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Abstract

In this paper, we consider the convex, finite-sum minimization problem with ex-
plicit convex constraints over strongly connected directed graphs. The constraint
is an intersection of several convex sets each being known to only one node. To
solve this problem, we propose a novel decentralized projected gradient scheme
based on local averaging and prove its convergence using only local functions’
smoothness. Experimental studies demonstrate the effectiveness of the proposed
method in both constrained and unconstrained problems.

1 Introduction

In the past decade, decentralized optimization techniques have attracted significant interest [[18},36].
In this setting, multiple computing nodes are involved, and there is no coordinator (central) node with
which all nodes communicate. A fairly general framework for decentralized optimization problems
is given by
M
: A

min - f(x) = fu(x), (1)

v=1
where M is the total number of the nodes in the network, x € R™ is called the global optimization
variable, and f(.) is the global objective function which has a finite-sum structure. Here, each

node v has access to its local function f, : R™ — R and communicates to its neighbors N, to
achieve an optimal consensus solution. A natural extension to this setup is when x in problem (T))

is required to lie in an intersection of several convex sets, i.e. X € ﬂivzl Sy, and each constraint
S, is known only to one node. Applications of this setup, that we refer to as the Decentralized
Constrained Optimization Problem (DCOP), are ubiquitous, e.g. smart grid control [1,/7]], optimal
energy management [23]], sensor networks [2]], and support vector machines [4]. However, practical
approaches to solving it have not been extensively discussed in the literature. This paper responds
to this shortcoming by providing a numerical method to solve DCOP with guaranteed convergence
properties.

Node communication is a crucial factor in the design of decentralized optimization techniques,
which is represented by either a directed or undirected communication graph. Earlier studies on
decentralized techniques considered static undirected graphs, which indicate that each communi-
cation link between two nodes is time invariant and bi-directional, meaning that both nodes can
send and receive information. This assumption is not compatible with many practical applications,
such as broadcast channels with no return link, or communication failures leading to uni-directional
links [34]. These problems intrigue researchers to propose decentralized methods considering di-
rected graphs as the underlying communication network, where each communication link in the
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network is uni-directional. For simplicity, decentralized methods in which a directed graph repre-
sents their node communication are called decentralized directed methods, throughout this paper. In
the same way, we refer to decentralized undirected methods. We address the more general case of
decentralized directed scenarios, while the undirected cases follow as a special case.

For undirected communication graphs, efficient optimization techniques with provable convergence
properties exist based on suitable iterative averaging over neighbor nodes [5,21,28]]. The averaging
procedure is mathematically represented by the so-called gossip matrices, which are compatible with
the network structure, double stochastic, and symmetric [20,28]]. The required gossip matrices can
be constructed using Laplacian or Metropolis matrices for undirected graphs. Such gossip matrices
are not compatible with directed graphs, as they require asymmetry and finding doubly stochastic
matrices is not straightforward, often requiring distributed and iterative numerical procedures such
as iterative weight balancing [6]. For this reason, practical schemes utilize row stochastic or column
stochastic matrices, instead of using doubly stochastic matrices. In this case, convergence bounds
comparable to the undirected scenarios, even in the absence of constraints, are lacking to the best of
our knowledge. We further address this issue by proposing a novel double-averaging scheme, similar
to the so-called push-pull approach [24], which takes both row and column stochastic matrices into
account, and at the same time enjoys superior convergence guarantees.

1.1 Contributions
The main contributions of the paper are summarized as follows:

* We propose a novel algorithm, called DAGP, to solve the problem of decentralized con-
straint optimization. Our scheme employs double averaging and projection onto convex
sets. It extends the tracking approach, which has been proposed for the first time in [20,28]],
to constrained problems and can benefit a fixed step size and fast convergence.

* In contrast to the previously proposed methods in the literature, our method simultaneously
considers a directed communication graph and individual constraints at each node.

* We show that our technique is applicable to generic constrained convex problems, lacking
strong convexity, while maintaining the convergence rate of order O(1//n), under mild
conditions. We are not aware of any decentralized unconstrained method over directed
communication graphs with similar established convergence properties.

e We present experiments for constrained decentralized optimization problems on directed
graphs, where DAGP outperforms the existing algorithms. We also conduct experiments
on unconstrained problems, where DAGP performs similarly to the state of the art, decen-
tralized optimization algorithms.

