results
demonstrate promise in terms of flexibility and theoretical
validity, numerical algorithms which leverage this theory
have not yet matured. For even modest problems, state-of-
the-art algorithms often have issues with slow and unstable
convergence to the optimal policy. Producing more robust
numerical methods is critical for the broader adoption of
FBSDE methods for real-world tasks.

FBSDE numerical solution methods broadly consist of two
steps, a forward pass, which generates Monte Carlo samples
of the forward stochastic process, and a backward pass,
which iteratively approximates the value function backwards
in time. Typically, FBSDE methods perform this approxi-
mation using a least-squares Monte Carlo (LSMC) scheme,
which implicitly solves the backward SDE with parametric
function approximation [7]. The approximate value function
fit in the backward pass is then often used to improve
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sampling in an updated forward pass, leading to an iterative
algorithm which, ideally, improves the approximation till
convergence. Although FBSDE methods share a distinct
similarity to differential dynamic programming (DDP) tech-
niques [9], [10], [11], DDP is generally less flexible. For
most DDP applications, a strictly positive definite running
cost with respect to the control is required for convergence
[12, Section 2.2.3]. Furthermore, in DDP, the computation of
first and second order derivatives of both dynamics and costs
is necessary for the backward pass, making it challenging to
apply this approach to problems where these derivatives are
not known analytically. In contrast, FBSDE techniques only
require a good fit of the value function and the evaluation
of the gradient of this value function to obtain the optimal
control.

The flexibility of Feynman-Kac-based FBSDE algorithms
stems from the intrinsic relationship between the solution of
a broad class of second-order parabolic or elliptic PDEs to
the solution of FBSDEs (see, e.g., [13, Chapter 7]), brought
to prominence in [14], [15], [16]. Both Hamilton-Jacobi-
Bellman (HJB) and Hamilton-Jacobi-Isaacs (HJI) second
order PDEs, utilized for solving stochastic optimal control
and stochastic differential game equations respectively, can
thus be solved via FBSDE methods, even when the costs
and dynamics are nonlinear. This provides an alternative to
the direct solution of PDEs, typically solved using grid-based
methods such as the Level Set Toolbox [17], known for poor
scaling in high dimensional state spaces (n ≥ 4).

The primary advantage of Feynman-Kac-based FBSDE
methods is that they produce an unbiased estimator for the
value function associated with the HJB equations. However,
a naı̈ve application of the theory leads to estimators with
high variance by producing sample trajectories away from
the optimal ones. Recent work has shown that Girsanov’s
theorem can be used to change the sampling measure of the
forward pass without adding intrinsic bias to the estimator
[1], [2], [3]. That is, a change over probability spaces
corresponds to the introduction of a drift to the forward SDE
that can be employed to modify the sampling in the forward
pass; this, in turn, requires appropriate accommodation of
the change of measures in the backward pass.

In this work we expand upon the above results, by showing
that the forward sampling measure can be modified at
will, which enables us to incorporate methods from other
domains, namely, rapidly-exploring random trees (RRTs)
(see, e.g., [18] and the recent survey in [19]), in order
to more efficiently explore the state space in the forward
pass. RRTs are frequently applied to reachability-type motion
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planning problems, biasing the samples towards regions of
the state space that have low density. Using RRTs in the
forward sampling allows us to spread samples evenly over
the reachable state space, increasing the likelihood that near-
optimal samples are well-represented in the forward pass
sample distribution. By sampling more efficiently and relying
less on incremental approximations of the value function to
guide our search, we can achieve faster and more robust
convergence than previous FBSDE methods. In the backward
pass, we take advantage of the path-integrated running costs
and estimates of the value function to produce a heuristic
which weighs paths in the function approximation according
to a local-entropy measure-theoretic optimization. Although
local-entropy path integral theory and RRTs have been used
together in [20], called PI-RRT, this method is more closely
related to the path-integral approach to control [10]. Our
method similarly performs forward passes to broadly sample
the state space, but follows them with backward passes to
obtain approximations for the value functions, and conse-
quently obtain closed loop policies over the full horizon.

The primary contributions of this paper are as follows:

• Providing the theoretical basis for the use of McKean-
Markov branched sampling in the forward pass of
FBSDE techniques.

• Introducing an RRT-inspired algorithm for sampling the
forward SDE.

