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A Dual Characterization of the Stability of the Wonham Filter

Jin Won Kim and Prashant G. Mehta

Abstract— This paper revisits the classical question of the
stability of the nonlinear Wonham filter. The novel contributions
of this paper are two-fold: (i) definition of the stabilizability for
the (control-theoretic) dual to the nonlinear filter; and (ii) the
use of this definition to obtain conclusions on the stability of the
Wonham filter. Specifically, it is shown that the stabilizability of
the dual system is necessary for filter stability and conversely
stabilizability implies that the filter asymptotically detects the
correct ergodic class. The formulation and the proofs are based
upon a recently discovered duality result whereby the nonlinear
filtering problem is cast as a stochastic optimal control problem
for a backward stochastic differential equation (BSDE). The
control-theoretic proof techniques and results may be viewed
as a generalization of the classical work on the stability of the
Kalman filter.

I. INTRODUCTION

Viewed from a certain lens, the story of stochastic filter

stability is a story of two parts: (i) stability of the Kalman

filter where control-theoretic definitions and methods are

paramount; and (ii) stability of the nonlinear filter where

there is no hint of such methods (with one notable ex-

ception [1]). Arguably, the control techniques are useful

for the analysis of Kalman filter, because of the classical

dual relationship between observability and controllability

of deterministic linear systems. This dual relationship ex-

tends to the stochastic linear Gaussian settings: In Kalman’s

celebrated paper with Bucy, it is shown that the Kalman

filter is dual to a deterministic linear quadratic (LQ) op-

timal control problem. The relationship is useful in two

ways: (i) Asymptotic stability of the filter is related to the

asymptotic stability of the dual optimal control system; and

(ii) Necessary and sufficient conditions for the same are

stabilizability for the optimal control problem, and (because

of the dual relationship) detectability for the filter. Notably,

duality explains why, with the time arrow reversed, the

covariance update equation of the Kalman filter is the same

as the dynamic Riccati equation (DRE) of optimal control.

In practical terms, asymptotic stability of the Kalman filter

is deduced by establishing an asymptotic limit for the value

function of the dual LQ problem [2, Ch. 9].

Our goal in this paper is to extend these classical control

theoretic techniques for the stability analysis of the nonlinear

Wonham filter. Specifically, we are interested in obtaining

necessary and sufficient conditions for filter stability. Our

focus is on the so called non-ergodic signal case and we are
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interested in a minimal condition that a model should satisfy

for the filter stability to hold. In the filter stability literature,

this condition is referred to as detectability [3].

This problem has a rich and storied history; cf., [4], [5]

and references therein. For the non-ergodic signal case, a

notable early contribution is [6] where formulae for the

relative entropy are derived and it is shown that the relative

entropy is a Lyapunov function for the filter. Our paper is

closely inspired by [7] who are the first to formulate certain

“identifying conditions” that are shown to be sufficient for

the stability of Wonham filter. These conditions are formu-

lated in terms of the model parameters (transition matrix and

the observation function). The definition of observability and

detectability appears in [3], [8]. For the Wonham filter, the

subspace of observable functions is completely characterized

in terms of model parameters. Detectability is shown to be

both necessary and sufficient for filter stability. Extensions

to these definitions have recently appeared in [9], [10].

The paper has a single contribution given as Thm. 1: We

define the stabilizability property of the dual system and

relate this property to the asymptotic stability of the filter.

Stabilizability is shown to be the dual to the detectability

definition of [3]. The overall development – introduction of

the dual system, stabilizability definition, and its use the in

the filter stability analysis – has close parallels to the Kalman

filter stability theory. This connection is explained using

several remarks in the paper. While the narrow focus of this

paper is on the non-ergodic signal case (where stabilizability

is non-trivial), a companion paper presents filter stability

results for the ergodic signal case [11]. The analysis in both

these papers is based upon a recently discovered duality

result whereby the nonlinear filtering problem is cast as a

stochastic optimal control problem for a backward stochastic

differential equation (BSDE) [12].

Both the optimal control formulation and its use in ob-

taining the filter stability proofs are new. While [1] also

employed a dual optimal control problem, it is completely

different from the dual formulation used here. As explained

in our earlier papers [12], [13], [14], our formulation is a

generalization of the Kalman-Bucy duality while [1] is a

generalization of the minimum energy or maximum likeli-

hood duality (see also [15]). Notably, the classical proofs of

the stability of the Kalman filter are based on the original

Kalman-Bucy duality (see e.g. [2]). Our proofs can thus be

viewed as a generalization of the linear stability theory.

The outline of the remainder of this paper is as follows:

The problem formulation appears in Sec. II. The background

on duality and stabilizability is in Sec. III. The main result

and its proof are in Sec. IV and Sec. V, respectively.
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II. PROBLEM FORMULATION

Notation: The state-space S ∶= {1,2,⋯,d} is finite. The set

of probability vectors on S is denoted by P(S): µ ∈ P(S)
if µ(x) ≥ 0 and ∑x∈S µ(x) = 1. The space of deterministic

functions on S is identified with R
d : Any function f ∶S→R is

determined by its value f (x) at x ∈S. For a measure µ ∈P(S)
and a function f ∈Rd , µ( f ) ∶=∑x µ(x) f (x). For two vectors

f ,h ∈Rd , f h denotes the element-wise (Hadamard) product:

( f h)(x) ∶= f (x)h(x) and similarly f 2 = f f . The vector of all

ones is denoted as 1 and f ∣1⊥ ∶= f − 1
d
(1⊺ f )1. For a subset

D ⊂ S, 1D denotes the indicator function with support on D.

