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Abstract— This paper presents an application of the energy
shaping methodology to control a flexible, elastic Cosserat
rod model of a single octopus arm. The novel contributions
of this work are two-fold: (i) a control-oriented modeling of
the anatomically realistic internal muscular architecture of an
octopus arm; and (ii) the integration of these muscle models into
the energy shaping control methodology. The control-oriented
modeling takes inspiration in equal parts from theories of
nonlinear elasticity and energy shaping control. By introducing
a stored energy function for muscles, the difficulties associated
with explicitly solving the matching conditions of the energy
shaping methodology are avoided. The overall control design
problem is posed as a bilevel optimization problem. Its solution
is obtained through iterative algorithms. The methodology
is numerically implemented and demonstrated in a full-scale
dynamic simulation environment Elastica. Two bio-inspired
numerical experiments involving the control of octopus arms
are reported.

Index Terms— Cosserat rod, Hamiltonian systems, energy-
shaping control, soft robotics, octopus

I. INTRODUCTION

Research interest in soft robotic manipulators comes from
the potential capability of soft manipulators to perform
complex tasks in an unstructured environment and safely
around humans [1]–[3]. Bio-inspiration is often provided by
soft-bodied creatures, such as octopuses, that have evolved
to solve complex motion control problems like reaching,
grasping, fetching, crawling, or swimming. The exceptional
coordination abilities of these marine animals have naturally
motivated efforts to gain a deeper understanding of the
biophysical principles underlying their distributed neuromus-
cular control.

This paper is a continuation of our prior work [4] where
an energy shaping methodology was introduced for a fully
actuated Cosserat rod model of an octopus arm. The method-
ology was applied to solve motion problems, e.g. reaching
and grasping, inspired by experiments involving octopus
arms [5]. A major limitation of this prior work was that
the muscle actuator constraints were ignored. In this paper,
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we have worked closely with the biologists on the team
to incorporate anatomically correct muscular architecture
of longitudinal, transverse, and oblique muscles in octopus
arms [6]–[9].

From a control theoretic perspective of energy shaping,
the muscle constraints limit the energy landscape that can
possibly be ‘shaped’ by the use of control. In the energy
shaping literature, a mathematical characterization of achiev-
able energy is given in terms of the so-called matching
conditions [10], [11]. However, solving these conditions is
a formidable task [12], [13]. Our preliminary attempts at
directly applying the energy shaping methodology ran into
this challenging problem.

The key idea of this paper is to isolate and model the
conservative parts of the muscle forces using the formalism
of stored energy function borrowed from nonlinear elas-
ticity [14], [15]. This has an advantage in the sense that
it circumvents the need to explicitly solve the matching
conditions. The specific contributions are as follows:

1. Control-oriented modeling of muscles: Muscles provide
internal (tension) forces. The modeling of a muscle is based
upon the Hill’s model [16]–[19] that prescribes a force-length
(conservative) and a force-velocity (dissipative) relationship
for an activated muscle. Our contribution is to model the
conservative muscle force in terms of the stored energy
function of nonlinear elasticity. For the longitudinal and
transverse muscles of an octopus arm, explicit expressions
of the stored energy function are derived based upon first
principle modeling and published force-length characteris-
tics.

The inspiration for such a model comes in equal part from
the hyperelastic rod theory and from the energy shaping
control theory. Similar to the elasticity in Cosserat rod
theory [14], the control terms on account of muscles are
modeled as Hamiltonian vector fields.

2. Application of energy shaping for muscular arm
control: The control problem is to activate the muscles to
solve motion control tasks, e.g. reaching and grasping. The
control problem is posed and solved as a bilevel optimization
problem. The upper level problem seeks to find the optimal
muscle activation subject to the equilibrium constraints that
are shown to arise as a result of solving a lower level
optimization problem. For the bilevel optimization problem,
necessary conditions of optimality are derived by an applica-
tion of the maximum principle of the optimal control theory.
This also leads to iterative algorithms to compute the control.
Conditions are given for the asymptotic stability of the rod
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Fig. 1: An octopus arm is modeled as a Cosserat rod – (a) a simplified 3D view of the internal musculature, (b) a cross-section
of the arm showing organization of different kinds of muscles, and (c) a 2D model of the arm where we only consider
effects of longitudinal and transverse muscles.

equilibrium obtained using the control.
The dynamics of the arm together with the muscle ac-

tuation model are simulated in the computational platform
Elastica [20]–[22]. The control methodology is implemented
and demonstrated for reaching and grasping tasks.

