
Neural Network Verification using Polynomial Optimisation

Matthew Newton and Antonis Papachristodoulou

Abstract— The desire to provide robust guarantees on neural
networks has never been more important, as their prevalence in
society is increasing. One popular method that has seen a large
amount of success is to use bounds on the activation functions
within these networks to provide such guarantees. However,
due to the large number of possible ways to bound the acti-
vation functions, there is a trade-off between conservativeness
and complexity. We approach the problem from a different
perspective, using polynomial optimisation and real algebraic
geometry (the Positivstellensatz) to assert the emptiness of a
semi-algebraic set. We show that by using the Positivstellen-
satz, bounds on the robustness guarantees can be tightened
significantly over other popular methods, at the expense of
computational resource. We demonstrate the effectiveness of
this approach on networks that use the ReLU, sigmoid and
tanh activation functions. This method can be extended to
more activation functions, and combined with recent sparsity-
exploiting methods can result in a computationally acceptable
method for verifying neural networks.

I. INTRODUCTION
The development of Alexnet [1] and Resnet [2] in the

past decade has facilitated a huge resurgence of interest in
neural networks (NNs) and in the field of machine learning.
Industrial applications of NNs are ever expanding, due to the
increase in computational power available and the prevalence
of big data. Examples of such areas include image recogni-
tion, weather prediction and natural language processing [3].
One important consideration is the increasing use of NNs in
safety-critical applications, such as autonomous vehicle tech-
nology. This accentuates the biggest shortcoming of NNs,
which is their sensitivity to adversarial inputs: small changes
in the input set can lead to large changes in the output.
Despite considerable effort from the research community to
improve our understanding and to allow certification of NNs,
to date guarantees on these NNs are not sufficient for their
widespread use in safety-critical applications.

There exists work in the area of NN control dating back
to the 1990s [4]. However it has been the recent success
of NNs in machine and reinforcement learning applications,
and the parallel progress in advanced robust control methods,
that has created a desire to study problems at their intersec-
tion. By diverging from traditional model-based approaches,
works from reinforcement learning have provided a bridge to
develop data-driven control methods [5]. There are multiple
aspects of control systems that NNs have been used for.

To overcome issues surrounding adversarial attacks, tech-
niques exist to compute robust guarantees on the NN to

This work was supported by EPSRC grants EP/L015897/1 (to M.
Newton) and EP/M002454/1 (to A. Papachristodoulou).

M. Newton and A. Papachristodoulou are with the Department of
Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ,
U.K. {matthew.newton,antonis}@eng.ox.ac.uk

determine if it is safe or not. A common method of achieving
this is to place bounds on the non-linear activation functions
in the NN [6]. Many results in recent years have proved
this method to be successful, with a number of results
providing tighter and more efficient bounds on the properties
of NNs. The simplest of these methods is interval bound
propagation [7], which looks at the worst-case outcome of
each layer in the network. There are frameworks that provide
linear bounds on the activation function, which result in a
linear program that can be solved using various optimisation
methods [8]. Additionally, researchers have improved the
accuracy and scalability of the problem. Works from [9]
focus on the scalability issue using a dual approach. By
combining the constraints from multiple activation functions,
[10] proposes a new parametric framework called ‘k-ReLU’.
A similar method is used in [11], by considering the multi-
variate input space on the activation functions.

Instead of linear relaxations, semidefinite relaxations were
introduced in [12] to certify the robustness properties of NNs.
However, semidefinite programs (SDPs) scale worse than
linear programs. To overcome this, an iterative eigenvector
approach was used to improve the efficiency for large scale
NNs [13]. Another semidefinite framework can be achieved
by using quadratic constraints [14], which can provide tight
bounds on the outputs of the network. The scalability of this
framework was improved in [15], by exploiting the sparsity
pattern that is intrinsic to the NN structure. This formulation
can be extended to perform reachability analysis on a control
feedback system [16]; a similar approach can analyse the
stability of an NN controller [17].

In this paper, we approach the problem from a different
perspective by considering a general class of constraints
representing different activation functions, leading to a semi-
algebraic set. The emptiness of this set can then be tested
using Positivstellensatz (Psatz) [18] and polynomial optimi-
sation. This method is different, as instead of considering
only one type of constraint e.g. linear, quadratic etc., we
can use a mixture of the constraints and easily trade-off
solution accuracy with computational effort. Testing the
algebraic condition on the Psatz can be done using sum of
squares (SOS), or equivalently by solving an SDP. This SOS
framework can be parsed in MATLAB using SOSTOOLS
[19] and the resulting SDP can be solved using a relevant
solver e.g. SDPT3 [20].

The first contribution in this paper shows that the Psatz
formulation can drastically tighten the bounds when using
the ReLU activation functions against existing methods. The
second contribution is that we provide significantly tighter
bounds on the sigmoid and tanh activation functions by



using a combination of two sector constraints. Using both of
these contributions allows more flexibility in the optimisation
problem. This is because any set of constraints can be
defined and then the accuracy may be improved if needed
by increasing the order of the Psatz test.

Section II describes the NN verification problem and
provides an overview of the mathematical framework. The
problem formulation is delineated in Section III and then
in Section IV the results are presented and discussed. This
paper is concluded in Section V.

II. PRELIMINARIES

A. Neural Network Verification Problem Definition

We can describe a multi-layer feed-forward neural network
(NN) as a non-linear function π : Rnu → Rny , where nu
is the number of inputs and ny is the number of outputs.
Consider a set of all possible inputs into the NN U ⊂ Rnu ;
the NN will map these inputs to a set of outputs Y ⊂ Rny .
The input to output mapping can be expressed as

Y = π(U) := {y ∈ Rny | y = π(u), u ∈ U}.

The NN verification problem asks that the output of the NN
must lie within a safe region Sy given a set of inputs U . Since
there are no guarantees on the convexity of the Sy set (in
fact it is likely that it is non-convex) it is computationally
expensive to check if these outputs lie in the safe set. To
overcome this a relaxation can be computed as a conservative
approximation of the set Y denoted by Ŷ , through checking
the condition Ŷ ⊆ Sy .

B. Neural Network Model

Consider a feed-forward fully connected NN π : Rnu →
Rny , with ` layers. This can be defined by the equations:

x0 = u,

vk = W kxk + bk, for k = 0, . . . , `− 1,

xk+1 = φ(vk), for k = 0, . . . , `− 1,

π(u) = W `x` + b`,

where W k ∈ Rnk+1×nk , bk ∈ Rnk+1 are the weights matrix
and biases of the (k+ 1)th layer respectively and u = x0 ∈
Rnu is the input into the network. The number of neurons in
the kth layer is denoted by nk; the total number of neurons in
the NN is therefore n =

∑`
k=1 nk. The non-linear activation

function φ is applied element-wise to the vk = W kxk + bk

terms such that

φ(vk) := [φ(vk1 ), . . . , φ(vknk
)]T , vk ∈ Rnk ,

where φ is the activation function and vkj is the pre-activation
value. There are many different activation functions such as
ReLU, tanh, sigmoid, GELU and ELU. In this paper we will
focus on the ReLU, sigmoid and tanh activation functions,
however this work can be extended to any activation function.

C. The Positivstellensatz

The NN verification problem can be recast as a set emp-
tiness problem. The Positivstellensatz (Psatz) [18] links the
emptiness of a semi-algebraic set to an algebraic condition.
We express the semi-algebraic set with notation

S = {x ∈ Rn | gi(x) ≥ 0, hj(x) = 0

∀ i = 1, . . . , p, j = 1, . . . , q}, (1)

where gi and hj are polynomial functions. Throughout
we define R[x1, . . . , xn] to be the set of polynomials
in x1, . . . , xn with real coefficients. We denote x =
(x1, . . . , xn) for simplicity.

Definition 1: A polynomial p(x) is a sum of squares
(SOS) polynomial if and only if it can be expressed as

p(x) =
∑
i=1

r2i (x) ≡ p(x) is SOS.

We define the set of polynomials that admit this decompo-
sition by Σ[x].

Definition 2: The cone of a set of polynomials is

cone{g1, . . . , gp} =

{
p∑

i=1

sigi | si ∈ Σ[x], gi ∈ R[x]

}
.

Definition 3: The ideal of a set of polynomials is

ideal{h1, . . . , hq} =

{
q∑

j=1

tjhj | tj ∈ R[x]

}
.

Theorem 1: (Positivstellensatz) Given a semi-algebraic set
S defined in (1), the following are equivalent:

1) The set S is empty.
2) −1 ∈ cone{g1, . . . , gp}+ ideal{h1, . . . , hq}.

Theorem 1 links the emptiness of a semi-algebraic set with
an algebraic test. It can be reformulated into what is referred
to as Schmüdgen’s Positivstellensatz [21].