• Presenting a technique for concentrating value function
approximation accuracy in regions containing optimal
trajectories.

• Proposing an iterative numerical method for the purpose
of approximating the optimal value function and its
policy.

We call the proposed method forward-backward rapidly
exploring random trees (FBRRT). After we describe the
approach in both theory and numerical implementation, we
apply FBRRT to two problems, comparing it to [2], and
demonstrating its ability to solve nonlinear stochastic optimal
control problems with non-quadratic running costs.

II. THE HAMILTON-JACOBI EQUATION AND
ON-POLICY VALUE FUNCTION

Let (Ω,F , {Ft}t∈[0,T ],Q), be a complete, filtered prob-
ability space, on which WQ

s is an n-dimensional standard
Brownian (Wiener) process with respect to the probability
measure Q and adapted to the filtration {Ft}t∈[0,T ]. Consider
a stochastic system whose dynamics are governed by

dXs = f(s,Xs, us) ds+ σ(s,Xs) dWQ
s , X0 = x0, (1)

where Xs is a Fs-progressively measurable state process
on the interval s ∈ [0, T ], taking values in Rn, u[0,T ]

is a progressively measurable input process on the same
interval, taking values in the compact set U ⊆ Rm, and
f : [0, T ] × Rn × U → Rn, σ : [0, T ] × Rn → Rn×n are
the Markovian drift and diffusion functions respectively. The

cost associated with a given control signal is

St[u[t,T ]] :=

∫ T

t

`(s,Xs, us) ds+ g(XT ), (2)

where ` : [0, T ] × Rn × U → R+ is the running cost,
and g : Rn → R+ is the terminal cost. Let membership of
a function in Cl,kb denote that the function and its partial
derivatives in t of order ≤ l and in x of order ≤ k are
continuous and bounded on the domain. The membership
in Ckb is defined similarly. We assume the functions f , σ,
a := σσ> and ` belong to C1,2

b , that g ∈ C3
b , and that σ−1

exists and is uniformly bounded on its domain.
The stochastic optimal control (SOC) problem is to de-

termine the value function V ∗ : [0, T ] × Rn → R+ defined
as

V ∗(t, x) = inf
u[t,T ]

Et,xQ
[
St[u[t,T ]]

]
, (SOC)

where Et,xQ [·] := EQ[·|Xt = x] denotes the conditional
expectation given Xt = xt under the probability measure Q.

Under mild regularity assumptions, in particular that σσ>

is uniformly positive definite, there exists a unique classical
solution V ∗ ∈ C1,2

b to the Hamilton-Jacobi-Bellman PDE,
as well as a (not necessarily unique) optimal Markov control
policy π∗, which satisfies the inclusion

π∗(s, x) ∈ arg min
u∈U

{`(s, x, u) + f(s, x, u)>∂xV
∗(s, x)},

(3)

with the property that V ∗(t, x) = Et,xQ [St[π
∗] ], where

∂xV
∗ is the partial derivative of V ∗ with respect to state x

[21, Chapter 4, Theorems 4.2 and 4.4, and Chapter 6,
Theorem 6.2].

In this paper, instead of a direct solution of the HJB PDE,
we work with a class of generic Markov policies µ : [0, T ]×
Rn → U and their associated value functions V µ, and use
iterative methods to approximate V ∗ and π∗. The on-policy
value function is defined as

V µ(t, x) = Et,xQ [Sµt ],

Sµt :=

∫ T

t

`µs ds+ g(XT ),
(4)

with the process Xs satisfying the forward SDE (FSDE)

dXs = fµs ds+ σs dWQ
s , Xt = x, (5)

where, for brevity of exposition, we define

fµs := f(s,Xs, µ(s,Xs)),

and similarly for `, σ. We call µ an admissible Markov policy
if it is Borel-measurable and its associated V µ is the unique
classic solution to the Hamilton-Jacobi PDE

∂tV
µ +

1

2
tr[σσ>∂xxV

µ] + (∂xV
µ)>fµ + `µ

∣∣
t,x

= 0,

V µ(T, x) = g(x), (HJ)

for (t, x) ∈ [0, T ) × Rn, where ∂t and ∂x are the partial
derivative operators in t and x, and ∂xx is the Hessian in x.