1.2 Literature Review

In this section, we review the decentralized methods in the existing literature. We organize our
review into three parts: techniques on directed and undirected graphs, and decentralized constrained
methods. Several classes of methods exist in the literature that are not in the scope of this paper, e.g.,
methods considering time-varying graphs [[19}/20], local functions with a finite-sum structure [8}|9,
17,33]], or compressed communication [3}12].

1.2.1 Decentralized optimization over undirected graphs

The algorithms for undirected communication graphs can be divided into several categories. First,
the decentralized gradient decent methods including [15}/21]] use diminishing step size for conver-
gence to the exact solution of the problem. The diminishing step size leads to practical difficulties
with step tuning but establish the convergence rate of O(logn/+/n) in a convex and smooth setting
and O(logn/n) in a strongly convex and smooth setting. The second category refers to the methods
that use gradient tracking technique and leverage the gradient information at all nodes to estimate
the gradient of the global function [2012528]]. These methods use fixed step sizes and achieve linear
convergence rate, i.e. O(u™) u < 1, in a strongly convex and smooth setting. [25] has also shown a
sublinear rate of convergence, i.e. O(1/n), when the functions are not strongly convex. The dual-
based methods [10,/27,30] are included in the third group. Although these methods are optimal and



have linear convergence rate, they need to compute some computationally costly oracles, e.g. the
gradient of a conjugate function, which is not practical in some applications.

1.2.2 Decentralized optimization over directed graphs

Earlier methods for directed problems apply the so-called push-sum protocol [[11]] to decentralized
gradient descent methods to tackle the problem of computing a doubly stochastic gossip matrix for
directed graphs [[19,29]. These methods utilize a column stochastic matrix, but a diminishing step
size is still vital for their convergence. The methods based on the push-sum protocol converge with
order of O(logn/n) for smooth and strongly convex functions. To achieve fixed step size, [20,32]
have put push-sum protocol and gradient tracking technique together and have respectively proposed
the DEXTRA and Push-DIGing algorithms. These algorithms achieved a linear rate of convergence
in a smooth and strongly convex setting. DEXTRA suffers theoretical limitations on the step size,
namely a feasible step size might not exist in some cases. [32] has proposed the ADD-OPT algorithm
to solve this problem. This algorithm also enjoys linear convergence for strongly convex functions.
Recently, methods based on two gossip matrices, one column stochastic and the other one row
stochastic, have been proposed in the literature [24}|35], called Push-Pull methods. These methods
also have linear convergence in a smooth and strongly convex setting. Our algorithm is similar to
push-pull methods as it can be applied with similar underlying matrices.

1.2.3 Decentralized Constrained optimization

Despite extensive studies on decentralized optimization, there exist few papers that consider con-
straints explicitly. It is worth mentioning that a straightforward approach to solving constrained
problems is to add the indicator functions of the constraint sets to the problem, then apply the meth-
ods proposed for the unconstrained problem. This approach requires methods that are applicable
to non-smooth and non-strongly convex functions with unbounded (sub)gradients due to indicator
function characteristics. For this reason, we note that utilizing the previously mentioned methods
does not guarantee convergence. [26] is among the first papers incorporating the projection and av-
eraging approaches, but it assumes that the constraint set is identical at all nodes. This leads to a
problem when the projection onto the constraint set is not computationally efficient. In response, the
projected subgradient algorithm has been proposed, which assumes that the constraint set is different
and distributed among all nodes [22]. This paper is similar in setup to ours, but does not provide a
precise convergence rate. Moreover, convergence of local variables to a consensus stopping point
is proven only in two special cases: when the constraints are identical, or when the graph is fully
connected. As the constraint at each node might be an intersection of several constraints, or in some
applications, the nodes do not have access to all of their local constraints at each iteration, [[14] has
proposed a randomized projection scheme. This algorithm suffers from the same limitations as [22],
i.e. the proof is only reliable for fully connected networks or a setting with identical constraints at
each node. All the above-mentioned methods use a diminishing step size as they do not leverage
any gradient tracking technique. Moreover, they assume that the underlying communication graph
is undirected. [31] has proposed the DDPS algorithm, which is applicable when the communication
graph is directed. However, this algorithm uses diminishing step size as well, and its convergence
rate is of order O(logn/+/n). Moreover, it is subject to the restrictive assumption that the con-
straints are identical. There are also methods with different problem description, such as composite
constrained optimization [16]]. These methods consider undirected communication graphs, and they
are different from our problem, in nature.