Theorem 2: Suppose that S defined in (1) is compact. If
f(x) > 0, ∀ x ∈ S then there exist si, rij , . . . ∈ Σ[x] and
tj ∈ R[x] such that

f = 1 +

q∑
j

tjhj + s0 +

p∑
i

sigi +

p∑
i6=j

rijgigj + . . . .

D. Sum of Squares

To compute the emptiness of semi-algebraic sets using
the Psatz, one can use polynomial optimisation and SOS to
check the algebraic condition. This results in a set of SOS
conditions, which can be checked using SOSTOOLS [19].
By choosing higher degree multipliers si, tj etc. one can
obtain a series of set emptiness tests of increasing complexity
and non-decreasing accuracy. An example of this is how the
Psatz generalises and extends the S-procedure [22] in control.

Definition 4: Given a set of symmetric matrices {Ak ∈
Rn×n | k = 0, . . . , p}, the S-procedure states that if A0 −∑p

k=1 λkAk � 0, where λk is a non-negative scalar ∀k =
1, . . . , p then

p⋂
k=1

{x ∈ Rn | xTAkx ≥ 0} ⊆ {x ∈ Rn | xTA0x ≥ 0}.



This can be written as the Psatz by considering if the set

{x ∈ Rn | xTA1x ≥ 0, . . . , xTApx ≥ 0,−xTA0x > 0}
is empty. Since there are no equality constraints, the Psatz
condition becomes −1 ∈ cone{g1, . . . , gp}. By setting the
inequality constraints to gi = xTAix and the SOS multipliers
to si = λi one can recover the standard S-procedure test,
which is known to be conservative. By increasing the order
of the multipliers or by multiplying the constraints together
(as in the Psatz) one can obtain better tests for the set
emptiness, however these tests are more computationally
expensive. Therefore, compared to the full Psatz, the S-
procedure is limited. For more details on the S-procedure,
the readers should refer to [22]. Previous methods that
analyse the NN verification problem often use S-procedure-
type arguments but these results can be improved using the
general formulation of the Psatz, as we will see below.

III. PROBLEM FORMULATION
A. Formulation of Constraints

We can split the constraints into three main categories,
by considering the input, hidden layer and output constraints
separately. The input constraints are bounded by a hyper-
rectangle defined by U = {u ∈ Rnu |u ≤ u ≤ u}. Therefore,
the input constraints can be written as

g1in = u− u ≥ 0, g2in = −u+ u ≥ 0.

We will assume that the safe set is given by the polytope

Sy =

M⋂
m=1

{y ∈ Rny | cTmy − dm ≤ 0},

where cm ∈ Rny and dm ∈ R are given. We consider each
of the faces of the polytope in turn, and attempt to obtain
a bound γm on each dm to approximate the true safe set.
As such, the search for the bounds (γm) on the safe output
set can be split into M SOS programs. Therefore, the output
constraints contain a decision variable that can be optimised
in the SOS program such that

gmout = γm − cTmy ≥ 0,

where γm is the decision variable to be optimised and m
denotes the mth SOS program.

The hidden layer constraints can be represented by rela-
tionships between φ(vk) and vk, which can be expressed
through properties of the activation function. Since the acti-
vation functions are applied element-wise to the vk terms, we
consider the relationship between φ(vkj ) and vkj separately.
To simplify the notation, we denote the relationship between
φ(vkj ) and vkj as φ and x. These are formed through sector
and slope constraints, as well as bounds computed using
an efficient pre-processing step known as interval bound
propagation (IBP) [7]. IBP is a zeroth order method, which
uses interval arithmetic – it will find the minimum and
maximum bounds on the activation function, (φ, φ) such that

φ− φ ≥ 0, −φ+ φ ≥ 0. (2)

The pre-activation values from IBP are denoted as (x, x).

B. ReLU Function

The ReLU function is given by

ReLU(x) = φ(x) =

{
0 x ≤ 0,

x x > 0.

We can gain tight bounds on the ReLU function using two
inequalities and one equality constraint [12] such that

φ ≥ 0, φ− x ≥ 0, φ(φ− x) = 0. (3)

These constraints are shown visually in Fig. 1. The values
from the IBP can be used to further tighten these constraints;
please see [14] for more details.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-1

0

1

2

3

4

5

<latexit sha1_base64="pnv8/gMDNWOLHoX0H0PjQNnKu30=">AAAB/HicbVDLSsNAFL3xWesr2qWbwSLUhSURUTdC0Y3LCvYBbSiT6aQdOpmEmYkYQv0VNy4UceuHuPNvnKZdaOuBezmccy9z5/gxZ0o7zre1tLyyurZe2Chubm3v7Np7+00VJZLQBol4JNs+VpQzQRuaaU7bsaQ49Dlt+aObid96oFKxSNzrNKZeiAeCBYxgbaSeXerGQ4YqeT9Bj8foCjk9u+xUnRxokbgzUoYZ6j37q9uPSBJSoQnHSnVcJ9ZehqVmhNNxsZsoGmMywgPaMVTgkCovy48foyOj9FEQSVNCo1z9vZHhUKk09M1kiPVQzXsT8T+vk+jg0suYiBNNBZk+FCQc6QhNkkB9JinRPDUEE8nMrYgMscREm7yKJgR3/suLpHladc+r7t1ZuXY9i6MAB3AIFXDhAmpwC3VoAIEUnuEV3qwn68V6tz6mo0vWbKcEf2B9/gBq/pKs</latexit>

�(�� x) = 0

<latexit sha1_base64="h+/DQhohCC7Oe9lO35bFZgkIwaA=">AAAB+HicbVDLSsNAFL3xWeujUZdugkVwVRIRdVl047KifUAbymQ6aYfOI8xMhBr6JW5cKOLWT3Hn3zhps9DWAwOHc+5lzj1Rwqg2vv/trKyurW9slrbK2zu7exV3/6ClZaowaWLJpOpESBNGBWkaahjpJIogHjHSjsY3ud9+JEpTKR7MJCEhR0NBY4qRsVLfrfQ4MiPFs3uCjVTTvlv1a/4M3jIJClKFAo2++9UbSJxyIgxmSOtu4CcmzJAyFDMyLfdSTRKEx2hIupYKxIkOs1nwqXdilYEXS2WfMN5M/b2RIa71hEd2Mo+pF71c/M/rpia+CjMqktQQgecfxSnzjPTyFrwBVfZeNrEEYUVtVg+PkELY2K7KtoRg8eRl0jqrBRe14O68Wr8u6ijBERzDKQRwCXW4hQY0AUMKz/AKb86T8+K8Ox/z0RWn2DmEP3A+fwBnr5OU</latexit>

Sector
<latexit sha1_base64="oCSpAzOWhYHiAFP6Hf2U1Lqa+vw=">AAAB+nicbVBNS8NAEJ34WetXqkcvi63gqSQi6rHoxWMF+wFNKJvNpl262YTdjVJif4oXD4p49Zd489+4bXPQ1gcDj/dmmJkXpJwp7Tjf1srq2vrGZmmrvL2zu7dvVw7aKskkoS2S8ER2A6woZ4K2NNOcdlNJcRxw2glGN1O/80ClYom41+OU+jEeCBYxgrWR+nbFy0RIZYBlXvPSIatN+nbVqTszoGXiFqQKBZp9+8sLE5LFVGjCsVI910m1n2OpGeF0UvYyRVNMRnhAe4YKHFPl57PTJ+jEKCGKEmlKaDRTf0/kOFZqHAemM8Z6qBa9qfif18t0dOXnTKSZpoLMF0UZRzpB0xxQyCQlmo8NwUQycysiQywx0SatsgnBXXx5mbTP6u5F3b07rzauizhKcATHcAouXEIDbqEJLSDwCM/wCm/Wk/VivVsf89YVq5g5hD+wPn8AHHiT5w==</latexit>

�
<latexit sha1_base64="HJ6lljxRprr7BoX107uOh2uKHhA=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRbBVZkRUZdFNy4r2Ad0hpJJM21oJhmSTKEM/RM3LhRx65+482/MtLPQ6oHA4Zx7uDcnSjnTxvO+nMra+sbmVnW7trO7t3/gHh51tMwUoW0iuVS9CGvKmaBtwwynvVRRnEScdqPJXeF3p1RpJsWjmaU0TPBIsJgRbKw0cN1AWrtI50E6ZnM0cOtew1sA/SV+SepQojVwP4OhJFlChSEca933vdSEOVaGEU7ntSDTNMVkgke0b6nACdVhvrh8js6sMkSxVPYJgxbqz0SOE61nSWQnE2zGetUrxP+8fmbimzBnIs0MFWS5KM44MhIVNaAhU5QYPrMEE8XsrYiMscLE2LJqtgR/9ct/Seei4V81/IfLevO2rKMKJ3AK5+DDNTThHlrQBgJTeIIXeHVy59l5c96XoxWnzBzDLzgf39CCk8Y=</latexit>