Hence, the optimal control problem is expressed as V ∗ =
minV µ over all µ such that (HJ) holds. Since the bound-
edness of σ−1 makes the PDE non-degenerate parabolic, a
sufficient, but not necessarily tight, condition guaranteeing
existence of the classical solution is if fµ and `µ are in C1,2

b

[22, p. 156; Chapter 3, Theorem 4.2, Theorem 4.4]. The same
reference guarantees that V ∗ ≡ V π∗

.

III. FEYNMAN-KAC-GIRSANOV FBSDE
REPRESENTATION

A. On-Policy FBSDEs

The positivity of σσ> yields that (HJ) is a parabolic PDE
and, hence, by the Feynman-Kac Theorem (see, e.g. [23])
it is linked to to the solution (Xs, Ys, Zs) of the pair of
FBSDEs composed of the FSDE (5) and the backward SDE
(BSDE)

dYs = −`µs ds+ Z>s dWQ
s , YT = g(XT ), (6)

where Ys and Zs are, respectively, 1 and n-dimensional
adapted processes.

Theorem 3.1 (Feynman-Kac Representation): For the so-
lution (Xs, Ys, Zs) to the FBSDE characterized by (5) and
(6), it holds that

Ys = V µ(s,Xs), s ∈ [0, T ],

Zs = σ>s ∂xV
µ(s,Xs), a.e. s ∈ [0, T ],

(7)

Q-almost surely (a.s.), and, in particular,

Yt = EQ[Ŷt,τ |Xt] = V µ(t,Xt), Q-a.s., (8)

for 0 ≤ t ≤ τ ≤ T where

Ŷt,τ := Yτ +

∫ τ

t

`µsds. (9)

�
Proof: Equations (7) are due directly to [13, Chapter 7,

Theorem 4.5, (4.29)]. From the definition of Itô integrals, we
have

Ŷt,τ = Yt −
∫ τ

t

Z>s dWQ
s . (10)

Taking the conditional expectation of both sides yields

EQ[Ŷt,τ |Ft] = EQ[Yt|Ft] = Yt, (11)

noting that the last term drops out due to the property of
the Itô integral [13, p. 34, (5.26)], and Yt passes through
the conditional expectation because it is Ft measurable.
Equation (9) is a direct consequence of the definition of Itô
integrals, [13, p. 33, (5.23)].

B. Off-Policy FBSDEs

Consider, contrary to the on-policy FBSDEs, the off-policy
drifted FBSDEs

dXs = Ks ds+ σs dWP
s , X0 = x0, (12)

dYs = −(`µs + Z>s Ds) ds+ Z>s dWP
s , YT = g(XT ),

(13)

with

Ds := σ−1s (fµs −Ks), (14)

where Ks, an arbitrary Fs-progressively measurable and
bounded process satisfying the smoothness conditions of [13,
Chapter 1, Theorem 6.16], P the new probability measure as-
sociated with Ks and WP

s a Brownian process over the new,
complete, filtered probability space (Ω,F , {Ft}t∈[0,T ],P).

Theorem 3.2: For the solution (Xs, Ys, Zs) to the FBSDE
characterized by (12) and (13), it holds that

Ys = V µ(s,Xs), s ∈ [0, T ],

Zs = σ>s ∂xV
µ(s,Xs), a.e. s ∈ [0, T ],

(15)

P-a.s., and in particular,

Yt = EP[Ŷt,τ |Xt] = V µ(t,Xt), P-a.s., (16)

where

Ŷt,τ := Yτ +

∫ τ

t

(`µs + Z>s Ds) ds. (17)

�
Proof: Apply Girsanov’s theorem to both (12) and (13),

where the Brownian process WQ
s is defined as dWQ

s :=
dWP

s −Dsds and the Radon-Nikodym derivative is defined
according to [21, Chapter 5, Theorem 10.1]. Further, the
theorem guarantees that P and Q are equivalent measures
in a measure-theoretic sense. Since (7) holds Q-a.s., there
exists an N ∈ F , Q(N) = 0, such that EC ⊆ N , where
E := {ω ∈ Ω : (7) holds}. It subsequently follows from the
definition of absolute continuity that P(N) = 0, so (7) holds
P-a.s. as well. The rest follows similarly to Theorem 3.1

We can interpret this result in the following sense. As
long as the diffusion function σ is the same as in the on-
policy formulation, we can pick an arbitrary process Ks to be
the drift term which generates a distribution for the forward
process Xs in the corresponding measure P. The BSDE
yields an expression for Yt using the same process WP

s as
used in the FSDE. The term Z>s Ds acts as a correction in
the BSDE to compensate for changing the drift of the FSDE.
We can then use the relationship (16) to solve for the value
function V µ, whose conditional expectation can be evaluated
in P. Although used in the analytic construction of the value
function, the measure Q does not require approximation to
solve for the value function.