1.3 Paper Outline

The rest of the paper is organized as follows. In the following, some preliminary definitions and
notations are introduced. The DAGP algorithm is proposed in section [2| along with theoretical
convergence analysis. The proofs of all Lemmas and Theorems are provided in the Appendix.
Finally, section|3|is devoted to the numerical studies.

Definition 1 (Normal cone and Projection Operator). For a closed convex set S C R", the normal
cone of S is given by
0 x ¢S
ol = .
s(x) {{gER"|Vz€S, gl(z—x) <0} x€e8



Moreover, the projection of a vector x € R™ onto S is computed by

Ps(x) = argmin ||y — x||3.
yeS

Definition 2 (Graph Theory). A directed graph is shown by G = (V,£), where V = {1,..., N} is
a set of all nodes, and £ C V x V is a set of ordered pairs of distinct nodes, called edges. A directed
path between two distinct nodes u, v € V is a sequence of nodes (v = v, v1, ..., v = v) such that
each pair (v;,v;11) is an edge in €. A graph G is strongly connected if for any two distinct nodes
u,v € V, there exist a directed path between v and v. The adjacency matrix denoted by A = [a;;]
is an asymmetric matrix, where a;; is +1 if (¢, j) € £, and 0 otherwise.

In this paper, each pair shows a communication link between two distinct nodes, and (i, j) is a
pair in &, if there is a link from node j to node 7. With this intuition, the ith row of an adjacency
matrix shows from which nodes it can receive information, and constitute the incoming neighbors
of node i called Ni® = {j|(i,) € £}. On the other hand, the ith column of an adjacency matrix
shows to which nodes it can send information, and constitute the outgoing neighbors of node ¢ called
NP = {5](j,4) € £}. The in-degree and out-degree of node i are defined as the cardinality of A\
and N, respectively. Consequently, two Laplacian matrices can be defined as

Lin _ Din — A Lout _ Dout — A

3 )

where D" is the in-degree diagonal matrix; that is d = ’./\/1‘" , and D" is defined in a similar way.
L™ and L°“ have zero row-sum and column-sum characteristics and their scaled versions are used
in this paper.

1.4 Mathematical Notation

In this paper, bold lowercase and uppercase letters are used to respectively represent vectors and
matrices. w,,, denotes the element at the v™ row and the v column of the matrix W. W7 shows
the transpose of W, and ker(W) is its right null space, meaning that x € ker(W), if and only if
Wx = 0. 1,, and 0, respectively denote the n—dimensional vectors of all ones and zeros. The
index n may be dropped if there is no risk of confusion. Furthermore, O denotes a matrix with all
zero elements. The Euclidean inner product of vectors is denoted by (.,.). Matrix inner product
is denoted by (A, C) = Tr(ACT). In this paper, subscript generally defines the iteration number,
and superscript defines the node number, e.g., V f,(x?) indicates the gradient of the node v’s local
function at its local variable at iteration n. Finally, 6, ¢ is the Kronecker delta function.

2 Problem setting and Proposed Algorithm

In this section, we propose a new algorithm to solve DCOP, considering directed graphs as a com-
munication network between the nodes. The proposed algorithm is called DAGP due to Double
Averaging and Gradient Projection approaches used in the iterative equations, which are introduced
in the subsection

2.1 Problem Formulation

Decentralized Constraint Optimization Problem (DCOP) is formulated as

M M
min  f(x) £ Z fo(x) st x€ m Sy, ()
v=1 v=1

xER™

where S, is a closed convex set, and the intersection of all these constraint sets is called the fea-
sible set. Note that without loss of generality, the number of constraints is equal to the number of
functions. This allows us to assume M nodes in our setting, each having access to one function and
one constraint. Note that a different number of constraints can still be considered in our setup, as
each node may further access a composite constraint (i.e. an intersection of simpler constraints), or
multiple nodes may share identical constraints (i.e. .S, = .S,) or have trivial constraints .S, = R™.
Nevertheless, we merely require the projection operator to the constraint set .S, of each node to be
available, and neglect further possible structures in them.



In decentralized optimization, each node stores and updates a local variable x” as its solution. The
nodes should achieve consensus, i.e. x"s must converge to an equal stopping point x*, which is
further required to be a feasible and optimal solution of (2).

2.2 DAGP Algorithm

The DAGP algorithm does the following updates in each iteration, Vv € V.