The remainder of this paper is organized as follows. An
anatomical overview of the arm musculature, the planar
Cosserat rod modeling, and the control objectives appear in
Sec. II. The two main contributions of this paper appear in
Sec. III on control-oriented muscle modeling, and in Sec. IV
on application of energy shaping. Numerical experiments are
reported in Sec. V and conclusions are given in Sec. VI.

II. MODELING

A. Physiology of a muscular octopus arm

An octopus arm is composed of a central axial nerve
cord which is surrounded by densely packed muscle and
connective tissues. Organizationally, the arm muscles are of
three types [6]–[8]:

1) Longitudinal muscles run parallel to the axial nerve
cord. These muscles are responsible for bending and
shortening of the arm.

2) Transverse muscles surround the nerve cord. These
muscles are used to lengthen the arm and provide
support in active bending.

3) Oblique muscles are the outermost helical muscle fibers.
These muscles provide twist.

A simplified 3D model depicting the muscular organization
appears in Fig. 1a. In this paper, we will focus on the planar
case.

B. Modeling a single arm as a Cosserat rod

Kinematics: Consider a Cosserat rod in a plane spanned
by the fixed orthonormal basis {e1, e2}. The rod is a one-
dimensional continuum deformable object with rest length

L0. There are two independent coordinates: time t ∈ R and
the arc-length coordinate s ∈ [0, L0] of the center line. The
configuration of the rod is described by the function

q(s, t) := (r(s, t), θ(s, t))

where r = (x, y) ∈ R2 denotes the position vector of the
center line, and the angle θ ∈ R defines a material frame
spanned by the orthonormal basis {a, b} where (see Fig. 1c)

a = cos θ e1 + sin θ e2, b = − sin θ e1 + cos θ e2

The deformations or strains – stretch (ν1), shear (ν2), and
curvature (κ) – denoted together as w = (ν1, ν2, κ) and are
defined through the kinematic relationship

∂sq =

[
∂sr
∂sθ

]
=

[
ν1a + ν2b

κ

]
=: g(q, w) (1)

where ∂s := ∂
∂s is the partial derivative with respect to s. A

rod is said to be inextensible if ν1 ≡ 1 and un-shearable if
ν2 ≡ 0.

Dynamics: The Cosserat rod is expressed as a Hamiltonian
control system. For this purpose, let M = diag(ρA, ρA, ρI)
be the inertia matrix where ρ is the material density, A and
I are the cross sectional area and the second moment of
area, respectively. The state of the Hamiltonian system is
(q(s, t), p(s, t)) where momentum p := M∂tq and ∂t :=
∂
∂t is the partial derivative with respect to t. To obtain the
equations of motions, one needs to specify the kinetic energy
and the potential energy. The kinetic energy of the rod is

T =
1

2

∫ L0

0

(
ρA((∂tx)2 + (∂ty)2) + ρI(∂tθ)

2
)

ds



The potential energy of a hyperelastic Cosserat rod model is
given by1

Ve =

∫ L0

0

W e (w) ds (2)

where W e(w) = W e(ν1, ν2, κ) is referred to as the elastic
stored energy function. The simplest model of the stored
energy function is of the quadratic form

W e =
1

2

(
EA(ν1 − ν◦1 )2 +GA(ν2 − ν◦2 )2 + EI(κ− κ◦)2

)
where E and G are the material Young’s and shear moduli,
and ν◦1 , ν◦2 , κ◦ are the intrinsic strains that determine the
rod’s shape at rest. If ν◦1 ≡ 1, ν◦2 ≡ 0, κ◦ ≡ 0, then the rest
configuration is a straight rod of length L0.

Thus, the overall dynamic model is expressed as a Hamil-
tonian control system with damping:

dq

dt
=
δT
δp

dp

dt
= −δV

e

δq
− γM−1p+

∑
m

Gm(q)um
(3)

where um = um(s, t) ∈ [0, 1] is the muscle activation2 and
serves as the control input for our purposes. The operators
Gm model how a (internal) muscle actuation um translates to
resultant (external) forces and couples that move the Cosserat
rod. The modeling of Gm is the subject of the next section.
The linear damping term models the inherent viscoelasticity
in the arm [20] where γ > 0 is a damping coefficient.
Model (3) is accompanied by suitable initial and boundary
conditions.