A. Filtering model

Consider a pair of continuous-time stochastic processes

(X ,Z) defined on a probability space (Ω,F ,P):
(1) The state X = {Xt ∈ S ∶ t ≥ 0} is a Markov process

with initial condition X0 ∼ µ ∈P(S) (prior) and the generator

(row stochastic rate matrix) A ∈Rd×d . The finite state-space

is partitioned into m ergodic classes S = ⋃m
k=1Sk such that

P([Xt ∈Sl] ∣ [X0 ∈Sk])= 0 for all t ≥ 0 and l ≠ k. For a function

f ∈ Rd , the carré du champ operator Γ ∶Rd →R
d is defined

according to

Γ( f )(x) ∶=∑
j∈S

A(x, j)( f (x)− f ( j))2 for x ∈ S

(2) The observation process Z = {Zt ∈R ∶ t ≥ 0} is defined

according to the following model:

Zt ∶= ∫
t

0
h(Xs)ds+Wt

where h ∶ S→ R is the observation function and W = {Wt ∈
R ∶ t ≥ 0} is a Wiener process (w.p.) that is assumed to

be independent of X . The scalar-valued observation model

is considered for notational ease. The covariance of W is

denoted as R which is assumed to be positive. The filtration

generated by Z is denoted as Z ∶= {Zt ∶ 0 ≤ t ≤ T} where

Zt = σ({Zs ∶ 0 ≤ s ≤ t}).
Function spaces: To stress the prior µ , the probability

measure is denoted P
µ and the expectation is E

µ(⋅). The

space of square-integrable ZT -measurable random func-

tions on S is denoted L2
ZT
(S): F ∈ L2

ZT
(S) if F is ZT -

measurable and E
µ(∣F(XT )∣2) <∞. The space of Z-adapted

square-integrable S-valued stochastic processes is denoted

L2
Z([0,T ];S). Typical examples of S are (i) R for real-valued,

and (ii) Rd for vector-valued stochastic processes.

The filtering problem is to compute the conditional dis-

tribution (posterior), denoted π
µ
t ∈ P(S), of the state Xt

given Zt . For f ∈ Rd , π
µ
t ( f ) ∶= Eµ( f (Xt)∣Zt) is the object

of interest.

B. Definition of filter stability

In the finite state-space settings of this paper, the Wonham

filter is a stochastic differential equation (SDE):

dπt = A⊺πt dt+(diag(h)−πth
⊺)πt R−1 (dZt −πt(h)dt) (1)

With an initialization π0 = ν ∈ P(S), the solution of the

Wonham filter is denoted as πν ∶= {πν
t ∈ P(S) ∶ t ≥ 0}. The

(true) posterior π µ ∶= {π µ
t ∈ P(S) ∶ t ≥ 0} results from the

choice of the initial condition π0 = µ .

Definition 1: The Wonham filter is stable, in the sense of

weak convergence in L2, if for each f ∈Rd

E
µ(∣π µ

t ( f )−πν
t ( f )∣2)Ð→ 0 as t →∞ (2)

whenever µ ≪ ν .

III. DUALITY AND STABILIZABILITY

A. Background on duality for nonlinear filtering

In our recent work [12], a dual optimal control problem

is introduced. It is based upon the following backward

stochastic differential equation (BSDE):

−dYt(x) = ((AYt)(x)+h(x)Ut +h(x)Vt(x)) dt−Vt(x)dZt ,

YT (x) = f (x) ∀ x ∈ S (3)

where the control input U = {Ut ∈ R ∶ 0 ≤ t ≤ T} is in

L2
Z([0,T ];R) =∶ U . Such controls are referred to as admissi-

ble. The solution (Y,V) ∶= {(Yt ,Vt) ∈Rd ×Rd ∶ 0 ≤ t ≤ T} is in

L2
Z([0,T ];Rd ×Rd). That is, the solution is forward-adapted

to the filtration Z .

Consider next the following estimator (for the random

variable f (XT )):
ST = π0(Y0)−∫ T

0
Ut dZt (4)

The estimator is parameterized with an admissible control

U ∈ U and a given π0 ∈ P(S). Y0 is obtained by solving the

BSDE (3) with the control input U and YT = f .

By an application of the Itô-Wentzell theorem (see [12,

Appendix A])

f (XT )−ST =Y0(X0)−π0(Y0)+∫ T

0
(Ut +Vt(Xt))dWt +Y⊺t dNt

where N is a P
µ -martingale. Upon squaring and taking

expectation, we obtain the duality relationship

E
µ(∣ f (XT )−ST ∣2) = Jµ

T (U ; f )+ ∣π0(Y0)−µ(Y0)∣2 (5)

where

J
µ
T (U ; f ) ∶= Eµ(∣Y0(X0)−µ(Y0)∣2+∫ T

0
ℓ(Yt ,Vt ,Ut ;Xt)dt)

where ℓ(y,v,u ;x) = Γ(y)(x)+ ∣u+ v(x)∣2R; cf., [12, Eq. (6)].

In [12], (5) is referred to as the duality principle.

The dual optimal control problem is to choose a control

U ∈ U such that J
µ
T (U ; f ) is minimized subject to the BSDE

constraint (3). The minimum value is denoted as J
µ
T ( f ) or

more simply as J
µ
T if there is no chance of ambiguity.