7V = x:; — Z wwx}‘l — M (va(xz) - g’:}L) 3)
u€eNn
Xp41 = Ps, (2°) @

v v v v 1 v v
gn+1 =8 + P |:Vf’U(Xn) — 8, + ; (Z - Xn+1)

+a(h; —gp) ®)
hy o =hi— Y quu(hy —gh) 6)
ueNP

To interpret the algorithm, consider the above update equations. Take into account that the node v
has access to (x%,h% — g¥), Vu € N, as each node u broadcasts this pair of messages to its out-
neighbors. First weighted averaging happens in (3)), where each node computes a weighted average
of its local variable and its in-neighbors’ local variables. This averaging is a basis for achieving
consensus, and W = [w,,] must have zero row-sum structure to achieve this objective. Then,
the resulting averaged vector is aligned with the negative of the augmented local descent direction
(Vfu(x2) —gv) scaled by a fixed step size p. The resulting solution z” is projected onto the local
constraint set in @D Therefore from the second iteration, the local variables at each iteration lie in
their own local constraint set, but not necessarily in the feasible set of the problem in . One of
the novelties of this paper is the definition of additional variables h? together with g, to push the
algorithm towards an optimal consensus solution.

Vectors g act as the memory of the algorithm, which preserve and track the previous information
of local functions’ gradients and feasible directions, i.e. V f,, and z* — x", respectively. To reach
an optimal solution, the gradients and feasible directions of all nodes must be aggregated. This
is achieved by adding the term «(h” — g”) to (3), where h" is updated using (6). h" propagates
the information of the gradients and feasible directions of other nodes through the second weighted
averaging using Q = [gyy]. In (6), we further require Q to be a matrix with zero column-sum
structure. Then, ) ., h" will not change over time. We also require h{s be initialized in a way
that satisfy ) 5, .., h” = 0. The easiest way is to initialize them with zero vectors. In this way, when
g"s converges to h"s, their summation over all nodes will be equal to zero. This in turn, leads to
satisfying the optimality condition of the problem as g”s contain gradients and feasible directions
of the problem. This is further elaborated in Theorem [T} and Appendix A.

2.3 Convergence Analysis

In this section, we discuss the convergence properties of DAGP. We present two results. First in
Theorem [T} we prove that if the iterates of DAGP converge, any stopping point is an optimal and
consensus solution of the problem in (2)). Then, in Theorem 2] we prove the convergence rate of our
proposed algorithm in a smooth and convex setting.

2.3.1 Assumptions

We proceed by formalizing the adopted assumptions as follows.

Assumption 1. The nodes will communicate across a strongly connected directed graph G = (V, ).
This assumption guarantees the sufficient information flow between the nodes as there exists a di-
rected path between every two nodes in the graph. As a result, the nodes can achieve consensus.
Assumption 2. The optimization problem (2)) is feasible and attains a finite optimal value f* =
f(x*) at an optimal feasible solution x* satsfying the optimality condition:

M
0 (9Is,(x") + Vfu(x")).
v=1



Assumption 3. There are two weight matrices W and Q with a similar sparsity pattern to the
adjacency matrix A of G. They further satisfy the zero row-sum and zero column-sum structure,
respectively. The first one is required for achieving consensus, and the second one is required
for attaining the optimality of the solution. Moreover, we assume that ker(Q) = ker(W?) and
ker(W) = span{1}.

Assumption 4. The functions f,(.) are convex, differentiable and L-smooth.

Now, we define the matrices R and P as

(0] 0) 0) 0) 1
I 0) 0) 0] 0)
R=| 21 2a-w) 1 ol . P=19 7
ﬁI —ﬁ( -W) O 1-a)I-Q 0)
Moreover, for an arbitrary positive value of 7, matrix S is computed as
@—%ﬁ—mm—ﬁm)—%—WH%Q—y()
S = —HI-WT) + &1 41 0O O )
—51 O O O
O (0) O O

Please check Appendix B for understanding the evolution of these matrices.

Assumption 5. There exists a strictly positive constant C' such that for every value of 8 > 0 and in
a small neighborhood of z = 0 on the complex plane, 1 is not an eigenvalue of the matrix

—(C +B)I
[I O O ]F (2,5 I : ©)
(0]
where F is defined as
S > II-RT O
F(z,8)=| z2I-R (0] -P |. (10)

o) -PT I

2.3.2 Main Results

Here, we present the main theoretical results and postpone the details and proofs to the Appendix.