�

<latexit sha1_base64="mqxlVhiPl4OGTz2en5ucOyii3T4=">AAAB+HicbVDLSgNBEOz1GeMjqx69DAbBi2FXRD0GvXiMYB6QLGF20psMmX04MyvGJV/ixYMiXv0Ub/6Nk2QPmljQUFR1093lJ4Ir7Tjf1tLyyuraemGjuLm1vVOyd/caKk4lwzqLRSxbPlUoeIR1zbXAViKRhr7Apj+8nvjNB5SKx9GdHiXohbQf8YAzqo3UtUudZMDJCXkknT7eE6drl52KMwVZJG5OypCj1rW/Or2YpSFGmgmqVNt1Eu1lVGrOBI6LnVRhQtmQ9rFtaERDVF42PXxMjozSI0EsTUWaTNXfExkNlRqFvukMqR6oeW8i/ue1Ux1cehmPklRjxGaLglQQHZNJCqTHJTItRoZQJrm5lbABlZRpk1XRhODOv7xIGqcV97zi3p6Vq1d5HAU4gEM4BhcuoAo3UIM6MEjhGV7hzXqyXqx362PWumTlM/vwB9bnD7P4kdI=</latexit>

�� x � 0

<latexit sha1_base64="swwqR8gkrvaHNr2s05m5k3QCsNY=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKthaaUDbbTbt0s4m7E6GE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpxlsskYnuhNRwKRRvoUDJO6nmNA4lfwhHN1P/4YlrIxJ1j+OUBzEdKBEJRtFKXT8dCuIP+CNxe9WaW3dnIMvEK0gNCjR71S+/n7As5gqZpMZ0PTfFIKcaBZN8UvEzw1PKRnTAu5YqGnMT5LOTJ+TEKn0SJdqWQjJTf0/kNDZmHIe2M6Y4NIveVPzP62YYXQW5UGmGXLH5oiiTBBMy/Z/0heYM5dgSyrSwtxI2pJoytClVbAje4svLpH1W9y7q3t15rXFdxFGGIziGU/DgEhpwC01oAYMEnuEV3hx0Xpx352PeWnKKmUP4A+fzBz+UkJQ=</latexit>

� � 0

Fig. 1: Plot showing the constraints (3) that bound the ReLU
function. The blue line represents the quadratic equality
constraint and linear inequality constraints. The IBP values
are shown in yellow.

C. Sigmoid Activation Function

The sigmoid function is given by

sig(x) = φ(x) =
1

1 + e−x
.

The simplest bound on this activation function is that the
output must be in the region φ ≤ φ ≤ φ. These cons-
traints are of course very conservative, hence we employ
sector constraints to provide better results. In this paper,
we bound the sigmoid and tanh activation functions through
two overlapping sectors and optimise the position and slope.
Although sector conditions have been used in previous works
[14], [17], they have not used multiple overlapping sectors.
Previous formulations have only considered a single sector
constraint, which is shown in Fig. 2a and can be written as

(φ− 0.5)(0.25x+ 0.5− φ) ≥ 0. (4)

Having two sectors will provide much tighter bounds on
the activation function as it captures the point of inflection
on the sigmoid and tanh functions, which is impossible to
achieve with a single sector constraint. The disadvantage of
our approach is that it will have twice the number of sector
constraints, increasing the number of optimisation variables
and therefore increase the SDP solve time.

We can position the two sectors by using the IBP values to
minimise the uncertainty in the constraints. The arrangement
for positioning these sectors is shown visually in Fig. 2b. We



start by positioning one sector at an arbitrary point on the
sigmoid curve (xm, φ(xm)). The lower line of the sector is
the line passing through the points φ(xm) and φ. The upper
line of the sector passes through the point φ(xm) and a point
that is tangent to the sigmoid curve to the left of the xm point
(a1). The equation of the lower line is

y(x) =
φ(xm)− φ
xm − x

(x− x) + φ. (5)

The gradient of the upper line can be found with the formula

∂φ

∂x

∣∣∣
x=a1

= φ(a1)(1− φ(a1)) =
φ(xm)− φ(a1)

xm − a1
.

Given a value of xm, this non-linear equation can be solved
numerically. The same can be repeated for the sector cons-
traint to the left of the y-axis, with the values of xm and φ
replaced with −xm and φ respectively. The values of xm can
be treated as hyperparameters to be chosen; we found that
a value of xm = 1.5 provided the best overall results in our
simulations. To interpret this we can think of the uncertainty
as the area between the sectors; it can be shown numerically
that a value of approximately 1.5 will minimise this area on
average. If the sectors overlap in the wrong region, then the
slope of each sector can be adjusted accordingly.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-0.5

0

0.5

1

1.5

<latexit sha1_base64="fIM+ReSzUsYwqda2+eoCyhRpxJM=">AAAB+HicbVDLSgMxFL3js9ZHR126CRahbsqMiLosunFZwT6gHUomTdvQJDMkGbEO/RI3LhRx66e482/MtLPQ1gOBwzn3ck9OGHOmjed9Oyura+sbm4Wt4vbO7l7J3T9o6ihRhDZIxCPVDrGmnEnaMMxw2o4VxSLktBWObzK/9UCVZpG8N5OYBgIPJRswgo2Vem6pK7AZKZFqNpxWHk97btmrejOgZeLnpAw56j33q9uPSCKoNIRjrTu+F5sgxcowwum02E00jTEZ4yHtWCqxoDpIZ8Gn6MQqfTSIlH3SoJn6eyPFQuuJCO1kFlMvepn4n9dJzOAqSJmME0MlmR8aJByZCGUtoD5TlBg+sQQTxWxWREZYYWJsV0Vbgr/45WXSPKv6F1X/7rxcu87rKMARHEMFfLiEGtxCHRpAIIFneIU358l5cd6dj/noipPvHMIfOJ8/0IeTMA==</latexit>

sig(x)

<latexit sha1_base64="h+/DQhohCC7Oe9lO35bFZgkIwaA=">AAAB+HicbVDLSsNAFL3xWeujUZdugkVwVRIRdVl047KifUAbymQ6aYfOI8xMhBr6JW5cKOLWT3Hn3zhps9DWAwOHc+5lzj1Rwqg2vv/trKyurW9slrbK2zu7exV3/6ClZaowaWLJpOpESBNGBWkaahjpJIogHjHSjsY3ud9+JEpTKR7MJCEhR0NBY4qRsVLfrfQ4MiPFs3uCjVTTvlv1a/4M3jIJClKFAo2++9UbSJxyIgxmSOtu4CcmzJAyFDMyLfdSTRKEx2hIupYKxIkOs1nwqXdilYEXS2WfMN5M/b2RIa71hEd2Mo+pF71c/M/rpia+CjMqktQQgecfxSnzjPTyFrwBVfZeNrEEYUVtVg+PkELY2K7KtoRg8eRl0jqrBRe14O68Wr8u6ijBERzDKQRwCXW4hQY0AUMKz/AKb86T8+K8Ox/z0RWn2DmEP3A+fwBnr5OU</latexit>

Sector

<latexit sha1_base64="HJ6lljxRprr7BoX107uOh2uKHhA=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRbBVZkRUZdFNy4r2Ad0hpJJM21oJhmSTKEM/RM3LhRx65+482/MtLPQ6oHA4Zx7uDcnSjnTxvO+nMra+sbmVnW7trO7t3/gHh51tMwUoW0iuVS9CGvKmaBtwwynvVRRnEScdqPJXeF3p1RpJsWjmaU0TPBIsJgRbKw0cN1AWrtI50E6ZnM0cOtew1sA/SV+SepQojVwP4OhJFlChSEca933vdSEOVaGEU7ntSDTNMVkgke0b6nACdVhvrh8js6sMkSxVPYJgxbqz0SOE61nSWQnE2zGetUrxP+8fmbimzBnIs0MFWS5KM44MhIVNaAhU5QYPrMEE8XsrYiMscLE2LJqtgR/9ct/Seei4V81/IfLevO2rKMKJ3AK5+DDNTThHlrQBgJTeIIXeHVy59l5c96XoxWnzBzDLzgf39CCk8Y=</latexit>

�

<latexit sha1_base64="oCSpAzOWhYHiAFP6Hf2U1Lqa+vw=">AAAB+nicbVBNS8NAEJ34WetXqkcvi63gqSQi6rHoxWMF+wFNKJvNpl262YTdjVJif4oXD4p49Zd489+4bXPQ1gcDj/dmmJkXpJwp7Tjf1srq2vrGZmmrvL2zu7dvVw7aKskkoS2S8ER2A6woZ4K2NNOcdlNJcRxw2glGN1O/80ClYom41+OU+jEeCBYxgrWR+nbFy0RIZYBlXvPSIatN+nbVqTszoGXiFqQKBZp9+8sLE5LFVGjCsVI910m1n2OpGeF0UvYyRVNMRnhAe4YKHFPl57PTJ+jEKCGKEmlKaDRTf0/kOFZqHAemM8Z6qBa9qfif18t0dOXnTKSZpoLMF0UZRzpB0xxQyCQlmo8NwUQycysiQywx0SatsgnBXXx5mbTP6u5F3b07rzauizhKcATHcAouXEIDbqEJLSDwCM/wCm/Wk/VivVsf89YVq5g5hD+wPn8AHHiT5w==</latexit>