The existence and uniqueness of the optimal control fol-

lows from the standard results in the BSDE constrained opti-

mal control theory [16]. The solution, including the formula

for optimal control, is described in [12, Theorem 1]. Some

technical background is also included in the Appendix A of

this paper. Let U µ ∶= {U µ
t ∶ 0 ≤ t ≤ T} be the optimal control



and (Y µ ,V µ) ∶= {(Y µ
t ,V

µ
t ) ∶ 0 ≤ t ≤ T} is the associated

(optimal) trajectory. Then:

(1) [12, Theorem 2]: The optimal control gives the condi-

tional mean

π
µ
T ( f ) = µ(Y µ

0 )−∫ T

0
U

µ
t dZt , P

µ
−a.s. (6)

(2) [12, Theorem 5]: The optimal value function gives the

variance

J
µ
T ( f ) = Eµ(∣ f (XT )−π

µ
T ( f )∣2)

Using this formula, the optimal value is uniformly bounded

by 1
4
∣osc( f )∣2 where osc( f ) ∶=maxi, j∈S ∣ f (i)− f ( j)∣.

B. Stabilizability of the BSDE

Definition 2: For the BSDE (3), the controllable subspace

is defined as:

CT ∶= {y0 ∈R
d ∣ ∃ c ∈R,U ∈ U s.t. Y0 = y0 and YT = c1}

(Note c,y0 are deterministic and U is an admissible stochastic

process.) If CT =R
d then the BSDE is said to be controllable.

Because 1 ∈ CT , it is a non-trivial subspace of R
d (even

with h = 0). An explicit characterization of the controllable

subspace is given in the following:

Proposition 1: [14, Theorem 2] For any positive value of

terminal time T , CT is the smallest such subspace C ⊆ Rd

that satisfies the following two properties:

(i) The constant function 1 ∈ C; and

(ii) If g ∈ C then Ag ∈ C and gh ∈ C.

Explicitly,

C ∶= span{1,h, Ah, A2h, A3h, . . . ,

h2, A(h2), h(Ah),A2(h2), . . . ,
h3, (Ah)(h2), hA(h2), . . .}

Remark 1: The subspace C is identical to the space of

“observable functions” in [3, Lemma 9]. An explanation for

this correspondence is provided in [14] where it is shown

that the BSDE is the dual of the Zakai equation of filtering.

Because A is a stochastic matrix, its eigenvalues are either

in the open left half-plane or at zero. To define stabilizability,

consider first the zero subspace:

S0 ∶= {y ∈Rd ∣ Ay = 0}
Definition 3: The BSDE (3) is stabilizable if S0 ⊂ C.

Proposition 2: Consider the BSDE (3). Then

(i) If S has a single ergodic class then BSDE is stabilizable.

(ii) If S = ∪m
k=1Sk is partitioned into m ergodic classes then

the BSDE is stabilizable if and only if the indicator

functions 1Sk
∈ C for k = 1,2,⋯,m.

IV. MAIN RESULT

Theorem 1: Suppose the Wonham filter is stable. Then

the BSDE (3) is stabilizable. Conversely, if the BSDE is

stabilizable then

πν
T (1Sk

) (T→∞)Ð→ 1Sk
(X0) P

µ -a.s.

whenever µ ≪ ν . (That is, the filter asymptotically detects

the correct ergodic class.)

It is shown in Appendix C that for any given ν ∈ P(S),
one can pick {νk ∈P(S) ∶ 1 ≤ k ≤m} such that νk has support

on Sk and

πν
T ( f ) = m

∑
k=1

πν
T (1Sk

)πνk

T ( f ) (7)

Using Thm. 1, the problem of filter stability reduces to

the problem of filter stability for each ergodic class. This is

also the justification for treating the ergodic and non-ergodic

signal cases separately. It is known that, for the type of

observations considered here, the filter “inherits” the stability

property of the Markov process [7, Theorem 4.2]. The proof

of this is far from straightforward and spurred much research

during the first decade [4], [5], [17]. Assuming it to be true,

from Thm. 1 it follows that stabilizability is both a necessary

and sufficient condition for filter stability.

The dual optimal control approach of this paper is also

useful to the study of filter stability of ergodic signals (e.g., to

obtain results on asymptotic convergence of π
νk

T ( f ) above).

This is the subject of a companion paper published in the

proceedings of the conference [11].

Remark 2: The sufficient condition stated in [7, Theorem

4.4] correctly stress the importance of the “identifying”

property of the filter to identify the correct ergodic class [7,

Lemma 6.3]. Subsequently, the definition of detectability

was first introduced in [3], [4]. For the Wonham filter, the

detectability property was shown to be equivalent to filter

stability [3, Theorem 2].

Because of Remark 1, the stabilizability definition taken

together with the result in Theorem 1 represent dual coun-

terparts of these earlier definitions and results. Additional

details on duality between controllability of the BSDE and

observability of the filter can be found in our prior paper

[14, Prop. 2].

It is also worthwhile to note that the appropriate ob-

servability and detectability definitions were discovered only

after a decade of intense research; c.f., [4], [5]. In contrast,

using duality these definitions are obtained quite naturally.

Remark 3: For the stability of the Kalman filter, the

importance of detectability is well known. Most proofs of

filter stability rely on the analysis of the dual LQ optimal

control problem [2, Ch. 9], [18, Sec. 2]. Stabilizability of

the dual system is then actually the condition that is used

to obtain the proof of Kalman filter stability. Our results can

thus be viewed as generalization of the Kalman filter stability

theory.