Remark 1: For a given W e, the internal elastic forces and
couples are given by the stress-strain relationship

ni =
∂W e

∂νi
, i = 1, 2, m =

∂W e

∂κ

where n1, n2 are the components of the internal force (n)
in the material frame, i.e. n = n1a + n2b, and m is the
internal couple. Specifically, the conservative forces on the
righthand-side of (3) are as follows [14]:

−δV
e

δq
=

∂s((cos θ − sin θ
sin θ cos θ

)(
n1
n2

))
∂sm+ ν1n2 − ν2n1


The quadratic model of the stored energy means that
the stress-strain relationship is linear. For this reason, the
quadratic model of the stored energy function is referred to
as linear elasticity. However, elastic characteristics of soft
tissue can be nonlinear [23].

Control objective: Octopus arms are capable of a variety of
manipulation tasks [5]. Inspired by this, we set some control

1Here the superscript e stands for elastic potential energy
2Physically, the control um(s, t) is related to the neuronal stimulation,

such as the firing frequency of the motor neuron innervating the muscle
fiber at s at time t. The bound on um is a manifestation of maximum firing
frequency of a motor neuron.

problems to be solved by our model arm. In this work, the
control objective is to design stabilizing distributed muscle
activations so that – (i) the tip reaches a target point, and (ii)
the arm wraps around an object to grasp it.

III. CONTROL-ORIENTED MODELING OF MUSCLES

In this section, the control-oriented modeling of internal
muscles is presented. The main results of this section are
given in Proposition 3.1 and Corollary 3.1. A reader more
interested in the control problem may skip ahead to Sec. III-
E which is followed by Sec. IV on control methodology.

A. Muscle geometry

Since we consider planar movement of the arm, the
following muscles are most relevant (see Fig. 1c)

1) The top longitudinal muscle denoted as LMt,
2) The bottom longitudinal muscle denoted as LMb,
3) The transverse muscles in the middle denoted as TM.

For a generic muscle m ∈ {LMt,LMb,TM}, the vector

rm = rm
1 a + rm

2 b

specifies its position with respect to the centerline, as de-
picted in Fig. 1c. For these three muscle groups, coordinates
(rm

1 , r
m
2 ) are reported in Table I.

B. Forces from muscle actuation

When activated, a muscle provides an internal distributed
contraction force

nm = nm
1 a + nm

2 b

and because of their (off centerline) geometric arrangement,
the two longitudinal muscles also provide a couple

mm = (rm × nm) · (e1 × e2) = rm
1 n

m
2 − rm

2 n
m
1

where ‘·’ and ‘×’ denote the usual vector dot and cross
product, respectively. This yields the following model for
a single muscle:

Gm(q)um =

∂s((cos θ − sin θ
sin θ cos θ

)(
nm
1

nm
2

))
∂sm

m + ν1n
m
2 − ν2nm

1

 (4)

It remains to prescribe a model for the contraction force nm

as a function of the activation um. This is the subject of the
following subsections.

C. Hill’s lumped model of a muscle

In the Hill’s muscle model [16]–[18], [24], the tension
produced by muscular activation is modeled using three par-
allel lumped elements (Fig. 2): an active contractile element,
a passive spring element, and a damping element. When
a muscle is activated (i.e., um > 0), the active contractile
element produces a tension force which scales linearly with
activation um ∈ [0, 1], and is described through a force-
length relationship fl(·), such as the one depicted in Fig. 2.
Maximum forces are produced when the muscle is in its rest
length configuration, and decreases as the muscle contracts
or elongates. The bio-physics of this force-length relationship



Fig. 2: Hill’s muscle model: The three parallel elements are
shown in the inset. The force-length relationship of the active
contractile element is shown on the right.

is explained by the sliding filament theory of individual
muscle fibres [17], [24]. The passive spring element accounts
for the elasticity of the muscle. There are also dissipative
effects which are accounted for through so-called force-
velocity relationship of the muscles. The following notation
is adopted to model the force-length relationship.