�

(a)

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

<latexit sha1_base64="HJ6lljxRprr7BoX107uOh2uKHhA=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRbBVZkRUZdFNy4r2Ad0hpJJM21oJhmSTKEM/RM3LhRx65+482/MtLPQ6oHA4Zx7uDcnSjnTxvO+nMra+sbmVnW7trO7t3/gHh51tMwUoW0iuVS9CGvKmaBtwwynvVRRnEScdqPJXeF3p1RpJsWjmaU0TPBIsJgRbKw0cN1AWrtI50E6ZnM0cOtew1sA/SV+SepQojVwP4OhJFlChSEca933vdSEOVaGEU7ntSDTNMVkgke0b6nACdVhvrh8js6sMkSxVPYJgxbqz0SOE61nSWQnE2zGetUrxP+8fmbimzBnIs0MFWS5KM44MhIVNaAhU5QYPrMEE8XsrYiMscLE2LJqtgR/9ct/Seei4V81/IfLevO2rKMKJ3AK5+DDNTThHlrQBgJTeIIXeHVy59l5c96XoxWnzBzDLzgf39CCk8Y=</latexit>

�

<latexit sha1_base64="oCSpAzOWhYHiAFP6Hf2U1Lqa+vw=">AAAB+nicbVBNS8NAEJ34WetXqkcvi63gqSQi6rHoxWMF+wFNKJvNpl262YTdjVJif4oXD4p49Zd489+4bXPQ1gcDj/dmmJkXpJwp7Tjf1srq2vrGZmmrvL2zu7dvVw7aKskkoS2S8ER2A6woZ4K2NNOcdlNJcRxw2glGN1O/80ClYom41+OU+jEeCBYxgrWR+nbFy0RIZYBlXvPSIatN+nbVqTszoGXiFqQKBZp9+8sLE5LFVGjCsVI910m1n2OpGeF0UvYyRVNMRnhAe4YKHFPl57PTJ+jEKCGKEmlKaDRTf0/kOFZqHAemM8Z6qBa9qfif18t0dOXnTKSZpoLMF0UZRzpB0xxQyCQlmo8NwUQycysiQywx0SatsgnBXXx5mbTP6u5F3b07rzauizhKcATHcAouXEIDbqEJLSDwCM/wCm/Wk/VivVsf89YVq5g5hD+wPn8AHHiT5w==</latexit>

�

<latexit sha1_base64="McIE6hXI9QI5V2umauh96AThqRQ=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48R3BhIljA7mU2GzGOZmRXDkm/w4kERr36QN//GSbIHTSxoKKq66e6KU86M9f1vr7Syura+Ud6sbG3v7O5V9w9aRmWa0JAornQ7xoZyJmlomeW0nWqKRczpQzy6mfoPj1QbpuS9Hac0EnggWcIItk4Kn3q5mPSqNb/uz4CWSVCQGhRo9qpf3b4imaDSEo6N6QR+aqMca8sIp5NKNzM0xWSEB7TjqMSCmiifHTtBJ07po0RpV9Kimfp7IsfCmLGIXafAdmgWvan4n9fJbHIV5UymmaWSzBclGUdWoennqM80JZaPHcFEM3crIkOsMbEun4oLIVh8eZm0zurBRT24O681ros4ynAEx3AKAVxCA26hCSEQYPAMr/DmSe/Fe/c+5q0lr5g5hD/wPn8ALXmO7g==</latexit>xm

<latexit sha1_base64="SdtnZp1NIxvZzws8kEyPw9ZiCo0=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBC8GHZF1GPQi8cI5gHJEmYns8mYeSwzs2JY8g9ePCji1f/x5t84SfagiQUNRVU33V1Rwpmxvv/tLS2vrK6tFzaKm1vbO7ulvf2GUakmtE4UV7oVYUM5k7RumeW0lWiKRcRpMxreTPzmI9WGKXlvRwkNBe5LFjOCrZMap0/dTIy7pbJf8adAiyTISRly1Lqlr05PkVRQaQnHxrQDP7FhhrVlhNNxsZMammAyxH3adlRiQU2YTa8do2On9FCstCtp0VT9PZFhYcxIRK5TYDsw895E/M9rpza+CjMmk9RSSWaL4pQjq9DkddRjmhLLR45gopm7FZEB1phYF1DRhRDMv7xIGmeV4KIS3J2Xq9d5HAU4hCM4gQAuoQq3UIM6EHiAZ3iFN095L9679zFrXfLymQP4A+/zB5d6jyU=</latexit>�xm

<latexit sha1_base64="fIM+ReSzUsYwqda2+eoCyhRpxJM=">AAAB+HicbVDLSgMxFL3js9ZHR126CRahbsqMiLosunFZwT6gHUomTdvQJDMkGbEO/RI3LhRx66e482/MtLPQ1gOBwzn3ck9OGHOmjed9Oyura+sbm4Wt4vbO7l7J3T9o6ihRhDZIxCPVDrGmnEnaMMxw2o4VxSLktBWObzK/9UCVZpG8N5OYBgIPJRswgo2Vem6pK7AZKZFqNpxWHk97btmrejOgZeLnpAw56j33q9uPSCKoNIRjrTu+F5sgxcowwum02E00jTEZ4yHtWCqxoDpIZ8Gn6MQqfTSIlH3SoJn6eyPFQuuJCO1kFlMvepn4n9dJzOAqSJmME0MlmR8aJByZCGUtoD5TlBg+sQQTxWxWREZYYWJsV0Vbgr/45WXSPKv6F1X/7rxcu87rKMARHEMFfLiEGtxCHRpAIIFneIU358l5cd6dj/noipPvHMIfOJ8/0IeTMA==</latexit>

sig(x)

<latexit sha1_base64="nH0xNyEIlAM8U9e06iMv9/ZJUUE=">AAACAHicbVDLSsNAFJ34rPUVdeHCzWARXJVERMVV0Y3L+ugDmlAm02k7dB5hZiKUkI2/4saFIm79DHf+jZM2C209MHA4517mnhPFjGrjed/OwuLS8spqaa28vrG5te3u7Da1TBQmDSyZVO0IacKoIA1DDSPtWBHEI0Za0eg691uPRGkqxYMZxyTkaCBon2JkrNR19wOOzFDx9I4Ohia4hPcEG6myrlvxqt4EcJ74BamAAvWu+xX0JE44EQYzpHXH92ITpkgZihnJykGiSYzwCA1Ix1KBONFhOgmQwSOr9GBfKvuEgRP190aKuNZjHtnJ/Fw96+Xif14nMf2LMKUiTgwRePpRP2HQSJi3AXtU2bxsbAnCitpbIR4ihbCxnZVtCf5s5HnSPKn6Z1X/9rRSuyrqKIEDcAiOgQ/OQQ3cgDpoAAwy8AxewZvz5Lw4787HdHTBKXb2wB84nz/ii5aY</latexit>

Right Sector

<latexit sha1_base64="yLaNkHNNunGn0uOKOrAkB8C4NpA=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2ARXJUZERVXRTcuXFS0D+iUkkkzbWgeQ5IRytiFv+LGhSJu/Q13/o2ZdhbaeiBwOOdecu4JY0a18bxvp7CwuLS8Ulwtra1vbG652zsNLROFSR1LJlUrRJowKkjdUMNIK1YE8ZCRZji8yvzmA1GaSnFvRjHpcNQXNKIYGSt13b2AIzNQPL0hkQku4B3BRqpx1y17FW8COE/8nJRBjlrX/Qp6EiecCIMZ0rrte7HppEgZihkZl4JEkxjhIeqTtqUCcaI76ST/GB5apQcjqewTBk7U3xsp4lqPeGgns7R61svE/7x2YqLzTkpFnBgi8PSjKGHQSJiVAXtU2XvZyBKEFbVZIR4ghbCxlZVsCf7syfOkcVzxTyv+7Um5epnXUQT74AAcAR+cgSq4BjVQBxg8gmfwCt6cJ+fFeXc+pqMFJ9/ZBX/gfP4ABY+WGw==</latexit>