V. PROOF OF THE MAIN RESULT

A. Probability spaces

Recall Pµ is the probability measure indicative of the fact

that X0 ∼ µ . For µ ≪ ν , consider a probability measure P
ν

on the common measurable space (Ω,F) as in Sec. II-A. It

is noted that

dPµ

dPν
(ω) =∑

x∈S

µ(x)
ν(x) 1[X0=x](ω)

Then (X ,Z) have the same transition law and if X0 ∼ ν
under P

ν then X0 ∼ µ under P
µ . The expectation under

P
ν is denoted E

ν(⋅). The solution of the Wonham filter

π
µ
t = E

µ(Xt ∣Zt) and πν
t = E

ν(Xt ∣Zt).
In the settings of this paper, a filter is obtained by solving

the dual optimal control problem. A user who (incorrectly)

believes the prior to be ν solves the optimal control problem

under the (incorrect) measure P
ν :

J
ν
T (U ; f ) = Eν(∣Y0(X0)−ν(Y0)∣2+∫ T

0
ℓ(Yt ,Vt ,Ut ;Xt)dt)

(8)

subject to the BSDE constraint (3). Note the two changes:

the expectation is now with respect to P
ν and ν(Y0) appears

in the terminal cost (first of the two terms). The optimal

control for this problem is denoted Uν and the associated

optimal trajectory is (Y ν ,V ν). The counterpart of (6) is

πν
T ( f ) = ν(Y ν

0 )−∫ T

0
Uν

t dZt P
ν
−a.s. (9)

and J
ν
T ( f ) =Eν(∣ f (XT )−πν

T ( f )∣2) ≤ 1
4
∣osc( f )∣2 for all T ≥ 0.

Before the estimator is assessed with respect to the (cor-

rect) measure P
µ , there are three technical concerns:

1) Existence and uniqueness of the optimal control Uν

and the solution (Y ν ,V ν) for all T ≥ 0. This ensures in

particular that the righthand-side (9) is well-defined.

2) Admissibility of the optimal control Uν with respect

to P
µ . This ensures that the optimal control can be

assessed using P
µ whenever µ ≪ ν .

3) Apriori bounds and continuity properties for the value

J
µ
T (Uν) as µ → ν .

Appendix A contains the requisite technical background

that also serves to address these concerns.

B. Relationship of duality to filter stability

For any ST ∈ L2
ZT

, the projection theorem gives

E
µ(∣ f (XT )−ST ∣2) = Jµ

T +E
µ(∣π µ

T ( f )−ST ∣2)
and using the duality formula (5) in the left-hand side

E
µ(∣π µ

T ( f )−ST ∣2) = (Jµ
T (U)−Jµ

T )+ ∣π0(Y0)−µ(Y0)∣2
With π0 = ν and U = Uν , the estimate ST = πν

T ( f ) and

therefore

E
µ(∣π µ

T ( f )−πν
T ( f )∣2) = (Jµ

T (Uν)−Jµ
T )+ ∣ν(Y ν

0 )−µ(Y ν
0 )∣2

Both the terms on the righthand-side are non-negative (the

first term so because J
µ
T is the minimum value and Uν is

P
µ -admissible). Therefore, the limit of the lefthand-side (as

T →∞) is 0 if and only if each of the two terms on the

righthand-side individually approach 0. We state the result

as a proposition.

Proposition 3: The filter is stable if and only if

µ(Y ν
0 )−ν(Y ν

0 ) (T→∞)Ð→ 0 (10a)

J
µ
T (Uν)−Jµ

T

(T→∞)Ð→ 0 (10b)

whenever µ ≪ ν .

Remark 4: These conditions are the nonlinear counter-

parts of the sufficient conditions for the stability of the

Kalman filter in [18, Theorem 2.3].

1) Equation (10a) means that the optimal control system

is asymptotically stable. That is, Y0 → (const.)1 as

T →∞. This is also the reason why the stabilizability

condition is important to the problem of filter stabil-

ity. The condition plays the same role in linear and

nonlinear settings.

2) Equation (10b) means that the value converges to the

optimal value. Since the optimal value J
µ
T ( f ) has the

interpretation of the minimum variance, its conver-

gence is analogous to the convergence of the solution

of the DRE in the Kalman filter. In linear settings,

the latter is deduced by establishing an asymptotic

limit for the value function of the dual optimal control

problem [2, Sec. 9.4].

C. Proof of necessity in Thm. 1

In this subsection, we prove the necessity part of Thm. 1:

That is, if the filter is stable then is the BSDE (3) is

stabilizable. The argument rests on the result described

in the following proposition whose proof appears in the

Appendix D.

Proposition 4: Suppose the BSDE (3) is not stabilizable.

Then there exists an f ∈ C⊥ such that for any T and any

U ∈ U , the solution to the BSDE (3) is given by

Y0 = y0+ f

where y0 ∈C (and can depend upon T and U). Since 1 ∈C, this

implies ∣Y0 −
1
d
(1⊺Y0)1∣ ≥ ∣ f ∣, i.e., Y0 is uniformly bounded

away from the subspace of constant vectors.

The proof of necessity follows from Prop. 4: Pick any

ν ∈P(S) such that 0 < ν(x) < 1 for all x ∈ S and set µ = ν+ε f

where ε is chosen sufficiently small such that µ ∈P(S). Then∣µ(Y0)−ν(Y0)∣ = ε ∣ f ∣2 . Applying Prop. 3, the filter is not

stable for this choice of µ and ν .

D. Completing the proof of Thm. 1

We first state a technical lemma that is used in the proof.

The proof of the Lemma appears in Appendix E.



Lemma 1: Suppose µ̄ is an invariant measure of A (i.e.,

A⊺µ̄ = 0). Then for each fixed f ∈Rd

(i) The sequence {Jµ̄
T ( f ) ∶ T ≥ 0} is bounded, non-negative,

and non-increasing in T . Therefore, J
µ̄
T ( f ) converges as

T →∞. Denote the limit as J
µ̄
∞( f ).