It should be highlighted that Ks need not be a determin-
istic function of the random variable Xs, as is the case
with fµs . For instance, it can be selected as the function
Ks(ω) = h(s,Xs(ω), ω) for some appropriate function h,
producing a non-trivial joint distribution for the random
variables (Xt,Kt).

A remarkable feature of both the on- and off-policy
FBSDEs is that the forward pass is decoupled from the
backward pass, that is, the evolution of the forward SDE does
not explicitly depend on Ys or Zs (whereas in the Stochastic
Maximum Principle formulations (see, e.g., [13, Chapter 3])
the decoupling is irremovable). This feature forms the basis
of FBSDE numerical investigations of stochastic optimal



control [24], [1], but the significant difference of Theo-
rem 3.1 in comparison to those results is that the focus is
shifted here from the solution of the HJB equation towards
the broader class of functions satisfying the (HJ). This
provides a stronger case for policy iteration methodologies,
because the theory does not require or expect µ to be an
optimal policy, as is in [24], [1]. Although not evaluated in
this work, µ can be chosen according to design specifications
other than estimating the optimal policy, such as to ensure
the current policy is close to the previously estimated policy.

C. Local Entropy Weighing

As discussed in Section III-B, the disentanglement of the
forward sampling from the backward function approximation
provides the opportunity to employ broad sampling schemes
to cover the state space with potential paths. However, fitting
a value function broadly to a wide support distribution might
degrade the quality of the function approximation since
high accuracy of function approximation is more in demand
in those parts of the state space in proximity to optimal
trajectories. Once forward sampling has been performed and
some parts of the value function have been approximated, we
can begin forming a heuristic in which sample paths closer to
optimal trajectories are weighted more to concentrate value
function approximation accuracy in those regions.

To this end, we propose using a bounded heuristic random
variable ρt to produce a new measure Rt, the weighted
counterpart to Pt, where the subscript refers to the restriction
of P to Ft. In order to avoid underdetermination of the
regression by concentration over a single or few samples,
we select Rt as

Rt ∈ arg min
Rt

{
ERt [ρt] + λH(Rt‖Pt)

}
, (18)

with λ > 0 a tuning variable and

H(Rt‖Pt) = ERt

[
log

(
dRt
dPt

)]
, (19)

is the relative entropy of Rt which takes its minimum value
when Rt = Pt, the distribution in which all sampled paths
have equal weight.

The minimizer (18), which balances between the value
of ρ and the relative entropy of its induced measure, has a
solution of R∗t determined [25, p. 2] as

dR∗t = ΘtdPt, (20)

Θt :=
exp(−1/λρt)

EPt [exp(−1/λρt)]
. (21)

Henceforth, we let Rt refer to this minimizer R∗t . In the
numerical approximation of this heuristic we can interpret the
weights as a softmin operation over paths according to the
heuristic, a method often used in deep learning literature [26].

Theorem 3.3: Assume ρτ is selected such that WP
s is

Brownian on the interval [t, τ ] in the induced measure Rτ .
It holds that

Yt = EPτ [Ŷt,τ |Xt] = V µ(t,Xt), Rτ -a.s., (22)
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(d) RRT-Sampled, Weighted (R)

Fig. 1: Heatmap of different measure distributions for a 1-
dimensional SOC problem, illustrating how RRT-sampling
and local-entropy weighing can accelerate discovery of the
optimal distribution.

where Ŷt,τ is defined in (17). Furthermore, the minimizer φ∗

of the optimization

inf
φ∈L2

ERτ [(Ŷt,τ − φ(Xt))
2]

= inf
φ∈L2

EPτ [ΘR|P
τ (Ŷt,τ − φ(Xt))