Left Sector <latexit sha1_base64="DluvjWjAXE3djvWP54Fhb7FREQI=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKpi20oUy2m3bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmKPNpIhLVCVEzwSXzDTeCdVLFMA4Fa4fju5nffmJK80Q+mknKghiHkkecorGSj/3cm/arNbfuzkFWiVeQGhRo9qtfvUFCs5hJQwVq3fXc1AQ5KsOpYNNKL9MsRTrGIetaKjFmOsjnx07JmVUGJEqULWnIXP09kWOs9SQObWeMZqSXvZn4n9fNTHQT5FymmWGSLhZFmSAmIbPPyYArRo2YWIJUcXsroSNUSI3Np2JD8JZfXiWti7p3VfceLmuN2yKOMpzAKZyDB9fQgHtogg8UODzDK7w50nlx3p2PRWvJKWaO4Q+czx+vBo6b</latexit>a1

<latexit sha1_base64="ieV3fk+ik1/3/9x1V8andb/MJ6s=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj04rGCaQttKJvtpl262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4bua3n7g2IlGPOEl5ENOhEpFgFK3k035en/YrVbfmzkFWiVeQKhRo9itfvUHCspgrZJIa0/XcFIOcahRM8mm5lxmeUjamQ961VNGYmyCfHzsl51YZkCjRthSSufp7IqexMZM4tJ0xxZFZ9mbif143w+gmyIVKM+SKLRZFmSSYkNnnZCA0ZygnllCmhb2VsBHVlKHNp2xD8JZfXiWtes27qnkPl9XGbRFHCU7hDC7Ag2towD00wQcGAp7hFd4c5bw4787HonXNKWZO4A+czx+wi46c</latexit>a2

(b)

Fig. 2: (a) Plot showing the single sector constraint (red).
(b) Plot showing the two sector constraints (red and blue).
Both constraints bound the sigmoid function (black). The
yellow lines represent the preprocessing bounds and the area
in green represents the region bound by the constraints.

D. Tanh Activation Function
The tanh function is given by

tanh(x) = φ(x) =
ex − e−x
ex + e−x

.

Similar to the sigmoid case, the function remains within the
bounds from the IBP step. The process of computing the
sectors is also the same. The gradient of the lower line can
be calculated using the same formula as in Equation (5).
However, the gradient of the upper line is replaced with a
different non-linear equation

∂φ

∂x

∣∣∣
x=a1

= 1− tanh2(a1) =
φ(xm)− φ(a1)

xm − a1
.

We found that a value of xm = 1 gave the best results. The
single sector constraint is shown in Fig. 3a and the two sector
constraint is shown in Fig. 3b.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-1.5

-1

-0.5

0

0.5

1

1.5

<latexit sha1_base64="6GSzeTHseObY/4M3oZXAWAE4JLY=">AAAB+XicbVDLSgMxFM3UV62vUZdugkWomzIjoi6LblxWsA9oh5JJ0zY0yQzJnWIZ+iduXCji1j9x59+YaWehrQcCh3Pu5Z6cMBbcgOd9O4W19Y3NreJ2aWd3b//APTxqmijRlDVoJCLdDolhgivWAA6CtWPNiAwFa4Xju8xvTZg2PFKPMI1ZIMlQ8QGnBKzUc92uJDDSMgWiRrPK03nPLXtVbw68SvyclFGOes/96vYjmkimgApiTMf3YghSooFTwWalbmJYTOiYDFnHUkUkM0E6Tz7DZ1bp40Gk7VOA5+rvjZRIY6YytJNZTrPsZeJ/XieBwU2QchUnwBRdHBokAkOEsxpwn2tGQUwtIVRzmxXTEdGEgi2rZEvwl7+8SpoXVf+q6j9clmu3eR1FdIJOUQX56BrV0D2qowaiaIKe0St6c1LnxXl3PhajBSffOUZ/4Hz+AJmSk6I=</latexit>

tanh(x)

<latexit sha1_base64="h+/DQhohCC7Oe9lO35bFZgkIwaA=">AAAB+HicbVDLSsNAFL3xWeujUZdugkVwVRIRdVl047KifUAbymQ6aYfOI8xMhBr6JW5cKOLWT3Hn3zhps9DWAwOHc+5lzj1Rwqg2vv/trKyurW9slrbK2zu7exV3/6ClZaowaWLJpOpESBNGBWkaahjpJIogHjHSjsY3ud9+JEpTKR7MJCEhR0NBY4qRsVLfrfQ4MiPFs3uCjVTTvlv1a/4M3jIJClKFAo2++9UbSJxyIgxmSOtu4CcmzJAyFDMyLfdSTRKEx2hIupYKxIkOs1nwqXdilYEXS2WfMN5M/b2RIa71hEd2Mo+pF71c/M/rpia+CjMqktQQgecfxSnzjPTyFrwBVfZeNrEEYUVtVg+PkELY2K7KtoRg8eRl0jqrBRe14O68Wr8u6ijBERzDKQRwCXW4hQY0AUMKz/AKb86T8+K8Ox/z0RWn2DmEP3A+fwBnr5OU</latexit>

Sector

<latexit sha1_base64="HJ6lljxRprr7BoX107uOh2uKHhA=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRbBVZkRUZdFNy4r2Ad0hpJJM21oJhmSTKEM/RM3LhRx65+482/MtLPQ6oHA4Zx7uDcnSjnTxvO+nMra+sbmVnW7trO7t3/gHh51tMwUoW0iuVS9CGvKmaBtwwynvVRRnEScdqPJXeF3p1RpJsWjmaU0TPBIsJgRbKw0cN1AWrtI50E6ZnM0cOtew1sA/SV+SepQojVwP4OhJFlChSEca933vdSEOVaGEU7ntSDTNMVkgke0b6nACdVhvrh8js6sMkSxVPYJgxbqz0SOE61nSWQnE2zGetUrxP+8fmbimzBnIs0MFWS5KM44MhIVNaAhU5QYPrMEE8XsrYiMscLE2LJqtgR/9ct/Seei4V81/IfLevO2rKMKJ3AK5+DDNTThHlrQBgJTeIIXeHVy59l5c96XoxWnzBzDLzgf39CCk8Y=</latexit>

�

<latexit sha1_base64="oCSpAzOWhYHiAFP6Hf2U1Lqa+vw=">AAAB+nicbVBNS8NAEJ34WetXqkcvi63gqSQi6rHoxWMF+wFNKJvNpl262YTdjVJif4oXD4p49Zd489+4bXPQ1gcDj/dmmJkXpJwp7Tjf1srq2vrGZmmrvL2zu7dvVw7aKskkoS2S8ER2A6woZ4K2NNOcdlNJcRxw2glGN1O/80ClYom41+OU+jEeCBYxgrWR+nbFy0RIZYBlXvPSIatN+nbVqTszoGXiFqQKBZp9+8sLE5LFVGjCsVI910m1n2OpGeF0UvYyRVNMRnhAe4YKHFPl57PTJ+jEKCGKEmlKaDRTf0/kOFZqHAemM8Z6qBa9qfif18t0dOXnTKSZpoLMF0UZRzpB0xxQyCQlmo8NwUQycysiQywx0SatsgnBXXx5mbTP6u5F3b07rzauizhKcATHcAouXEIDbqEJLSDwCM/wCm/Wk/VivVsf89YVq5g5hD+wPn8AHHiT5w==</latexit>

�

(a)

-5 -4 -3 -2 -1 0 1 2 3 4 5

-1

-0.5

0

0.5

1

<latexit sha1_base64="HJ6lljxRprr7BoX107uOh2uKHhA=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRbBVZkRUZdFNy4r2Ad0hpJJM21oJhmSTKEM/RM3LhRx65+482/MtLPQ6oHA4Zx7uDcnSjnTxvO+nMra+sbmVnW7trO7t3/gHh51tMwUoW0iuVS9CGvKmaBtwwynvVRRnEScdqPJXeF3p1RpJsWjmaU0TPBIsJgRbKw0cN1AWrtI50E6ZnM0cOtew1sA/SV+SepQojVwP4OhJFlChSEca933vdSEOVaGEU7ntSDTNMVkgke0b6nACdVhvrh8js6sMkSxVPYJgxbqz0SOE61nSWQnE2zGetUrxP+8fmbimzBnIs0MFWS5KM44MhIVNaAhU5QYPrMEE8XsrYiMscLE2LJqtgR/9ct/Seei4V81/IfLevO2rKMKJ3AK5+DDNTThHlrQBgJTeIIXeHVy59l5c96XoxWnzBzDLzgf39CCk8Y=</latexit>