(ii) For a given µ ∈P(S), denote µT ∶= eA
⊺

T µ . Suppose µT →
µ̄ as T →∞. Then

limsup
T→∞

J
µ
T ( f ) ≤ Jµ̄

∞( f )
We now complete the proof of Thm. 1: That is, we show

that if 1Sk
∈ C then

πν
T (1Sk

) (T→∞)Ð→ 1Sk
(X0) P

µ -a.s.

The proof is in the following three steps:

1. In step 1, we show that πν
T (1Sk

) converges Pν -a.s.

1. In step 2, we show that if 1Sk
∈ C then J

µ̄
T (1Sk

)→ 0 as

T →∞ where µ̄ is any invariant measure of A. We use part

(i) of Lemma 1 to prove this result.

3. In step 3, we combine the conclusions of steps 1 and 2 to

prove the result. We use part (ii) of Lemma 1 to prove this

result.

Step 1: Consider the Wonham filter (1) with π0 = ν . Since

A1Sk
= 0, {πν

T (1Sk
) ∶ T ≥ 0} is a bounded P

ν -martingale and

therefore converges P
ν -a.s. (Therefore, the a.s. convergence

does not require stabilizability of the model.)

Step 2: Suppose µ̄ is any invariant measure. Then J
µ̄
T is

monotone (part (i) of Lemma 1). In the following, we

construct a sequence of admissible control input {U(T) ∶ T =
1,2,⋯} such that J

µ̄
T (U(T);1Sk

)→ 0 as T →∞. Since J
µ̄
T (1Sk

)
is the minimum value this implies J

µ̄
T (1Sk

)→ 0 as T →∞ (for

this particular sub-sequence). Since J
µ̄
T is monotone, the limit

exists and equals this sub-sequential limit.

Suppose 1Sk
∈ C. Then we claim that there exists an

admissible control U(1) ∶= {U(1)t ∶ 0 ≤ t ≤ 1} and a constant

c ∈ R such that Y
(1)
T = 1Sk

and Y
(1)
0
= c1. The claim follows

from the definition of controllable space. A proof of the claim

appears at the end of the proof. Assuming the claim to be

true for now, denote the associated solution of the BSDE (3)

as (Y (1),V (1)) ∶= {(Y (1)t ,V
(1)

t ) ∶ 0 ≤ t ≤ 1}.
Since Z is a w.p. under the Girsanov change of measure,

there exists a functional φ(⋅ , ⋅) ∶ [0,1]×C([0,1];R)→R such

that

U
(1)
t = φ(t , {Zs ∶ 0 ≤ s ≤ t}) P

µ̄
−a.s.

Now consider the following control over the time-horizon[0,n]: For l = 0,1,2,⋯,n−1

U
(n)
t ∶=

1

n
φ(t − l , {Zs ∶ l ≤ s ≤ t}), t ∈ (l,(l+1)]

Such a control input is clearly admissible. With Yn = 1Sk
, one

obtains the following solution (Y (n),V (n)) ∶= {(Y(n)t ,V
(n)

t ) ∶
0 ≤ t ≤ n} of the BSDE (3):

V
(n)

t

(d)
=

1

n
V
(1)

t−l
, t ∈ (l,(l+1)]

for l = 0,1,2,⋯,n−1, V
(n)
0
=V
(1)
0

, and

Y
(n)

t

(d)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n
Y
(1)

t + n−1
n
1Sk

if t ∈ ((n−1),n]
1
n
Y
(1)

t +
n−2

n
1Sk
+

c
n
1 if t ∈ ((n−2),(n−1)]

⋮ ⋮

1
n
Y
(1)

t +
1
n
1Sk
+
(n−2)c

n
1 if t ∈ (1,2]

1
n
Y
(1)

t +
(n−1)c

n
1 if t ∈ (0,1]

and Y
(n)
0
= c1.

Since Y
(n)
0
= c1, the terminal cost ∣Y (n)

0
(X0)− µ̄(Y (n)

0
)∣2 =

0. And since Xt ∼ µ̄, for l = 0,1,2,⋯,n−1:

E
µ̄(∫ (l+1)

l
Γ(Y (n)t )(Xt)+ ∣U(n)t +V

(n)
t (Xt)∣2R dt)

=
1

n2
E

µ̄(∫ 1

0
Γ(Y (1)t )(Xt)+ ∣U(1)t +V

(1)
t (Xt)∣2R dt)

Therefore,

J
µ̄
n (U(n)) = 1

n
J

µ̄
1
(U(1))

and thus the optimal value

J
µ̄
n ≤ J

µ̄
n (U(n)) = 1

n
J

µ̄
1 (U(1))Ð→ 0 as n→∞ (11)

Step 3: Suppose ν ∈P(S) and 1Sk
∈ C. In this final step, we

show that Jν
T → 0 and

πν
T (1Sk

) (T→∞)Ð→ 1Sk
(X0) P

ν -a.s.

Let µ̄l ∈P(S) be the invariant measure for the lth-ergodic

class and al ∶= ν(1Sl
) for l = 1,2,⋯,m. Choose the invariant

measure as follows:

µ̄ = a1µ̄1+a2µ̄2+⋯+amµ̄m

From step 2, we know that J
µ̄
∞ = 0. Also, νT ∶= eA

⊺
T ν → µ̄

as T →∞. Therefore, using part (ii) of Lemma 1,

limsup
T→∞

J
ν
T ≤ J

µ̄
∞ = 0

which shows that Jν
T → 0 as T →∞.