Theorem 1. Let Assumptions 3 and 4 hold. If the iterates of DAGP algorithm converge, any stop-
ping point is an optimal and consensus solution of the decentralized constrained optimization prob-
lem in (12]), ie. x¥ =x*, Vv € V, and x* satisfies the sufficient optimality conditions.

We also present guarantees for the rate of convergence.

N-1
Theorem 2. Let all the assumptions hold. Define X4 = Eo xY and Xy = 77 > X%. Then,
n= v

%y = % |12 = O(%), dist?(x, S,) = O() and

va()_(il)\f) - va(X*)

v

:()(V2V>. (11)

3 Experimental Results

We evaluate and compare the performance of the DAGP algorithm in two scenarios; decentralized
constraint and unconstrained problems. In the first experiment, which contains examples with syn-
thetic data, we consider constraints and examine the convergence and feasibility gap of the DAGP
compared to the DDPS algorithm. In the second experiment, we solve the classical logistic regres-
sion problem, which is unconstrained. In the latter, we compare our algorithm to the state of the art
decentralized unconstrained optimization algorithms over directed graphs, namely the ADD-OPT
and Push-Pull algorithms.
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Figure 1: Directed random graphs used in our experiments.

In all algorithms used in the first experiment, the parameters are hand-tuned in a way that the al-
gorithms achieve their best performance, leading to a fair comparison. In the real-world logistic
regression problem, hand-tuning parameters is not computationally feasible due to the size of the
experiment. Therefore, an appropriate step size is selected for all algorithms in the second experi-
ment. Different algorithms use different matrices for averaging. In this paper, we respectively use

Lin/2din, and L°"/2d3%, as zero row-sum and zero column-sum matrices, where dif,, and 2%,

are the largest diagonal elements of Li" and L°". By subtracting these matrices from the identity
matrix, row stochastic and column stochastic matrices used in this paper are computed. Moreover,
random directed and strongly connected graphs are used in our experiments, which are shown in
Fig[T} The numerical experiments are described next. We repeated each experiment multiple times,
but only one instance from each experiment is presented as the difference between individual runs
was minimal.

3.1 Numerical Results

In this experiment, which contains two setups, we consider synthetic functions and constraints. In
our setups, there are M nodes, each having access to one function and one constraint. The nodes
communicate over a randomly generated graph and their local variables x”s are of size m, which
their initial vectors are generated randomly from zero mean and unit variance normal distribution.
The functions are selected to be smooth, but not strongly convex as follows:

fo(x) = log (cosh(afx - bv)), (12)
where a,s and b, s are randomly generated from a zero mean and unit variance normal distribution.
Moreover, we choose randomly generated linear constraints ¢Zx — d,, < 0 since their orthogonal
projection operator is simple to computeﬂ

In the first setup, m = 20 and M = 10, while in the second one, m = 10 and M = 20. These
parameters are chosen since the feasible set in the second experiment is significantly smaller than

'In all simulations, ¢, and d,, are selected such that their intersection not being an empty set, e.g., c,s are
generated randomly, then d,s are selected such that ¢Z x < d,, for one arbitrary vector x.
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Figure 2: First setup results with m = 20 and M = 10. Local variables move to a consensus and
optimal stopping point in DAGP, while they move to a sub-optimal point in DDPS.
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Figure 3: Second setup results with m = 10 and M = 20. As DDPS has not converged to a point in
the feasible set, it can achieve less function value.

the feasible set in the first experiment. In both setups, the objective value and the distance to the
feasible set, called feasibility gap, are reported, both computed at X = » |, x".

The results of these setups are shown respectively in Figures 2] and [3] We observe that X moves
completely to the feasible set in our algorithm unlike DDPS in which X becomes only close to
the feasible set. Moreover, our algorithm converges faster to the optimal consensus solution in
comparison with DDPS algorithm since DDPS needs a diminishing step size. To show that all nodes
achieve consensus, the squared norm of error between xV at five random nodes and x° is plotted
in Fig [2c| where all nodes converge to one stopping point. As described in section[2.3} > ., g”
should become equal to zero to have optimal solution. For this reason, the norm of this variable is
computed and shown in Fig[2d] which approaches zero as the algorithm proceeds.