Definition 1: Let fl : R+ → R+ denote the force-
length relationship. Define also Fl : R+ → R+, Fl(z) :=∫ z
0
fl(z) dz, i.e. F ′l (z) = fl(z), where the prime indicates

the derivative with respect to the argument.

Remark 2: We note here that a particular form of the
function fl(·) is not instrumental to the muscle modeling
and control design, and can be replaced by an experimentally
obtained relationship. The specific form of the force-length
relationship used here is a 3rd degree polynomial fit to
experimental data for squid tentacle muscles [25, Fig. 6].
The formula appears in Sec. V.

Remark 3: Similar to [19], [26], in this paper the other
two elements – passive spring and the dashpot – are not
explicitly modeled. The effects of these elements are consid-
ered to be assimilated in the inherent viscoelasticity of the
Cosserat rod, i.e. the gradient of Ve term and the damping
term in (3).

D. Muscle model adaptation to Cosserat rod formalism

Here we adapt the Hill’s active force model as follows.
For a generic muscle m, the magnitude of the active internal
force is

|nm| = nm
maxA

m(s)fl(ν
m(s))um(s, t) (5)

where Am is the arm cross sectional area occupied by the
muscle, nm

max is the maximum producible force per unit
area. In the context of this paper, the appropriate ‘length’
is the stretch strain νm of the muscle. It is a function of the
deformation w. In the following, we describe the models –
expressions for nm,mm, νm for the two types of muscles:

Longitudinal muscles: The top and the bottom longitudinal
muscles (LM) are positioned at a distance φLM(s) away
from the rod center line. Hence, the position vector of a
longitudinal muscle is given as r + rLM, where rLM =

±φLMb. (The sign is positive for the top LM and negative for
the bottom LM.) Taking the spatial derivative of the muscle
position r + rLM, the local stretch strain is obtained as

νLM = ν1 ∓ φLMκ

When a longitudinal muscle is activated, it generates the
contraction force nLM along the longitudinal direction a and
also produces the couple mLM. The expressions for these are
obtained as

nLM =
∣∣nLM

∣∣ a, mLM = ∓φLM
∣∣nLM

∣∣
where

∣∣nLM
∣∣ is defined using (5) with m = LM and νm

given by νLM. The couple mLM bends the arm locally which
is believed to be one of the most important functionalities
of the longitudinal muscle. By symmetry, the parameters Am

and nm
max are considered to be the same for both the LMt and

LMb.

Transverse muscles: When a transverse muscle (TM) con-
tracts, it causes the cross sectional area to shrink. Owing to
the constancy of volume (tissue incompressibility), the arm
extends. Such a behavior is modeled as follows:

nTM = −
∣∣nTM

∣∣ a, mTM = 0

where the couple is zero because the transverse muscles
surround the axial nerve cord, i.e. rTM = 0. To capture the
physics of inverse relationship between the stretch strain of
the arm and that of the transverse muscles, we model the
local stretch strain of transverse muscle as

νTM =
ν◦
1

ν1
≈ 2− ν1

ν◦
1

For simplicity, we adopt a linear approximation at ν1 = ν◦1 .
These complete the modeling of the longitudinal and

transverse muscles. The formulae for muscle stretch strain,
forces, and couples are reported in Table I.

E. Muscle energy function

The main result of this section is to obtain the muscle
forces and couples (nm,mm) from a stored energy func-
tion. The proof of the following proposition appears in
Appendix I.

Proposition 3.1: Suppose um = um(s, t) is a given acti-
vation of a generic muscle m. Then there exists a function
Wm = Wm(ν1, ν2, κ) such that the internal muscle forces
and torques are given by

nm
i = um ∂W

m

∂νi
, i = 1, 2, mm = um ∂W

m

∂κ
(6)

The expressions of the function Wm for the two longitudinal
muscles LMt and LMb, and the one transverse muscle TM
appear in Table I.