2], (23)

over Xt-measurable square integrable variables φ(Xt) coin-
cides with the value function φ∗(Xt) = V µ(t,Xt). �

Proof: First, note that Xs, Ys, Zs, and Ŷt,τ are Fτ -
measurable for s, t ∈ [0, τ ]. Thus, restricting P to Fτ in
Theorem 3.2, producing Pτ , results in the same assumptions
for those variables. Since ρτ is bounded, Θτ > 0 P-a.s..
Further, we have EPτ [Θτ ] = 1, so the variable is normalized.
It is easy to see that this guarantees that Rτ is a probability
measure and the measures Rτ and Pτ are equivalent. It
follows that (22) holds. Equation (23) is a result of the L2-
projective properties of conditional expectation [27] and then
a change of measure with (20).
In the following section, we evaluate the minimization of
the right hand side of (23) over parameterized value function
models to obtain an estimate of the value function.

To summarize, in this section we introduced three mea-
sures, (a) Q, the measure associated with the target policy µ
for the value function V µ, (b) P, the sampling measure used
in the forward pass to explore the state space, and (c) Rτ ,
the local-entropy weighted measure used in the backward
pass to control function approximation accuracy. Fig. 1
illustrates how these results work together to rapidly discover
the optimal distribution. An on-policy method assumes the
knowledge of an initial suboptimal control policy, sampled as
represented in Fig. 1 (b), and the suboptimal value function
is solved in that distribution. This method requires iterative



improvement of the policy to produce a distribution which
overlaps with the optimal distribution. However, if we begin
with a sampling measure which broadly explores the state
space as in Fig. 1 (c), we can produce an informed heuristic
which weighs this distribution as in Fig. 1 (d), so that the
function approximation is concentrated in a near-optimal
distribution. These results leave open the choice for a target
policy µ that produces Q, the drift process Ks that produces
P and the weighing function ρτ that produces Rτ . In the
following section we propose particular choices for each.

IV. FORWARD-BACKWARD RRT

In this section, we introduce a numerical method that
leverages the continuous-time theory of the previous section.
We begin by discussing a generalized approach to approxi-
mating the sampling distribution P with a branch-sampling
representation. Next, we introduce FBRRT, an iterative al-
gorithm for solving the SOC problem. We then propose an
RRT-inspired algorithm that leverages the previous theory.
Finally, we propose a heuristic variable ρ for weighing paths.

A. McKean-Markov Branched Sampling

We approximate the continuous-time sampling distribu-
tions with discrete-time McKean-Markov branch sampled
paths as presented in [28]. First, for a given ∆t, the interval
[0, T ] is partitioned according to the time steps (t0 =
0, . . . , ti = (∆t)i, . . . , tN = T ). For brevity, we abbreviate
Xti as Xi and similarly for most variables.

In the forward sampling process, we produce a series of
path measures {

−→
P i}Ni=0,

−→
P i :=

1

M

M∑
j=1

δξji
, (24)

where δ is the Dirac-delta measure acting on sample paths

ξji := (xj0,i, k
j
0,i, x

j
1,i, k

j
1,i, . . . , k

j
i−1,i, x

j
i,i), (25)

with xjj,i, k
j
j,i ∈ Rn. The path notation xjj,i indicates that

this element is the sample of random variable Xj that is the
ancestor of sample xji,i in path ξji . Fig. 2 (b) illustrates how
these measures are represented using a tree data structure.
Each node in the tree xji , alternatively called a particle, is
associated with a path ξji whose final term is xji,i = xji .

The edges in the tree represent an Euler-Maruyama SDE
step approximation of the forward SDE (12). When a node
in the tree at time i is selected for expansion, it becomes
the xji,i+1 element in the path ξji+1, its ancestry also in-
cluded. The element kji,i+1 ∼ h(xji,i+1) is sampled from
some random function which can depend on the state, and,
independently, wji,i+1 ∼ N (0,∆tIn). The next state in the
path is computed as

xji+1,i+1 = xji,i+1 + kji,i+1∆t+ σ(ti, x
j
i,i+1)wji,i+1. (26)

The measures
−→
P i and

−→
P i+1 may not agree on the interval

[0, ti]. To see why this is permissible, consider Theorem 3.3
with τ = ti+1 and t = ti. In a backward step, some Pi+1 is
used to produce a relationship to solve for the deterministic