�

<latexit sha1_base64="oCSpAzOWhYHiAFP6Hf2U1Lqa+vw=">AAAB+nicbVBNS8NAEJ34WetXqkcvi63gqSQi6rHoxWMF+wFNKJvNpl262YTdjVJif4oXD4p49Zd489+4bXPQ1gcDj/dmmJkXpJwp7Tjf1srq2vrGZmmrvL2zu7dvVw7aKskkoS2S8ER2A6woZ4K2NNOcdlNJcRxw2glGN1O/80ClYom41+OU+jEeCBYxgrWR+nbFy0RIZYBlXvPSIatN+nbVqTszoGXiFqQKBZp9+8sLE5LFVGjCsVI910m1n2OpGeF0UvYyRVNMRnhAe4YKHFPl57PTJ+jEKCGKEmlKaDRTf0/kOFZqHAemM8Z6qBa9qfif18t0dOXnTKSZpoLMF0UZRzpB0xxQyCQlmo8NwUQycysiQywx0SatsgnBXXx5mbTP6u5F3b07rzauizhKcATHcAouXEIDbqEJLSDwCM/wCm/Wk/VivVsf89YVq5g5hD+wPn8AHHiT5w==</latexit>

�

<latexit sha1_base64="McIE6hXI9QI5V2umauh96AThqRQ=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48R3BhIljA7mU2GzGOZmRXDkm/w4kERr36QN//GSbIHTSxoKKq66e6KU86M9f1vr7Syura+Ud6sbG3v7O5V9w9aRmWa0JAornQ7xoZyJmlomeW0nWqKRczpQzy6mfoPj1QbpuS9Hac0EnggWcIItk4Kn3q5mPSqNb/uz4CWSVCQGhRo9qpf3b4imaDSEo6N6QR+aqMca8sIp5NKNzM0xWSEB7TjqMSCmiifHTtBJ07po0RpV9Kimfp7IsfCmLGIXafAdmgWvan4n9fJbHIV5UymmaWSzBclGUdWoennqM80JZaPHcFEM3crIkOsMbEun4oLIVh8eZm0zurBRT24O681ros4ynAEx3AKAVxCA26hCSEQYPAMr/DmSe/Fe/c+5q0lr5g5hD/wPn8ALXmO7g==</latexit>xm

<latexit sha1_base64="SdtnZp1NIxvZzws8kEyPw9ZiCo0=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBC8GHZF1GPQi8cI5gHJEmYns8mYeSwzs2JY8g9ePCji1f/x5t84SfagiQUNRVU33V1Rwpmxvv/tLS2vrK6tFzaKm1vbO7ulvf2GUakmtE4UV7oVYUM5k7RumeW0lWiKRcRpMxreTPzmI9WGKXlvRwkNBe5LFjOCrZMap0/dTIy7pbJf8adAiyTISRly1Lqlr05PkVRQaQnHxrQDP7FhhrVlhNNxsZMammAyxH3adlRiQU2YTa8do2On9FCstCtp0VT9PZFhYcxIRK5TYDsw895E/M9rpza+CjMmk9RSSWaL4pQjq9DkddRjmhLLR45gopm7FZEB1phYF1DRhRDMv7xIGmeV4KIS3J2Xq9d5HAU4hCM4gQAuoQq3UIM6EHiAZ3iFN095L9679zFrXfLymQP4A+/zB5d6jyU=</latexit>�xm

<latexit sha1_base64="nH0xNyEIlAM8U9e06iMv9/ZJUUE=">AAACAHicbVDLSsNAFJ34rPUVdeHCzWARXJVERMVV0Y3L+ugDmlAm02k7dB5hZiKUkI2/4saFIm79DHf+jZM2C209MHA4517mnhPFjGrjed/OwuLS8spqaa28vrG5te3u7Da1TBQmDSyZVO0IacKoIA1DDSPtWBHEI0Za0eg691uPRGkqxYMZxyTkaCBon2JkrNR19wOOzFDx9I4Ohia4hPcEG6myrlvxqt4EcJ74BamAAvWu+xX0JE44EQYzpHXH92ITpkgZihnJykGiSYzwCA1Ix1KBONFhOgmQwSOr9GBfKvuEgRP190aKuNZjHtnJ/Fw96+Xif14nMf2LMKUiTgwRePpRP2HQSJi3AXtU2bxsbAnCitpbIR4ihbCxnZVtCf5s5HnSPKn6Z1X/9rRSuyrqKIEDcAiOgQ/OQQ3cgDpoAAwy8AxewZvz5Lw4787HdHTBKXb2wB84nz/ii5aY</latexit>

Right Sector

<latexit sha1_base64="yLaNkHNNunGn0uOKOrAkB8C4NpA=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2ARXJUZERVXRTcuXFS0D+iUkkkzbWgeQ5IRytiFv+LGhSJu/Q13/o2ZdhbaeiBwOOdecu4JY0a18bxvp7CwuLS8Ulwtra1vbG652zsNLROFSR1LJlUrRJowKkjdUMNIK1YE8ZCRZji8yvzmA1GaSnFvRjHpcNQXNKIYGSt13b2AIzNQPL0hkQku4B3BRqpx1y17FW8COE/8nJRBjlrX/Qp6EiecCIMZ0rrte7HppEgZihkZl4JEkxjhIeqTtqUCcaI76ST/GB5apQcjqewTBk7U3xsp4lqPeGgns7R61svE/7x2YqLzTkpFnBgi8PSjKGHQSJiVAXtU2XvZyBKEFbVZIR4ghbCxlZVsCf7syfOkcVzxTyv+7Um5epnXUQT74AAcAR+cgSq4BjVQBxg8gmfwCt6cJ+fFeXc+pqMFJ9/ZBX/gfP4ABY+WGw==</latexit>

Left Sector <latexit sha1_base64="DluvjWjAXE3djvWP54Fhb7FREQI=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKpi20oUy2m3bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmKPNpIhLVCVEzwSXzDTeCdVLFMA4Fa4fju5nffmJK80Q+mknKghiHkkecorGSj/3cm/arNbfuzkFWiVeQGhRo9qtfvUFCs5hJQwVq3fXc1AQ5KsOpYNNKL9MsRTrGIetaKjFmOsjnx07JmVUGJEqULWnIXP09kWOs9SQObWeMZqSXvZn4n9fNTHQT5FymmWGSLhZFmSAmIbPPyYArRo2YWIJUcXsroSNUSI3Np2JD8JZfXiWti7p3VfceLmuN2yKOMpzAKZyDB9fQgHtogg8UODzDK7w50nlx3p2PRWvJKWaO4Q+czx+vBo6b</latexit>a1

<latexit sha1_base64="ieV3fk+ik1/3/9x1V8andb/MJ6s=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj04rGCaQttKJvtpl262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4bua3n7g2IlGPOEl5ENOhEpFgFK3k035en/YrVbfmzkFWiVeQKhRo9itfvUHCspgrZJIa0/XcFIOcahRM8mm5lxmeUjamQ961VNGYmyCfHzsl51YZkCjRthSSufp7IqexMZM4tJ0xxZFZ9mbif143w+gmyIVKM+SKLRZFmSSYkNnnZCA0ZygnllCmhb2VsBHVlKHNp2xD8JZfXiWtes27qnkPl9XGbRFHCU7hDC7Ag2towD00wQcGAp7hFd4c5bw4787HonXNKWZO4A+czx+wi46c</latexit>a2

<latexit sha1_base64="6GSzeTHseObY/4M3oZXAWAE4JLY=">AAAB+XicbVDLSgMxFM3UV62vUZdugkWomzIjoi6LblxWsA9oh5JJ0zY0yQzJnWIZ+iduXCji1j9x59+YaWehrQcCh3Pu5Z6cMBbcgOd9O4W19Y3NreJ2aWd3b//APTxqmijRlDVoJCLdDolhgivWAA6CtWPNiAwFa4Xju8xvTZg2PFKPMI1ZIMlQ8QGnBKzUc92uJDDSMgWiRrPK03nPLXtVbw68SvyclFGOes/96vYjmkimgApiTMf3YghSooFTwWalbmJYTOiYDFnHUkUkM0E6Tz7DZ1bp40Gk7VOA5+rvjZRIY6YytJNZTrPsZeJ/XieBwU2QchUnwBRdHBokAkOEsxpwn2tGQUwtIVRzmxXTEdGEgi2rZEvwl7+8SpoXVf+q6j9clmu3eR1FdIJOUQX56BrV0D2qowaiaIKe0St6c1LnxXl3PhajBSffOUZ/4Hz+AJmSk6I=</latexit>

tanh(x)

(b)

Fig. 3: (a) Plot showing the single sector constraint (red). (b)
Plot showing the two sector constraints (red and blue). Both
constraints bound the tanh function (black). The yellow lines
represent the preprocessing bounds and the area in green
represents the region bound by the constraints.

E. Slope Constraints

Another set of constraints that can be used are obtained
by considering the slope of two activation functions together.
This method is employed in [14], where the slope can be
bounded by a sector constraint such that

α ≤ φ(x2)− φ(x1)

x2 − x1
≤ β.

Therefore, any two nodes in the NN must satisfy

(φ(xi)−φ(xj)−α(xi−xj))(β(xi−xj)−(φ(xi)−φ(xj)) ≥ 0,

∀i, j = 1, . . . , n, i 6= j. For the activation functions in this
paper, the slope restricted sectors are α = 0 and β = 1
for ReLU and tanh and α = 0 and β = 0.25 for sigmoid.
However, the big issue with constraints of this type is the



lack of scalability. As the number of neurons in the network
increases, the number of constraints increases with order

(
n
2

)
.