Since Sk is an ergodic class,

J
ν
T = E

ν(∣1Sk
(XT )−πν

T (1Sk
)∣2) = Eν(∣1Sk

(X0)−πν
T (1Sk

)∣2)
By Fatou’s lemma,

E
ν( liminf

T→∞
∣πν

T (1Sk
)−1Sk

(X0)∣2) ≤ lim
T→∞

J
ν
T = 0

In step 1, we showed that πν
T (1Sk

) has an a.s. limit. So,

liminf is replaced as

lim
T→∞

∣πν
T (1Sk

)−1[X0∈Sk]
∣2 = 0 P

ν -a.s.

and therefore also P
µ -a.s. whenever µ ≪ ν .

Proof of the claim in step 2: Suppose f ∈ CT . Since

CT is A-invariant (see Prop. 1), eAT f ∈ C. Therefore, from

definition of C, there is a deterministic constant c ∈ R and

an admissible control U ∈ U such that the solution of the

BSDE (3) is obtained with YT = c1 and Y0 = eAT f . Now



consider a second solution of the BSDE (3) with YT = c1+ f

and zero control input. Since A1 = 0, this second solution

is (Yt ,Vt) = (c1+eA(T−t) f ,0) for t ∈ [0,T ]. By linearity, we

subtract the two solutions to show that with YT = f and

control −U , one obtains Y0 = c1.

VI. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

Nonlinear filtering is an old subject. It is also notoriously

difficult, which is why it remains an exciting research domain

with many open questions remaining. This paper presents a

new attack on filter stability, which we hope will open new

avenues for research on filter performance and design. There

are several avenues for future work:

Although we prove a filter stability result when the dual

model is stabilizable, a more nuanced understanding is pos-

sible through the consideration of the controllable subspace

C of the BSDE. Specifically, C is the space of functions for

which the filter forgets the initial condition. A duality-based

proof of this remains open.

Another important question is to relate our work to the

deterministic definitions. Given the importance of the IOSS

definitions of observability for deterministic models, it is of

interest to investigate the dual optimal control problem in its

small noise limit (in particular as R ↓ 0).
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APPENDIX

A. Technical background

In this section, we describe some technical background

on well-posedness of the optimal control problem (8) with

respect to P
ν . We assume µ ,ν ∈ P(S) and µ ≪ ν .

Define the innovation process Iν ∶= {Iν
t ∈R ∶ t ∈ [0,T ]} and

the covariance process Σν ∶= {Σν
t ∈R

d×d ∶ 0≤ t ≤T} as follows:

(innovation) ∶ Iν
t ∶= Zt −∫

t

0
πν

s (h)ds

(covariance) ∶ Σν
t ∶= diag(πν

t )−πν
t (πν

t )⊺
It is known that Iν is P

ν -w.p. and moreover the filtration

generated by Z and I are identical [19].

The following identity is proved in [12, Theorem 5]: For

any admissible control input U

J
ν
T (U) = Eν(Y⊺t Σν

t Yt +∫
T

t
ℓ(Ys,Vs,Us;Xs)ds)

+E
ν(∫ t

0
∣Us+(h⊺Σν

s Ys +πν
s (Vs))∣2 ds)

From this identity, the following conclusions are deduced:

(i) The minimum value J
ν
T = E

ν( f ⊺Σν
T f ).

(ii) The optimal control is of the feedback form

Uν
t = −h⊺Σν

t Yt −πν
t (Vt), ≤ t ≤ T (12)

Using the optimal control law (12) in the BSDE (3) results

in the following linear feedback control system:

−dYt = ((A−hh⊺Σν
t )Yt +h ⋅Vt −hπν

t (Vt)−Vtπ
ν
t (h))dt −Vt dIν

t

YT = f (13)

The following proposition provides the answer to the three

concerns in Sec. V-A:

Proposition 5: Consider the linear BSDE (13) with f ∈Rd

and T > 0. Then

(i) There exists a unique solution (Y ν ,V ν) ∈L2
Z([0,T ];Rd ×

R
d). The optimal value J

ν
T (Uν ; f ) ≤ 1

4
∣osc( f )∣2.

(ii) Suppose µ ≪ ν . The optimal control Uν is in

L2
Z([0,T ];R) also with respect to the P

µ -measure (so it

is admissible). The value

J
µ
T (Uν ; f )+ ∣µ(Y ν

0 )−ν(Y ν
0 )∣2 ≤max

x∈S

µ(x)
ν(x)

1

4
∣osc( f )∣2



(iii) (Continuity property) Consider a family {νn ∈P(S) ∶ n =
1,2,⋯} such that νn≪ ν and νn→ ν . Then

∣Jνn
T (Uν ; f )−Jν

T (Uν ; f )∣Ð→ 0 (CP)

where the convergence is uniform in T .

Proof:

Part (i): The optimal control system (13) is a linear BSDE

with random but bounded coefficients. The coefficients are

bounded because each element of πν
t and Σν

t is in [0,1].
Part (i) follows from existence uniqueness theory of linear

BSDE [20, Theorem 7.2.2]. Because J
ν
T = E

ν( f ⊺Σν
T f ), the

uniform bound readily follows.

Part (ii): Since µ ≪ ν , Pµ ≪P
ν with dP

µ

dPν =
µ(X0)
ν(X0)

. So,

E
µ(∫ T

0
U2

t dt) = Eν(µ(X0)
ν(X0) ∫

T

0
U2

t dt)
≤max

x∈S

µ(x)
ν(x)Eν(∫ T

0
U2

t dt)
Therefore if U is Pν -admissible then it is also P

µ -admissible.