(a) Parallel-Sampled (b) Branch-Sampled

Fig. 2: Comparing parallel-sampling of the path measure−→
P i+1, in which SDE paths are sampled independently, to
the proposed representation. Dotted edges are present in the
data structure but do not contribute to the path measure

−→
P i+1

(but will contribute to
−→
P i and

−→
P i−1).

function V µ(ti, x). But an independent application of the
theorem with τ = ti and t = ti−1 can use any new measure
Pi. The only requirement is that each

−→
P i is consistent with

the assumptions placed on Pi.
In the construction of

−→
P i+1 in Fig. 2 (b) we can see that

some edges are multiply represented in the distribution. If
the drift term Ki were a deterministic function of Xi, such
a construction would represent an unfaithful characterization
of the path distribution because samples of the Brownian
process are independent and thus should be sampled as
in Fig. 2 (a). However, since Ki itself has a distribution,
we can interpret overlapping paths as the drift having been
selected so as to concentrate the paths in a certain part of the
state space. The faithful representation of the independent
process WP

s might be weakened by this construction, but
some guarantees about the convergence of such measures
with increasing numbers of samples are available in [28].

B. FBRRT Iterative Algorithm
The goal of the FBRRT algorithm is to produce the set

of parameters {αi}Ni=1 which approximate the optimal value
function V (x;αi) ≈ V ∗(ti, x). The forward pass produces a
graph representation G of the path measures {

−→
P i}Ni=1. Given

that the optimal policy has the form (3), we define the target
policy

µi(x;αi+1) (27)

= arg min
u∈U

{`(ti, x, u) + f(ti, x, u)>∂xV (x;αi+1)},

so that it coincides with the optimal control policy when the
value function approximation is exact. The backward pass
uses G, µi, and ρi+1 to produce αi, backwards in time. At
the beginning of the next iteration, nodes with high heuristic
value ρi+1 are pruned from the tree and G is regrown from
those remaining.

C. Kinodynamic RRT Forward Sampling
In general, we desire sampling methods which seek to

explore the whole state space, increasing the likelihood of



sampling in the proximity of optimal trajectories. For this
reason, we chose methods inspired by kinodynamic RRT,
proposed in [18]. The selection procedure for this method
ensures that the distribution of the chosen particles is more
uniformly distributed in a user-supplied region of interest
X roi ⊆ Rn, more likely to select particles which explore
empty space, and less likely to oversample dense clusters of
particles.

With some probability εrrt
i ∈ [0, 1] we choose the RRT

sampling procedure, but otherwise choose a particle uni-
formly from {xji}Mj=1, each particle with equal weight.
This ensures dense particle clusters will still receive more
attention. Thus, the choice of the parameter εrrt

i balances
exploring the state space against refining the area around
the current distribution.

For drift generation we again choose a random combi-
nation of exploration and exploitation. For exploitation we
choose

Ki = f(ti, Xi, µi(Xi;αi)). (28)

For exploration we choose

Ki = f(ti, Xi, u
rand). (29)

where the control is sampled randomly from a user supplied
set urand ∼ U rand. For example, for minimum fuel (L1)
problems where control is bounded u ∈ [−1, 1] and the
running cost is L = |u|, we select U rand = {−1, 0, 1}
because the policy (27) is guaranteed to only return values
in this discrete set.

Algorithm 1 sketches out the implementation of the RRT-
based sampling procedure, producing the forward sampling
tree G. The algorithm takes as input any tree with width
M̃ and adds nodes at each depth until the width is M , the
parameter indicating the desired width. On the first iteration
there are no value function estimate parameters available to
exploit, so we set εrrt = 1 to maximize exploration using the
RRT sampling.