We show in Section IV through examples that constraints
of this type do not increase the accuracy of the bounds as
much as looking for higher order problem representations
using the Psatz.

IV. NUMERICAL RESULTS

We now compare our method and existing methods for
various NN sizes, with different activation functions. All
experiments were run on a 4-core processor with 16GB of
RAM. For our ‘NNPsatz’ method, we use SOSTOOLS [19]
and SDPT3 [20] to parse and solve the SDP. The methods
that we compare our method to are DeepSDP (without
slope constraints) [14], DeepSDP? (with slope constraints),
Interval Bound Propagation (IBP) [7] and the true values
which are computed by exhaustive search.

We adjust the Psatz condition slightly to use it more easily
in conjunction with SOSTOOLS. Instead of showing that
gmout ≥ 0 is feasible, we can show that gmout < 0 is infeasible
using the Psatz. By setting γm as the decision variable in
the SOS program, it can be optimised to find the limiting
value to when this emptiness condition is violated. The SOS
conditions are then written as:

−cTmy+γm−
q∑
j

tjhj−
p∑
i

sigi−
p∑

i 6=j

rijgigj− . . . is SOS,

si is SOS, ∀ i = 1, . . . , p, rij is SOS, ∀ i, j = 1, . . . , p,

tj ∈ R[x], ∀ j = 1, . . . , q,

where hj and gi are the equality and inequality constraints.
There are a large number of parameters to consider in this

problem, due to the NN structure. For example, we can vary
the input, hidden layer and output dimensions, as well as the
size of the input space. Additionally, there are many ways
that the Psatz can be formulated: the number of constraints
that are multiplied together can be changed and the order
of these multiplied constraints can be modified as well.
Furthermore, the order of the polynomial multipliers can
be controlled and the number of variables contained in the
multipliers can be altered to make the SOS formulation more
or less conservative. This is because adding more and higher
order constraints into the SOS problem increases the number
of variables in the SDP. All of the required code for this paper
is available at https://github.com/MNewtonOX/nnpsatz.

A. ReLU Activation Function Example

To show the effectiveness of our method, we start with a
small two layer NN with two nodes in each layer, containing
ReLU activation functions, with a single input and output.
We consider a large input space [u, u] = [−50, 50], to
rigorously test each method. The results for this example are
shown in Table I. NNPsatz uses the ReLU representation in
(3) and results in a 4th order polynomial optimisation pro-
blem. These results show a significant increase in accuracy
over the other methods. This is of course at the expense

of computational time, however this can be improved with
the trade-off of reducing the solution accuracy. The solve
time can also be improved with more efficient optimisation
methods, that can exploit the sparsity of the problem.

TABLE I: Comparison of verification methods for ReLU

ymin ymax Solve Time (s) SDP Size
NNPsatz 4.3000 18.0384 1.1147 340× 100
DeepSDP −10.6868 69.6374 0.0767 49× 18

DeepSDP? 0.5371 18.0384 0.0975 55× 24
IBP −14.7009 105.3742 0.0011 -

True values 4.3000 18.0384 - -

B. Sigmoid and Tanh Activation Function Examples
In this example we show the effectiveness of this me-

thod in conjunction with the sigmoid and tanh activation
functions. We consider a single input, single output NN
with four hidden layers and four nodes in each layer. We
consider the input space [u, u] = [0.25, 1.75]. Since at the
time of writing DeepSDP does not have an implementation
for sigmoid and tanh functions, we compare the accurate
NNPsatz method against similar formulations, to show how
solution accuracy and computation can be traded-off. The
results for the sigmoid and tanh examples are shown in
Table II and Table III respectively. NNPsatz (1) uses the
two sector constraints as in Section III-C and III-D and the
IBP constraints (2). NNPsatz (2) is similar, however the two
sector constraints are replaced by single sectors. NNPsatz
(3) is the same as NNPsatz (2) with added slope restricted
constraints. NNPsatz (2) and NNPsatz (3) reflect what is
possible with traditional SDP formulations.

TABLE II: Comparison of verification methods for sigmoid

ymin ymax Solve Time (s) SDP Size
NNPsatz (1) 0.7417 0.7617 0.7650 360× 171
NNPsatz (2) 0.6443 0.8653 0.4397 358× 171
NNPsatz (3) 0.6742 0.8565 0.7658 478× 171

IBP 0.6440 0.8690 0.004 -
True values 0.7465 0.7550 - -

TABLE III: Comparison of verification methods for tanh

ymin ymax Solve Time (s) SDP Size
NNPsatz (1) −3.8258 0.6841 0.4739 369× 171
NNPsatz (2) −4.2631 4.0443 0.4096 358× 171
NNPsatz (3) −4.2601 2.8704 0.7470 478× 171

IBP −4.2645 4.2780 0.004 -
True values −2.8080 −2.3531 - -

C. Two Dimensional Input and Output Example
We now consider the effectiveness for an NN with two

inputs and two outputs. The hidden layer dimensions are
[3, 4, 3], containing ReLU activation functions. We compare
NNPatz, DeepSDP and IBP for an input space [u, u] =
[−50, 50]. In Fig. 4, we see that NNPsatz gives significantly
tighter bounds over the other methods.



<latexit sha1_base64="d3skkGsXqF8gpeheSaKK3oYGlb4=">AAACAHicbVC7SgNBFJ2NrxhfqxYWNoNBsAq7IipWQRvLCHlBdgmzk5tkyOyDeQhh2cZfsbFQxNbPsPNvnE220MQDFw7n3Mu99wQJZ1I5zrdVWlldW98ob1a2tnd29+z9g7aMtaDQojGPRTcgEjiLoKWY4tBNBJAw4NAJJne533kEIVkcNdU0AT8ko4gNGSXKSH37yAuJGoswbQoN2LvBbcI1yKxvV52aMwNeJm5BqqhAo29/eYOY6hAiRTmRsuc6ifJTIhSjHLKKpyUkhE7ICHqGRiQE6aezBzJ8apQBHsbCVKTwTP09kZJQymkYmM78XLno5eJ/Xk+r4bWfsijRCiI6XzTUHKsY52ngARNAFZ8aQqhg5lZMx0QQqkxmFROCu/jyMmmf19zLmvtwUa3fFnGU0TE6QWfIRVeoju5RA7UQRRl6Rq/ozXqyXqx362PeWrKKmUP0B9bnD4J1llo=</latexit>

True Values
<latexit sha1_base64="gmaEt1P8mKpOUNTcTXTIovvmXaw=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRbBVZkRUZdFN65KBfuAdiiZNG1Dk8yQZAp16J+4caGIW//EnX9jpp2Fth4IHM65l3tywpgzbTzv2ymsrW9sbhW3Szu7e/sH7uFRU0eJIrRBIh6pdog15UzShmGG03asKBYhp61wfJf5rQlVmkXy0UxjGgg8lGzACDZW6rluV2AzUiKt1eoam6dZzy17FW8OtEr8nJQhR73nfnX7EUkElYZwrHXH92ITpFgZRjidlbqJpjEmYzykHUslFlQH6Tz5DJ1ZpY8GkbJPGjRXf2+kWGg9FaGdzHLqZS8T//M6iRncBCmTcWKoJItDg4QjE6GsBtRnihLDp5ZgopjNisgIK0yMLatkS/CXv7xKmhcV/6riP1yWq7d5HUU4gVM4Bx+uoQr3UIcGEJjAM7zCm5M6L86787EYLTj5zjH8gfP5A+/ak9w=</latexit>

NNPsatz
<latexit sha1_base64="F3l7DLXmPSUoieGqe+CqwHqW9Vw=">AAAB+XicbVDLSgMxFM3UV62vUZdugkVwVWZE1GXRLlxWtA9oh5JJb9vQJDMkmUIZ+iduXCji1j9x59+YaWehrQcCh3Pu5Z6cMOZMG8/7dgpr6xubW8Xt0s7u3v6Be3jU1FGiKDRoxCPVDokGziQ0DDMc2rECIkIOrXB8l/mtCSjNIvlkpjEEggwlGzBKjJV6rtsVxIyUSGsA8WOtPuu5Za/izYFXiZ+TMspR77lf3X5EEwHSUE607vhebIKUKMMoh1mpm2iICR2TIXQslUSADtJ58hk+s0ofDyJlnzR4rv7eSInQeipCO5nl1MteJv7ndRIzuAlSJuPEgKSLQ4OEYxPhrAbcZwqo4VNLCFXMZsV0RBShxpZVsiX4y19eJc2Lin9V8R8uy9XbvI4iOkGn6Bz56BpV0T2qowaiaIKe0St6c1LnxXl3PhajBSffOUZ/4Hz+AIEjk5M=</latexit>