In the first setup, C = [c]] € RM*™ has a null space, and the feasible set of its corresponding

K2
optimization problem is larger than the feasible set of the second experiment. The linear convergence
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Figure 4: Convergence rate comparison of decentralized unconstrained algorithms over directed
graphs. A fixed step size is used in all algorithms.

rate of DAGP in Fig[2a] can be due to a situation where the constraints are not active at the solution,
and the algorithm attains the optimal value of the unconstrained version of the problem. Then, the
overall unconstrained objective function may be strongly convex, explaining faster convergence. On
the other hand, in the second experiment, some constraints are active, and the algorithm slows down
in converging to a consensus and an optimal solution. In Fig|3a) DDPS achieves a smaller objective
value as its local variables remain infeasible.

3.2 Logistic Regression

For the sake of comparison with other algorithms, we examine an unconstrained logistic regression
problem. We consider the MNIST [[13]] dataset restricted to two digits to form a binary classification
problem. We once again consider a random directed graph with M = 20 nodes as shown in Fig[Id}
Total number of Ny = 10000 images are used for training the model, i.e. for minimizing the logistic
loss function defined as

N,
. - A
min Zlog (1+exp (fyixfw)) + §||W||2, (13)
i=1

weERT84

where {x;,y:}15, € R™4 x {41, —1} is the set of training samples, and ) is the regularization

parameter, which is chosen to be 1/N,. We assume that the training samples are distributed in a
balanced way between 20 nodes; as a result, each node has 500 training samples. The loss function
at each node f, is the collection of terms in (I3]) associated with the samples of the node v. The
regularization term ensures that this problem is strongly convex, leading to linear rate of convergence
for all algorithms.

We compare DAGP with Push-Pull and ADD-OPT. For all algorithms, fixed, similar, and appropri-
ate step size is used. Centralized gradient descent is used to determine the optimal value f* and
compare all algorithms objective values with respect to it. The results for optimality gap, defined as

> vey fo(X) — f*, are shown in FigE}

As observed, the difference between the convergence rate of these three graphs is minimal. As
discussed earlier, optimal step sizes are not used in this experiment due to the size of the problem.
Nevertheless, for smaller experiments, we observe that DAGP and Push-Pull can utilize larger step
sizes, while ADD-OPT fails to converge with a similar step size. We conclude that by choosing the
optimal values of the step size, DAGP and Push-Pull behave similarly, and both outperform ADD-
OPT. The practical applicability of our algorithm is immediate, as it is competitive with respect to
constrained problems, but also provably capable of solving unconstrained optimization problems,
without any modifications to the algorithmic structure.



4 Conclusion

We introduce the Double Averaging Gradient Projection (DAGP) algorithm designed for solving
decentralized optimization problems over directed graphs for problems with and without constraints.
In contrast to the existing literature, DAGP allows for different constraints at each node in a directed
graph. Previous algorithms such as DDPS [31], require a decreasing step size to solve similar
constrained problems, while DAGP requires constant step size by employing a gradient tracking
technique. By taking advantage of the projection operator onto convex sets and double averaging, we
prove the O (1/4/n) rate of convergence on constrained problems in a convex and smooth setting.
Comparing to the previously proposed algorithms, DAGP is competitive with other decentralized
unconstrained directed optimization algorithms, such as ADP-OPT [32]] and Push-Pull [24], and
greatly outcompetes the previous decentralized constrained optimization algorithms such as DDPS.
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The notations used throughout the paper are used similarly here, except for the z” variable, to which
the iteration number is added.

Appendix A: Proof of Theorem 1

We start by presenting the following lemma.
Lemma 1. Let ker(W7) = ker(Q). Then, QWx = 0 if and only if x € ker(W).

Proof. The forward proof is trivial. For the backward proof, we can write

QWx = 0 = Wx € ker(Q)
= Wx € ker(W7)

=W 'wWx=0
= xIWIwx =0
= [|[Wx[3 =0
= x € ker(W)
|
Now, consider an arbitrary stopping point of the algorithm, that is x},,, = x;, = x*, Vi, =
Vi, =Vf,h), ,=h} =hVand g} ,, =g, = g". We have
Z=X-WX—pu(Vf-QG) (14)
X =Ps(Z) (15)
1
pIVE-G+—-—(Z-X)|+a(H-G)=0 (16)
I
QH-G)=0, a7

where Z, G, H, Vf, Pg are matrices with z”,g”, h", V f?(x"), Ps, (z") as their rows. Left multi-
plying (T6) by Q, considering (T7), we have