From duality (5),

J
µ
T (Uν ; f )+ ∣µ(Y ν

0 )−ν(Y ν
0 )∣2 = Eµ(∣ f (XT )−πν

T ( f )∣2)
and using the change of measure the righthand-side

E
µ(∣ f (XT )−πν

T ( f )∣2) ≤max
x∈S

µ(x)
ν(x)Eν(∣ f (XT )−πν

T ( f )∣2)
The result follows from using the bound from part (i).

Part (iii): We have

J
νn

T (Uν ; f ) = Eνn(∣Y ν
0 (X0)−νn(Y ν

0 )∣2
+∫

T

0
ℓ(Y ν

t ,V ν
t ,Uν

t ;Xt)dt)
We show J

νn
T (U)Ð→ J

ν
T (U) if νn→ ν . We consider each of

the two terms:

1) The first term is written as Y ν⊺
0

Σνn

0
Y ν

0 . We have

∥Σνn

0
−Σν

0 ∥2 = ∥diag(νn−ν)−(νnν⊺n −νν)∥2
≤ ∥diag(νn−ν)∥2+∥νnν⊺n −νν⊺∥2
≤ 3∥νn−ν∥∞ (n→∞)Ð→ 0

By part (i) Y ν
0 Σν

0Y ν
0 is uniformly bounded so the limit

is well-defined.

2) For the integral term, let ξT ∶= ∫ T

0 ℓ(Y ν
t ,V ν

t ,Uν
t ;Xt)dt.

Then

E
ν(ξT ) = d

∑
i=1

νn(i)Eδi(ξT ), E
νn(ξT ) = d

∑
i=1

νn(i)Eδi(ξT )
Since E

ν(ξT ) ≤ Jν
T ,

∣Eνn(ξT )−Eν(ξT )∣ = d

∑
i=1

∣νn(i)−ν(i)∣Eδi(ξT ) Ð→ 0

and the convergence is uniform in T .

B. Proof of Proposition 2

(i) For the ergodic case, 0 is a simple eigenvalue of the

matrix A and S0 = span{1}.
(ii) Suppose S = ∪m

k=1Sk is a ergodic partition. By choosing

an appropriate coordinate, the rate matrix

A =

⎛⎜⎜⎜⎝

A1 0 ⋯ 0

0 A2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ Am

⎞⎟⎟⎟⎠
where Ak has a simple eigenvalue at 0 with the associated

eigenvector 1Sk
. (This is so because Sk is an ergodic class.)

Therefore,

S0 = span{1S1
,1S2

,⋯,1Sm
}

C. Proof of the splitting (7)

Suppose S = ∪m
k=1Sk is an ergodic partition. For each such

ergodic class with P
ν([X0 ∈ Sk]) > 0 define

νk(x) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ν(i)
Pν([X0 ∈ Sk]) if x ∈ Sk

0 if x ∉ Sk

Clearly νk ≪ ν and

dPνk

dPν
(ω) =∑

x∈S

νk(x)
ν(x) 1[X0=x](ω) = 1[X0(ω)∈Sk]

(ω)
Pν([X0 ∈ Sk])

An application of the Bayes’ formula gives

E
νk( f (XT )∣ZT ) = E

ν( f (XT )1[X0∈Sk]
∣ZT )

Eν(1[X0∈Sk]∣ZT )
and therefore

E
ν( f (XT )1[X0∈Sk]

∣ZT ) = πν
T (1Sk

)πνk
T ( f ) (14)

where we have used the fact that

1[X0(ω)∈Sk]
(ω) = 1[XT (ω)∈Sk]

(ω) P
ν
−a.s.

Note that the identity (14) is true for all k = 1,2,⋯,m. (If

P
ν([X0 ∈ Sk]) = 0 then both sides are zero.) Upon summing

the identity over the index k, one arrives at

πν
T ( f ) = m

∑
k=1

πν
T (1Sk

)πνk

T ( f )
If P

ν([X0 ∈ Sk]) = 0 then take νk to be any probability

measure with support on Sk (e.g., the invariant measure for

the restriction of the Markov process on Sk).

D. Proof of Prop. 4

Suppose C is the controllable subspace with dimension

strictly less than d. Consider the splitting R
d = C⊕C⊥ and an

associated orthogonal transformation T ∶ C ⊕C⊥ → R
d such

that

Yt = T Ȳt , Vt = T V̄t where Ȳt = [ Ȳ c
t

Ȳ uc
t

] , V̄t = [ V̄ c
t

V̄ uc
t

]
With respect to the new coordinates, the BSDE (3) becomes

−dȲt = (ĀȲt + h̄Ut + K̄V̄t)dt −V̄t dZt , ȲT = T
−1 f = f̄ = [ f̄ c

f̄ uc]



where (because C is A- and diag(h)-invariant) the matrices

Ā = T −1AT = [Āc ∗

0 Āuc
] , K̄ = T −1 diag(h)T = [K̄c ∗

0 K̄uc
]

and h̄ = T −1h = [h̄c

0
]. On the C⊥ subspace

−dȲ uc
t = (ĀucȲ

uc
t +KucV̄

uc
t )dt−V̄ uc

t dZt , Ȳ uc
T = f̄ uc

whose unique solution is given by

Ȳ uc
t = eĀuc(T−t) f̄ uc, V̄ uc

t ≡ 0, t ∈ [0,T ] (15)

This is so because f is a deterministic function.