The total stored energy function for the arm is defined as
follows:

W (w;u) := W e(w) +
∑

m

umWm(w)



TABLE I: Summarized muscle model

Muscle model notation Parameter values for simulation

m rm νm nm mm Wm off center max stress cross sectional
muscle position muscle strain muscle force muscle couple muscle stored energy distance [kPa] area

LMt φLMb ν1 − φLMκ
∣∣nLMt

∣∣ a −φLM
∣∣nLM

t
∣∣ nLM

maxA
LM(s)Fl(ν

LMt )
φLM =

2φ(s)

3
nLM

max = 19.89 ALM =
A

9LMb −φLMb ν1 + φLMκ
∣∣nLMb

∣∣ a φLM
∣∣nLMb

∣∣ nLM
maxA

LM(s)Fl(ν
LMb )

TM 0 2 − ν1
ν◦1

−
∣∣nTM

∣∣ a 0 nTM
maxA

TM(s)Fl(ν
TM) φTM = 0 nTM

max = 13.26 ATM =
A

12

where u = {um}. This results in the potential energy

V(u) :=

∫ L0

0

W (w;u) ds = Ve +
∑

m

Vm(um)

where Vm(um) :=

∫ L0

0

um(s, t)Wm(w(s, t)) ds

(7)

Using this notation, we obtain the following corollary:

Corollary 3.1: Suppose um = um(s, t) is a given activa-
tion of the muscle m. Then the muscle-actuated arm is a
Hamiltonian control system with the Hamiltonian

Htotal = T + Ve +
∑

m

Vm(um)

In particular, the muscle forces in (3) are given by

Gm(q)um = −δV
m

δq

We omit the proof of Corollary 3.1 due to lack of space.
The proof proceeds in the same way as showing the passive
elasticity term in (3) is the (negative) gradient of the arm’s
intrinsic potential energy function [14].

How to design the muscle activation um to solve a control
problem is the main question addressed in the following
section on energy shaping.

IV. ENERGY SHAPING CONTROL DESIGN

A. Energy shaping control law

In order to obtain and analyze the equilibrium (stationary
point of the potential energy), the following definition is
useful:

Definition 2: Suppose um = αm(s) is a given time-
independent activation of the muscle m and α = {αm}. Then
the gradient and the Hessian of W are denoted as

P (w;α) :=
∂W (w;α)

∂w
, Q(w;α) :=

∂P

∂w
=
∂2W (w;α)

∂w2
(8)

The following proposition prescribes an energy shaping
control law.

Proposition 4.1: Consider the control system (3) with a
constant muscle control

um(s, t) ≡ αm(s), t ≥ 0 (9)

Suppose the potential energy functional V(α) has a minimum
at the deformations wα with associated configuration qα.
Additionally, let the muscle parameters be such that the
Hessian Q(w;α) is locally positive definite at w = wα.

Then the control law (9) renders the equilibrium (qα, 0) of
(3) (locally) asymptotically stable.

A sketch of the proof of Proposition 4.1 is given as fol-
lows. According to Corollary 3.1, application of the control
law (9) makes the closed loop system a damped Hamiltonian
system with closed loop Hamiltonian Htotal = T + V(α).
The local convexity assumption of W (w;α) lets us take the
closed loop Hamiltonian Htotal as a Lyapunov functional.
Then along a solution trajectory of (3) with controls (9),
we have

dHtotal

dt
= −γ

∥∥M−1p∥∥2 ≤ 0

where the norm is taken in the L2 sense. We thus have
that the total energy of the system is non-increasing. Fi-
nally, an application of the LaSalle’s theorem guarantees
local asymptotic stability to the largest invariant subset
of
{

(q, p)
∣∣ dHtotal

dt = 0
}

, which is indeed the equilibrium
point (qα, 0). Note that a complete proof of Proposition 4.1
involves rigorous arguments of a LaSalle’s principle in the
infinite dimensional setting, which is beyond the scope of
this paper.

Remark 4: In general, for underactuated Hamiltonian con-
trol systems, the energy shaping methodology requires solv-
ing a PDE called the matching condition [10]–[12]. Our for-
mulation of the muscle model enables us to write the control
terms Gmum as Hamiltonian vector fields (Corollary 3.1).
Consequently, the constant control law (9) is a solution to
the resulting matching condition for this problem. This line
of thinking is elucidated in [27].

Thus it remains to design the static controls α that
shape the potential energy. This is the subject of the next
subsection.