QG- V1) = 1Q(Z-X). (18)

Left multiplying (T4) by Q, and applying (I8) leads to QWX = 0. Therefore, X € ker(W) =
span{1} based on the result of Lemma|[l] which means that x* = x*, Vv € V. As X € ker(W),
reduces to Z — X = p(G — Vf), which leads to H = G by incorporating it into (I6). Since (6)
is designed to preserve the summation of h"s, and each element of H is initialized with zero vector,
we have

1"G=1"H=> (h")" =0". (19)

veY

From (135), we have Z — X € 9Ig, consequently, u(G — Vf) € 9Ig. As 01g, is a cone, and
therefore invariant to scaling, we can write (G — Vf) € 8Ig. Left multiplying by 17, and moving
all the terms to one side, considering (I9), we have

0€ ) (9s,(x7) + Vu(x")), (20)
veV
which shows that x* is the optimal solution. ]
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Appendix B: Proof of Theorem 2

We start by defining
FU(x) = fo(x) = fo(x*) = (Vfo(x*),x — x7) 1)
and
EF? = F'(x;). (22)

Note that from the convexity of f,, the values of F'(x), particularly F;Y are non-negative. From
convexity, we also conclude that

+ (VAKX = Vi(xg),x, —x") =
fo() = fo(x7) + (Vo (x5), X" = x3) < (23)

From the L—smoothness property of f,, we also obtain

w1 — = (Vu(xq) = Vo (X7), x50 —%5) =

fo(p1) = fo(x3) = (Vfu(x0), X0 = %) <
TR @
Adding 23) to (24) yields:
Frin +(VIo(x") = VI (x0), Xip1 — %) = é I =0 <. (25)
Now, we define
T°(x) = =(n®,x = x"), (26)

and T}) = T"(x},), where n¥ € 0Ig, (x*). The fact that x}, ; € S, yields 7)Y, ; > 0. Note that
fromx}, | = Ps, (z,) and the fact that x* € S, we have

(x* —xp 1.2, — X, 1) <0, 27

which can also be written as
Py + (X" = xp44,2, — X —pm”) < 0. (28)

Multiplying (23)) by u, adding to (28), plugging the definition of z’ in and summing over v € V) and
n=20,1,..., N — 1 we obtain

L
iz Z n+1+T:z)+1 ,u Z Hxn+1 XZH
n€[N],v

D DR CSE wax X+ (gl — VAo(x") —n%)) <0 (29)

n€[N]v

We also replace the expression of z; in the dynamics of g, leading to

gn+1 = g'n, ( Z w’uux Z—i—l) + O[(S;)L, (30)

where 67, = h? — g? that follows the following dynamics
v v u p v u v
0y =1 —a)d, — qu&n — ; (Xn — waxn — Xn+1> . (31

For simplicity, we define X!, = x — x* and g = g — V f,(x*) — n" and rewrite (29), (30) and

(31) as
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N—1
Z (NZ e+ ) + Z||Xn+1 Z+1||2>

n=0 v
N-1
> <Xn+1’ Z WouXy — Xppy + u§2>
n=0 v
[ . .
D IDI R
n=0 v
N-1
- g YD X — Xl <o, (32)
n=0 u,v

&1 =&+ ( wax ) +adl, (33)
va=01-a) quau £ (;2;; = WXy - ﬁgH) : (34)

where in the first inequality we also add and remove the term > ||x}, | — %}, I|%.

u,v

In the following, we will consider the last three summations in as A . We show an asymptotic
lower bound for Ay, i.e. show that there exists a constant C' only depending on the initial values
such that for sufficiently large N, Ay > —C. Note that since Ay < 0, we must have C' > 0. Then,
we conclude from (32) that

N—-1
> (u S (Fin +Ti) + 5 > i xz+1||2> <c. (35)

n=0 v u,v

—1

Defining X3, = Z x; and noting that each term in the summation over n is a fixed convex
n=0
function of {x? +1}v’ we may recall Jensen’s inequality to conclude
MZF” %) + T (XY ”Z||XN—XN||2<Q. (36)
- N

Defining Xy = % > X3, we conclude that
v

1
Iy — %412 = O().
Since X}; € S, we also conclude that
.2 1
dist*(xn, Su) = O(N)
Finally,
wa(ivN)_va(x S +Z| Y+ V(X)X — Xn)|
<l \/Z e+ va<x*>|2\/2 I3, — %2
1
= O _—
(%)
which completes the proof. |
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Bound on Ay