D. Path-Integral Backwards Weighing
We now propose a heuristic design choice for the back-

ward pass weighing variables ρi+1, and justify their choice
with some theoretical results. A good heuristic will give high
weights to paths likely to have low value over the whole
interval [0, T ]. Thus, in the middle of the interval we care
both about the current running cost and the expected cost.
A dynamic programming principle result following directly
from [22, Chapter 4, Corollary 7.2] indicates that

V ∗(0, x0) =

min
u[0,ti+1]

EPui+1
[

∫ ti+1

0

`(s,Xs, us) ds+ V ∗(ti+1, Xi+1)],

where u[0,ti+1] is any control process in U on the interval
[0, ti+1] and Pui+1 is the measure produced by the drift
Ks = f(s,Xs, us). Following this minimization, we choose
the heuristic to be

ρi+1 =

∫ ti+1

0

`(s,Xs, us) ds+ V ∗(ti+1, Xi+1), (30)

Algorithm 1 RRT Branched-Sampling

1: procedure FORWARDEXPAND(G, (α1, . . . , αN ))
2: for k = M̃ + 1, · · · ,M do . Add node each loop
3: for i = 0, · · · , N − 1 do . For each time step
4: {xji}j ← G.nodesAtTime(i)
5: if εrrt > κrrt ∼ Uniform([0, 1]) then
6: xrand

i ∼ Uniform(X roi)
7: (xnear

i , jnear)← Nearest({xji}j , xrand
i )

8: else
9: (xnear

i , jnear) ∼ Uniform({xji}j)
10: end if . jnear is index of selected node
11: if εopt > κopt ∼ Uniform([0, 1]) then
12: ui ← µi(x

near
i ;αi+1) . (27)

13: else
14: ui ∼ U rand

15: end if
16: ki ← f(ti, x

near
i , ui)

17: wi ∼ N (0,∆tIn)
18: xnext

i+1 ← xnear
i + ki∆t+ σ(ti, x

near
i )wi

19: jnext ← G.addEdge(i, jnear, (xnear
i , ki, x

next
i+1))

20:
−→
` 0:i−1 ← G.getRunCost(i− 1, jnear)

21:
−→
` 0:i ←

−→
` 0:i−1 + `i(x

near
i , ui)∆t

22: G.setRunCost(i, jnext,
−→
` 0:i)

23: end for
24: end for
25: return G
26: end procedure

where u[0,ti+1] is chosen identically to how the control for
the drift is produced. Although the theory does not require
Ks to be a feasible drift under the dynamic constraints, for
reasons like this it is useful for it to be chosen in this way.
The running cost is computed in the forward sampling in
line 21 of Algorithm 1.

Algorithm 2 details the implementation of the backward
pass with local entropy weighting. The value function is
represented by a linear combination of multivariate Cheby-
shev polynomials up to the 2nd order, V (x;αi) = Φ(x)αi.
Line 18 does not, theoretically, have an effect on the op-
timization, since it will come out of the exponential as a
constant multiplier, but it has the potential to improve the
numerical conditioning of the exponential function compu-
tation as discussed in [26, Chapter 5, equation (6.33)]. The
λ value is, in general, a parameter which must be selected
by the user. For some problems we choose to search over a
series of of possible λ parameters, evaluating each one with a
backward pass and using the one that produces the smallest
expected cost over a batch of trajectory rollouts executing
the computed policy.

V. NUMERICAL RESULTS

We evaluated the FBRRT algorithm by applying it to a
pair of nonlinear stochastic optimal control problems. For
both problems, we used a minimum fuel (L1) running cost
of L(u) = a|u|, a > 0, u ∈ [−1, 1], where the terminal cost



Algorithm 2 Local Entropy Weighted LSMC Backward Pass

1: procedure BACKWARDWLSMC(G)
2: {ξjN}j ← G.pathsAtTime(N)
3: {xjN}j ← {ξ

j
N}j

4: yN ← [g(x1N ) · · · g(xMN )]>

5: αN ← arg minα
∑
j ΘN (ŷjN − Φ(xjN )α)2

6: for i = N − 1, · · · , 1 do . For each time step
7: {ξji+1}j ← G.pathsAtTime(i+ 1)
8: for j = 1, · · · ,M do . For each path
9: (xji , k

j
i , x

j
i+1)← ξji+1 . xji = xji,i+1, etc.