B. Design of potential energy: The static problem

The problem of designing the muscle activation α is posed
as an optimization problem:

minimize
α∈[admissible set]

[muscle related cost] + [task related cost]

subject to equilibrium constraints (of the rod)
and task related constraints

This optimization problem is an example of a bilevel opti-
mization problem, also referred to as structural optimization
problem in literature [28], [29].



1) Lower level optimization – obtain the equilibrium
constraints: This is an example of a forward problem. For a
given (fixed) α, obtain the equilibrium (or a static) configura-
tion of the rod. The equilibrium is obtained by calculating the
minimum of the total potential energy V(α) [29] as follows:

minimize
w(·)

V =

∫ L0

0

W (w(s);α) ds

subject to (1), with boundary conditions
(10)

where we recall (1) is the kinematic constraint of the rod.
The necessary conditions for optimality are obtained from

the Pontryagin’s Maximum Principle (PMP) as follows: De-
note the costate to q(s) as λ(s) = (λ1(s), λ2(s), λ3(s))ᵀ ∈
R3. Then the control Hamiltonianfor this problem is

H(q, λ, w) = λᵀg(q, w)−W (w;α)

The costate λ evolves according to Hamilton’s equation

∂sλ = −∂H
∂q

=


0
0

{−ν1(−λ1 sin θ + λ2 cos θ)
ν2(λ1 cos θ + λ2 sin θ)}

 (11)

Pointwise maximization of the control Hamiltonian leads to
the requirement that(

∂g

∂w

)ᵀ

λ− P (w;α) = 0 (12)

In general settings, (1), (11) and (12) together with the
appropriate boundary conditions (see e.g. [4], [30]) represent
the equilibrium constraint obtained from the lower level op-
timization problem. Considerable simplification arises when
the boundary conditions are of the fixed-free type. This case
is of particular interest for the CyberOctopus control problem
where the arm is attached to the head, i.e. the base is fixed
(and without loss of generality can be taken as 0). The tip is
free since there is no externally imposed boundary condition
at the tip. The result is described in the following proposition:

Proposition 4.2: Consider the optimization problem (10)
with the boundary conditions q(0) = 0 and q(L0)
free. Then any minimizer, denoted by wα(s) =
(ν1,α(s), ν2,α(s), κα(s)), must satisfy for all s ∈ [0, L0]

P (wα;α) =

EA(ν1,α(s) − 1)
GAν2,α(s)
EIκα(s)

 +

∑
nm
1 (s, wα(s);αm)

0∑
mm(s, wα(s);αm)

 = 0

(13)

Proof: Indeed, when q(L0) is free, the PMP equa-
tions need to be augmented by the transversality condition
λ(L0) = 0 which, by the virtue of costate evolution equa-
tions (11), leads to λ ≡ 0 for all s. Equation (12) then
simplifies to (13) at w = wα.

In summary, equation (13) is the equilibrium constraint
from solving the forward problem (for a given α).

2) Upper level optimization – obtain the optimal static
actuation: This is an example of an inverse problem. For
a given set of control-specific tasks and constraints, obtain

Algorithm 1 Solving the bilevel optimization problem
Input: Task (reaching, grasping)
Output: Optimal activations ᾱ = (ᾱLMt , ᾱLMb , ᾱTM)
1: Initialize: activations α(0), states at base: q(0) = 0
2: for k = 0 to MaxIter do
3: Solve (13) to obtain w(k)

α

4: Update forward (1)
5: Update backward (A-2), (A-1)
6: Update activations: α(k+1) = α(k) + η ∂Ĥ∂α
7: Limit activations α(k) within [0, 1]
8: end for
9: Output the final activations as ᾱ

] lower
level


higher
level

the activation α that solves the task. For this purpose, we
propose the following optimization problem:

minimize
α(·), αm(s)∈[0,1]

J(α) =
1

2

∫ L0

0

∑
m

(αm(s))
2

ds

+

∫ L0

0

µgrasp(s)Φgrasp(q(s)) ds+ µtipΦtip(q(L0), q∗)

subject to ∂sq = g(q, wα), q(0) = 0, q(L0) free;

and Ψj(q) ≤ 0, j = 1, 2, ..., Nobs

(14)

The significance of the terms is as follows:
1) The quadratic term is used to model the control cost of

using muscles.
2) The function Φtip is used to model the control task for

the tip, e.g., to reach a given point in space.
3) The running cost Φgrasp is used to model the control task

for the whole arm, e.g., for the arm to wrap around an
object.