To find the bound C, we start by simplifying the notation in (32)), and (34). Let us introduce
S - = T
U, =[Xon X Go oA, ], (37)

where X,,, G, A,, are matrices with XY, g, 8 as their v row, respectively. We may write (33)

and (34) as

¥, =R¥,+PX,.5, n=0,...,N—2 (38)
where P and R are defined as
0] (0) 0) 0) 1
I 0) 0) 0) 0)
R=1 o1 2a-w) 1 ol . P=1o (39)
ﬁI —ﬁ( -W) O 1-a)I-Q 0)
We also have
N-1
Ay =Y (¥,,8%,), (40)
n=0
where S is computed as
(1 - %) T-Mnp(I-4117) —LI-W)+ 41 —£1 O
S = —Lax-wT)+ &1 | O O 41)
—£1 (0} O O
O (0) O O
The following Lemmas provide a guarantee that Ay is bounded.
Lemma 2. Consider matrices R, P and S, defined in . Define a ”dual” sequence {An}n_71

such that Ay_; = A_; = O. Suppose that there ex1sts a C’ > 0 such that for every 8 > 0, the
system of equations in (38) together with

A i —RTA,+(S+(C+B)6,oD)¥, =0 n=0,1,...,N—1 (42)
PTA, + X, 12=0 n=0,1,...,N -2 (43)

has no non-zero solution for {¥,,, A,,, Xn+2}. Then, A,, > —C||¥,||% always holds true.

Proof. Note that the claim is equivalent to the statement that zero is the optimal value for the opti-
mization problem

1= e
min - \1;7 LS, 4 — |||
subject to \Iln+1 =R¥,+PX,.y, n=0,1,...,.N—2 (44)

If the claim does not hold, the optimization is unbounded and the following restricted optimization
will achieve a strictly negative optimal value at a non-zero solution:

1 c
min — U, ST, + —||¥|?
(TN (X2} 0 2 Z< ) ol
subject to W, :R‘Ifn—&—PXnJrg, n=0,1,...,N—2
\‘I'o||F Z X2l < 5 (45)
n=0

Such a solution satisfies the KKT condition, which coincides with (@2), where {A,},83 > 0
are dual (Lagrangian) multipliers corresponding to the constraints. We also observe that the optimal

value at this point is given by —f8 ( || ®o||% + Z |X,12l2). This shows that 3 > 0. This

contradicts the assumption that such a point does not exists and completes the proof. |
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We may further simplify the conditions in Lemma 2] by the following result:
Lemma 3. For a complex value z and a real value 3, define
S 27 1I-RT O
F(z,5)=| zZI-R o -P
O —PT —51
The condition of Lemmal[2]is satisfied if the matrix

—(C+p)1
im[I O O ]F! I

z—0

doesn’t have an eigenvalue of 1.

Proof. With an abuse of notation, define the z-transforms

N-1 N-2 N-2
U(z) = Z 27" Az) = Z Az7" U(z) = Z X2z "
n=0 n=0 n=0

Then, for the sequences defined in (#2] 43| 38), we have
(z'M-RT)A(2) +ST(2) + (C+ B)®r =0
I -R)¥(2) — ¥y +R¥y_12" ' —PU(2) =0
PYA(z) +U(z) = O

which can also be written as

¥(z) —(C+B)¥g
F(z,8) | A(z) | =| g—R¥y_12N !
U(z) o

(40)

(47)

(48)

(49)
(50)

(51

Note that F(z, 8) may be rank-deficient at a finite number of points. Hence, there exists a sufficiently
small simple loop C around z = 0 such that F is invertible on and inside it except at z = 0. In this

region we have
U(z)=[1I O O ]|F'A,

where A is
—(C+p)1 (0]
I ¥y+ | —R ZN_I‘I’N,1
(@) (0]
On the other hand,

"1
2Oy = % —W(z2)dz
z
c
Further from the Cauchy integral formula for sufficiently large N, we have

1
]{sz_lF_l(z, B)dz = 27 lim 2N 1F~1(2, 8) = O.
z z—0
C
By applying (32)) to (53), considering relation in (54)), we can conclude that

—(C +B)I
¥y=1lim[I O O |F! I o,
z—0 O

Note that by the assumption we can conclude that ¥ = O, which completes the proof.
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