10: yji+1 ← Φ(xji+1)αi+1 . (22)
11: zji+1 ← σ>i+1(xji+1)∂xΦ(xji+1)αi+1 . (15)
12: µji ← µi(x

j
i ;αi+1) . (27)

13: dji ← σ−1i+1(xji+1)(fµi − k
j
i )

14: ŷji ← yji+1 + (`µi + zj>i+1d
j
i )∆t . (17)

15:
−→
` 0:i ← G.getRunCost(i, j)

16: ρji+1 ← yji+1 +
−→
` 0:i . (30)

17: end for
18: ρi+1 ← ρi+1 −minj{ρji+1} . exp conditioning
19: Θi+1 ← exp(−1/λρi+1) . (21)
20: αi ← arg minα

∑
j Θj

i+1(ŷji − Φ(xji )α)2 . (23)
21: end for
22: return (α1, . . . , αN )
23: end procedure

is a quadratic function centered at the origin. Examples ran
in Matlab 2019b on an Intel G4560 CPU with 8GB RAM.

Fig. 3 illustrates our method applied to the L1 inverted
pendulum problem. Note that even though there were no
paths in the tree that continued along the 1st iteration’s
mean trajectory (blue line) from beginning to end, the
algorithm was still able to produce a policy in regions where
no particles were produced. The green particles along the
backward swing inform the policy in the beginning of the
trajectory while the green particles near the origin inform it
near the end, despite taking different paths in the tree.

The policies computed after the first few iterations are
visualized in Fig. 4. Of significant note is that the policy
obtained after only one iteration (red hue) does significantly
well in general. For the L1 inverted pendulum problem
evaluated in [2], convergence required 55 iterations, but for
our method only a handful of iterations were needed to get
comparable performance. We also compared the convergence
speed and robustness of FBRRT to parallel-sampled FBSDE
[2] by randomly sampling different starting states and eval-
uating their relative performance over a number of trials.
We normalized the final costs across the initial states by
dividing all costs for a particular initial state by the largest
cost obtained across both methods. For each iteration, we
assign the value of the accumulated minimum value across
previous iterations for that trial, i.e., the value is the current
best cost after running that many iterations, regardless of the
current cost. We aggregated these values across initial states
and trials into the box plots in Fig. 5. Since the FBRRT is

Fig. 3: Forward sampling tree for the first iteration of the
L1 inverted pendulum problem. Hue corresponds to the
path-integral heuristic ρ used for weighing particles in the
backward pass and for pruning the tree (green values are
smaller). The blue and black dashed lines are the mean of
trajectory rollouts, following the policies computed at the
end of the 1st and 6th iterations respectively. Control counts
are based on trajectory rollouts of the 6th iteration policy
computed by FBRRT. The hue of each rectangle indicates
the relative frequency of each control signal in {−1, 0, 1}
for each time step.

(a) L1 Double Integrator (b) L1 Inverted Pendulum

Fig. 4: Trajectory samples from policies generated after the
first 6 iterations, the first iteration colored red, followed by
yellow, green, cyan, dark blue, and magenta. All terminal
costs are centered at (0, 0). Dark thick lines are the mean
trajectories.



Fig. 5: Comparison of FBRRT and FBSDE for the L1

double integrator problem for random initial states. Expected
trajectory costs for the computed policies are normalized
across different initial conditions.

significantly slower than the FBSDE per iteration due to the
RRT nearest neighbors calculation, we scale each iteration
by runtime. By nearly every comparison, FBRRT converges
faster and in fewer iterations than FBSDE, and does so with
half as many particle samples.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have proposed a novel generalization
of the FBSDE approach to solve stochastic optimal con-
trol problems, combining both branched sampling tech-
niques with weighted least squares function approximation
to greatly expand the flexibility of these methods. Leveraging
the efficient space-filling properties of RRT methods, we
have demonstrated that our method significantly improves
convergence properties over previous FBSDE methods. We
have shown how the proposed method works hand in hand
with a proposed path integral-weighted LSMC method,
concentrating function approximation in the regions where
optimal trajectories are most likely to be dense. We have
demonstrated that FBRRT can generate feedback control
policies for nonlinear stochastic optimal control problems
with non-quadratic costs.

Future work includes incorporating modern RRT algo-
rithms, since most could be adapted to this approach with
the proper book-keeping. Further, with very minor additions
to the forward sampling algorithm, the methods might be
applied to problems where the system must avoid obstacles,
though experimental verification of the approach is needed.
Another significant area of research worth investigating is
to find better methods of value function representation. Al-
though 2nd-order polynomials generally produce nice policy
functions, they are unlikely to produce a good approximation
of the value function outside of a local region. Finally,
evaluation on higher dimensional problems would be useful
to demonstrate the usefulness of this method.
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