If the BSDE is not stabilizable, then there exists a non-zero

vector η̄ such that Āucη̄ = 0. Set

f̄ = [0

η̄
] Ô⇒ Ȳ0 = [∗η̄]

Since 1 ∈ C, the length of the vector Y0∣1⊥ is at least ∣η̄ ∣ =∣ f̄ ∣ = ∣ f ∣.
E. Proof of Lemma 1

The proof of the lemma requires a technical construction.

Consider the time horizon [0,T1 +T2]. If X0 ∼ µ then XT1
∼

eA
⊺

T1 µ =∶ µT1
. This is useful to relate the properties of

J
µ
T1+T2
(⋅) and J

µT1
T2
(⋅). For this purpose, consider first the time

horizon [T1,T1 +T2]. Over this time horizon, introduce the

filtration

Z̃t−T1
∶= {Zt −ZT1

∶ T1 ≤ t ≤ T1+T2}
For a control Ũ ∈ L2

Z̃
([0,T2]), let {(Ỹt ,Ṽt) ∶ t ∈ [0,T2]} denote

the solution of the BSDE (3) with ỸT2
= f . The control Ũ is

extended to the time-horizon [0,T1+T2] as follows:

Ut =

⎧⎪⎪⎨⎪⎪⎩
0 0 ≤ t < T1

Ũt−T1
T1 ≤ t ≤ T1+T2

(16)

The control U ∈ U and yields the following solution of the

BSDE (3):

(Yt ,Vt) =
⎧⎪⎪⎨⎪⎪⎩
(eA(T1−t)Ỹ0, 0) 0 ≤ t < T1

(Ỹt−T1
, Ṽt−T1

) T1 ≤ t ≤ T1+T2

Under this definition, we claim that

J
µ
T1+T2
(U) = JµT1

T2
(Ũ) (17)

and then the two results in the lemma are direct consequences

of the claim:

Part (i): Take µ = µ̄ and Ũ =U µ̄ . Then

J
µ̄
T1+T2

≤ J
µ̄
T1+T2
(U) Eq. (17)

== J
µ̄
T2
(U µ̄) = Jµ̄

T2

where we used the facts that (i) µT1
= eA

⊺
T1 µ̄ = µ̄ because µ̄

is the invariant measure; and (ii) U µ̄ is the optimal control

for the J
µ̄
T2
(⋅) problem. Therefore, J

µ̄
T is monotone in T and

converges as T →∞. Denote the limit as J
µ̄
∞.

Part (ii): Let T = T1+T2. For µ ∈P(S), with Ũ =U µ̄

J
µ
T ≤ J

µ
T1+T2
(U) Eq. (17)

== J
µT1
T2
(U µ̄) (18)

We have

∣JµT1
T2
(U µ̄)−Jµ̄

∞∣ ≤ ∣JµT1
T2
(U µ̄)−Jµ̄

T2
(U µ̄)∣+ ∣Jµ̄

T2
(U µ̄)−Jµ̄

∞∣
The second term on the righthand-side does not depend upon

T1. Because U µ̄ is the optimal control input, this term goes

to zero as T2 →∞: That is, given ε > 0, there exist an n2

such that ∣Jµ̄
T2
(U µ̄)−Jµ̄

∞∣ ≤ ε ∀T2 ≥ n2

Now fix T2 = n2 and apply continuity property (CP) to the

first term on the righthand-side: There exists n1 = n1(n2) such

that ∣JµT1
n2
(U µ̄)−Jµ̄

n2
(U µ̄)∣ ≤ ε ∀T1 ≥ n1

Combine these inequalities concludes for all T1 ≥ n1,

J
µT1
n2
(U µ̄) ≤ Jµ̄

∞+2ε

From (18), J
µ
T ≤ J

µT−n2
n2

(U µ̄). Therefore, for all T ≥ n1+n2,

J
µ
T ≤ J

µT−n2
n2

(U µ̄) ≤ Jµ̄
∞+2ε

Since ε is arbitrary, the result follows.

It remains to prove the claim (17). We have

J
µ
T (U) = Eµ(∣Y0(X0)−µ(Y0)∣2+∫ T1

0
Γ(Yt)(Xt)dt)

+ E
µ(∫ T1+T2

T1

Γ(Yt)(Xt)+ ∣Ut +Vt(Xt)∣2R dt)
Each of the two terms is simplified separately.

Consider the control input U defined according to (16).

Since YT1
= Ỹ0 is a deterministic function and the control is

set to be zero, Vt = 0 on 0 ≤ t < T1 and the BSDE becomes

ODE:

−
d

dt
Yt = AYt , YT1

= Ỹ0

A straightforward calculation shows that

E
µ(∣Y0(X0)−µ(Y0)∣2 +∫ T1

0
Γ(Yt)(Xt)dt)

= Eµ(∣YT1
(XT1
)−µT1

(YT1
)∣2) = EµT1(∣Ỹ0(X0)−µT1

(Ỹ0)∣2)
The second term

E
µ(∫ T1+T2

T1

Γ(Yt)(Xt)+ ∣Ut +Vt(Xt)∣2R dt)
= Eµ(∫ T1+T2

T1

Γ(Ỹt−T1
)(Xt)+ ∣Ũt−T1

+Ṽt−T1
(Xt)∣2R dt)

= EµT1(∫ T2

0
Γ(Ỹt)(Xt)+ ∣Ũt +Ṽt(Xt)∣2R dt)

Combining the results of the two calculations yields:

J
µ
T (U) = EµT1(∣Ỹ0(X0)−µT1

(Ỹ0)∣2)
+E

µT1(∫ T2

0
Γ(Ỹt)(X̃t)+ ∣Ũt +Ṽt(X̃t)∣2R dt)

= J
µT1
T2
(Ũ)
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