4) Equation (14) is used to model the obstacles in the
environment as state constraints of the form Ψ(q) ≤ 0.

The formulae for these functions and parameters (e.g.
µgrasp, µtip) are task-specific and appear in Sec. V. The
higher level optimization problem (14) is an optimal control
problem for the kinematics (1) with α as controls, whose
necessary conditions for optimality are obtained by PMP and
are summarized in Appendix II.

3) Algorithms: Given any task, we solve the bilevel opti-
mization problem in an iterative manner. In each iteration,
we first solve the lower level problem, i.e. solve the nonlinear
equations (13) for wα pointwise in s. We utilize the fsolve
routine in the scipy package for this purpose. The higher level
problem (14) is then solved by using a forward-backward
algorithm to obtain the optimal α (see also Sec. III-C in
[4]). In Algorithm 1, we give a brief pseudo code of the
algorithm. Finally according to Proposition 4.1 the energy
shaping controls are simply the optimal α.

A more comprehensive discussion on algorithms for solv-
ing this problem appears in our prior work [4].

V. NUMERICAL SIMULATION

In this section, a numerical environment is used to demon-
strate the abilities of a soft octopus arm under our control
algorithm. Two experiments are shown to mimic the behav-
iors of reaching and grasping motion of an octopus arm.



(a) (b) (c)

REACHING STATIC TARGETS

(d)

GRASPING A STATIC TARGET

Fig. 3: Reaching task (a-b). The arm is tasked to reach three different locations one after the other, mimicking the octopus’
fetching motions. (a) Targets are located at (12, 14), (16, 6) and (2,−2) [cm] and are indicated as orange spheres. Optimal
arm configurations are depicted together with muscle activations. The time evolution of the arm is depicted as transparent
purple rods. (b) Dotted lines show the activations at t = 0 [s]; dash-dot lines show the activations at t = 1.5 [s]; and solid
lines show the activations at t = 3.5 [s]. Grasping task (c-d). The arm is tasked to wrap around a static sphere (the big
orange sphere) of radius 2 [cm] centered at (12, 12) [cm]. (d) The solid line shows the activations at t = 2.5 [s].

A. Simulation setup

The explicit dynamic equations of motion (3) of a pla-
nar Cosserat rod [14] are discretized into Nd connected
cylindrical segments and solved numerically by using our
open-source, dynamic, three-dimensional simulation frame-
work Elastica [20]–[22]. The radius profile of the tapered
geometry of an octopus arm is modeled as

φ(s) = φtips+ φbase(L0 − s)

with the cross sectional area and the second moment of area
as A = πφ2 and I = A2

4π . We take the rest configuration
of the rod to be straight of length L0, i.e. (ν◦1 , ν

◦
2 , κ
◦) ≡

(1, 0, 0). The biologically realistic parameter values in this
work are listed in Table I and II and also in reference [4].
The following force length curve fl(·) for the Hill’s muscle
model is used:

fl(z) =
{

3.06z3 − 13.64z2 + 18.01z − 6.44, if 0.6 ≤ z ≤ 1.6
0, else

This model is fitted from experimental data [25, Fig. 6].

B. Experiments

1) Reaching multiple static targets: The first experiment
consists reaching multiple targets one by one to mimic the
behavior of a real octopus. For any target, the tip cost
function Φtip in (14) is set as

Φtip(q(L0), r∗) =
1

2
|r∗ − r(L0)|2

where r∗ is the target position. The cost does not depend on
the tip angle θ(L0) as we are not concerned about the tip
pose. The weight function µgrasp is chosen to be zero and
regularization parameter µtip is set as 105. Simulation results
are shown in Fig. 3(a-b).