DeepSDP
<latexit sha1_base64="9QM/tcDqhcsrnOOzBlu/1GrNr3E=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMtSN7qrYB/QGUomzbShSWZIMkIZ+htuXCji1p9x59+YaWehrQcCh3Pu5Z6cMOFMG9f9dkpr6xubW+Xtys7u3v5B9fCoo+NUEdomMY9VL8SaciZp2zDDaS9RFIuQ0244uc397hNVmsXy0UwTGgg8kixiBBsr+b7AZqxEdt9szQbVmlt350CrxCtIDQq0BtUvfxiTVFBpCMda9z03MUGGlWGE01nFTzVNMJngEe1bKrGgOsjmmWfozCpDFMXKPmnQXP29kWGh9VSEdjLPqJe9XPzP66cmugkyJpPUUEkWh6KUIxOjvAA0ZIoSw6eWYKKYzYrIGCtMjK2pYkvwlr+8SjoXde+q7j1c1hrNoo4ynMApnIMH19CAO2hBGwgk8Ayv8Oakzovz7nwsRktOsXMMf+B8/gAKcZGw</latexit>

IBP

Fig. 4: Plots of the true output set (black) and the bounds
that are created using NNPsatz (red), DeepSDP (blue) and
IBP (yellow).

V. CONCLUSION

In this paper we have investigated the problem of pro-
viding bounds on the outputs of NNs, to ensure that they
operate safely and reliably. We have approached the problem
from a general framework that combines real algebraic
geometry with polynomial optimisation, by setting up the
problem as the emptiness of an appropriately constructed
semi-algebraic set. As the constraints within this framework
can be defined generally and hence can be made more or
less conservative, it is possible to easily trade off solution
accuracy with the amount of computational time required.

We use existing constraints on the ReLU activation func-
tion and propose a bound consisting of two sector cons-
traints for the sigmoid and tanh activation functions. These
constraints are then parsed into SOSTOOLS, which converts
the problem into an SDP, which is solved using the solver
‘SDPT3’. We show for many examples that this formulation
can provide the tightest bounds on the NN compared to other
SDP formulations. This approach is also very versatile as the
constraints can be modified and a different accuracy can be
set depending on the size of the network.

There is a lot of scope for future work surrounding this
area. One of the biggest issues with the SDP framework is
its scalability, however there are many ways of improving
this. NN pruning [23] can be used to reduce the size of the
NN to decrease the number of constraints in the optimisation
problem. Related works in [24] synthesise a reduced order
NN with robustness guarantees. Other approaches to improve
the scalability include previous works from chordal sparsity
[15], first-order solvers such as CDCS [25] and boosting
methods.

Lastly, the examples in this paper have been focused
on randomly generated NNs. It would be interesting to
apply this method to real-life examples or the case of NN
controllers to compare the performance. We have also only
focused on ReLU, sigmoid and tanh activation functions; as
mentioned earlier, the ideas from this paper can easily be
applied to other activation functions. With a combination of
these improvements, NNs can be verified more effectively in
the future.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet Classification
with Deep Convolutional Neural Networks,” in Advances in Neural
Information Processing Systems, vol. 25, pp. 1097-1105, 2012.

[2] K. He, X. Zhang, S. Ren and J. Sun, “Deep Residual Learning for
Image Recognition,” 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 770-778, 2016.

[3] C. Zhang and Y. Ma, Ensemble Machine Learning: Methods and
Applications. Springer, 2012.

[4] W. T. Miller, R. S. Sutton, and P. J. Werbos, Neural Networks for
Control. MIT Press, 1990.

[5] B. Recht, “A Tour of Reinforcement Learning: The View from Conti-
nuous Control,” Annual Review of Control, Robotics, and Autonomous
Systems, vol. 2, no. 1, pp. 253–279, 2019.

[6] H. Salman, G. Yang, H. Zhang, C. J. Hsieh, and P. Zhang, “A
convex Relaxation Barrier to Tight Robustness Verification of Neural
Networks,” arXiv:1902.08722, 2020.

[7] S. Gowal, C. Qin, J. Uesato, and T. Mann, “On the Effectiveness of
Interval Bound Propagation for Training Verifiably Robust Models”,
arXiv:1810.12715, 2018.

[8] R. Bunel, I. Turkaslan, P. H. S. Torr, P. Kohli, and M. P. Kumar,
“A Unified View of Piecewise Linear Neural Network Verification,”
arXiv:1711.00455, 2017.

[9] K. Dvijotham, R. Stanforth, S. Gowal, T. Mann, and P. Kohli,
“A Dual Approach to Scalable Verification of Deep Networks,” ar-
Xiv:1803.06567, 2018.

[10] G. Singh, R. Ganvir, M. Püschel, and M. Vechev, “Beyond the Single
Neuron Convex Barrier for Neural Network Certification,” Advances
in Neural Information Processing Systems, vol. 32, pp. 14–16, 2019.

[11] C. Tjandraatmadja, R. Anderson, J. Huchette, W. Ma, K. Patel,
and J. P. Vielma, “The Convex Relaxation Barrier, Revisited: Tigh-
tened Single-Neuron Relaxations for Neural Network Verification,”
arXiv:2006.14076, 2020.

[12] A. Raghunathan, J. Steinhardt, and P. Liang, “Semidefinite relaxations
for certifying robustness to adversarial examples,” 32nd Conference
on Neural Information Processing Systems, vol. 2018-Decem, pp.
10877–10887, 2018.

[13] S. Dathathri et al., “Enabling Certification of Verification-agnostic
Networks via Memory-efficient Semidefinite Programming,” Advances
in Neural Information Processing Systems 33, pp. 5318–5331, 2020.

[14] M. Fazlyab, M. Morari and G. J. Pappas, “Safety Verification and
Robustness Analysis of Neural Networks via Quadratic Constraints
and Semidefinite Programming,” IEEE Transactions on Automatic
Control, 2020.

[15] M. Newton and A. Papachristodoulou, “Exploiting Sparsity of Neural
Network Verification,” 3rd Annual Learning for Dynamics and Control
Conference, 2021.

[16] H. Hu, M. Fazlyab, M. Morari and G. J. Pappas, “Reach-SDP:
Reachability Analysis of Closed-Loop Systems with Neural Network
Controllers via Semidefinite Programming,” 59th IEEE Conference on
Decision and Control (CDC), pp. 5929-5934, 2020.

[17] H. Yin, P. Seiler, and M. Arcak, “Stability Analysis using Qua-
dratic Constraints for Systems with Neural Network Controllers,”
arXiv:2006.07579, 2020.

[18] G. Stengle, “A Nullstellensatz and a Positivstellensatz in Semialgebraic
Geometry,” Mathematische Annalen 207, no. 2, pp. 87–97, 1974.

[19] A. Papachristodoulou, J. Anderson, G. Valmorbida, S.Prajna, P. Seiler,
and P. A. Parrilo, SOSTOOLS: Sum of Squares Optimization Toolbox
for MATLAB, 2013.

[20] K.C. Toh, M.J. Todd, and R.H. Tutuncu, “SDPT3 - a MATLAB Soft-
ware Package for Semidefinite Programming,” Optimization Methods
and Software, vol. 11, pp. 545–581, 1999.

[21] G. Stengle, “Complexity Estimates for the Schmüdgen’s Positivstel-
lensatz,” Journal of Complexity, vol. 12, no. 2, pp. 167–174, 1996.

[22] V. Yakubovich, “S-procedure in nonlinear control theory,” Vestnick
Leningrad Univ. Math., vol. 4, pp. 73–93, 1997.

[23] D. Blalock, J. J. G. Ortiz, J. Frankle, and J. Guttag, “What is the State
of Neural Network Pruning?,” arXiv:2003.03033, 2020.

[24] R. Drummond, M. C. Turner, and S. R. Duncan, “Reduced-
Order Neural Network Synthesis with Robustness Guarantees,” ar-
Xiv:2102.09284, 2021.

[25] Y. Zheng, G. Fantuzzi, A. Papachristodoulou, P. Goulart, and A. Wynn,
“Chordal Decomposition in Operator-splitting Methods for Sparse
Semidefinite Programs,” Mathematical Programming, vol. 180, no.
1–2, pp. 489–532, 2020.


	INTRODUCTION
	PRELIMINARIES
	Neural Network Verification Problem Definition
	Neural Network Model
	The Positivstellensatz
	Sum of Squares

	PROBLEM FORMULATION
	Formulation of Constraints
	ReLU Function
	Sigmoid Activation Function
	Tanh Activation Function
	Slope Constraints

	NUMERICAL RESULTS
	ReLU Activation Function Example
	Sigmoid and Tanh Activation Function Examples
	Two Dimensional Input and Output Example

	CONCLUSION
	References