2) Grasping an object: In the second experiment, the
octopus arm is tasked to grasp a target sphere. This behavior
is commonly seen when an octopus is trying to reach for a
bottle, a shell or a crab. To find the desired static configura-
tion via (14), the object is treated as both an obstacle and a
target so that the arm cannot penetrate it but can wrap around
it. The inequality constraint model of it is:

Ψ(q(s)) =
(
φobj + φ(s)

)2 − |robj − r(s)|2

TABLE II: Parameters

Parameter Description Value

L0 rest arm length [cm] 20
φbase base radius [cm] 1.2
φtip tip radius [cm] 0.12
E Young’s modulus [kPa] 10
G Shear modulus [kPa] 40/9
ρ density [kg/m3] 1050
γ dissipation [kg/s] 0.02
Nd discrete number of elements 100
∆t discrete time-step [s] 10−5

η learning rate 10−8

where φobj and robj denote the radius and center position of
the object, respectively. In addition, since we want the arm
to grasp the target sphere, the running cost Φgrasp and the
weight function µgrasp in (14) are designed so that the arm
can get as close to the boundary as possible:

Φgrasp(q(s)) = dist(Ω, r(s)), µgrasp(s) = 105χ
[0.4L0,L0]

(s)

where Ω denotes the boundary of the object (here just a
circle), dist(·, ·) calculates the distance between the boundary
and the point r(s), and χ

[s1,s2]
(·) denotes the character-

istic function of [s1, s2]. Such a design together with the
inequality constraint cause the distal portion of the arm,
starting from s = 0.4L0, to grasp the target sphere without
penetrating it. The value of µtip is 0 in this case. Fig. 3(c-d)
shows the simulation results where the arm grasps the sphere
under its muscle actuation model.

VI. CONCLUSION AND FUTURE WORK

In this paper, a flexible octopus arm is represented as a
planar Cosserat rod and its muscle mechanisms are modeled
as distributed internal force/couple functions with the muscle
activations as the control inputs. The rod is viewed as an
underactuated Hamiltonian control system, for which an
energy shaping control method is sought to solve various
manipulation objectives, e.g. reaching and grasping. We have
shown that the total energy of the closed loop system can
be expressed by augmenting the inherent elastic energy of
the rod with muscle stored energy functions. As a result,
constant muscle controls stabilize the arm. A bilevel opti-
mization problem is then constructed and solved numerically



to obtain desired muscle controls for a given task. Numerical
experiments demonstrate the efficacy of this scheme. As
a direct extension, a more sophisticated muscle actuation
model and the corresponding control method can be applied
to the general 3D case. Another direction of future work
is to develop an octopus-inspired neuromuscular control
where muscle activation is controlled by underlying neuronal
activity. The problem of sensorimotor control can also be
considered where only a part of the state is available to the
controller through internal distributed sensors.
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APPENDIX I
PROOF OF PROPOSITION 3.1

Proof: Indeed, for the top longitudinal muscle LMt,
define W LMt := ALMnLM

maxFl(ν1 − φLMκ). Then it readily
follows by using the definition of the function Fl that

nLMt
1 =

∣∣nLMt
∣∣ = uLMt

∂W LMt

∂ν1

mLMt = −φLM
∣∣nLMt

∣∣ = uLMt
∂W LMt

∂κ

Additionally, it is obvious that nLMt
2 = ∂W LMt

∂ν2
= 0. Similar

arguments follow for other two muscles.

APPENDIX II
PMP CONDITIONS FOR PROBLEM (14)

Here we only express the key PMP conditions. For more
explanations, please refer to [4]. For the constrained opti-
mization problem (14), the original state q is augmented to
include Nobj additional states q̂j which has the following
evolution:

∂sq̂j = cj(q) = max(Ψj(q), 0), q̂j(0) = 0, j = 1, ..., Nobs

and the terminal cost function is also modified as follows

Φ̂(q(L0)) = µtipΦtip(q(L0), q∗) +
∑

ξj q̂j(L0)

where ξj > 0 are the weights for the augmented states
q̂j(L0). Denoting the costate of q as λ̂, the modified control
Hamiltonian Ĥ is written as

Ĥ(s, q, λ̂, α) = λ̂ᵀg(q, wα)− 1

2
|α|2 − µgrasp(s)Φgrasp(q)

The costate λ̂ must satisfy the Hamilton’s equation

∂sλ̂ = −∂Ĥ
∂q

+
∑

ξj
∂cj
∂q

(A-1)

with the accompanied transversality condition

λ̂(L0) = −µtip
∂Φtip

∂q
(q(L0), q∗) (A-2)

and the optimal α should maximize the Hamiltonian Ĥ
pointwise in [0, L0].


