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The Division of Assets in Multiagent Systems:
A Case Study in Team Blotto Games

Keith Paarporn, Rahul Chandan, Mahnoosh Alizadeh and Jason R. Marden

Abstract— Multi-agent systems are designed to concurrently
accomplish a diverse set of tasks at unprecedented scale.
Here, the central problems faced by a system operator are to
decide (i) how to divide available resources amongst the agents
assigned to tasks and (ii) how to coordinate the behavior of
the agents to optimize the efficiency of the resulting collective
behavior. The focus of this paper is on problem (i), where we
seek to characterize the impact of the division of resources
on the resulting collective behavior in a best-case sense. We
focus on a Colonel Blotto game where there are two sub-
colonels competing against a common adversary in a two
battlefield environment. Here, each sub-colonel is assigned a
resource budget and is required to independently allocate its
assigned resources. However, the team’s success depends on the
adversary’s response to the allocations of both sub-colonels. The
central focus of this manuscript is on how to divide a common
pool of resources among the two sub-colonels to optimize the
resulting best-case efficiency guarantees. The main result of
this paper establishes that performance is not monotonic in the
division of resources to the sub-colonels. In particular, a more
equitable division can offer better performance than a more
centralized division. Hence, this paper demonstrates that the
resource division problem is highly non-trivial and worthy of
significant future research efforts.

I. INTRODUCTION

Multi-agent systems rely on the collective behaviors of
independent decision-makers (agents). They are designed to
concurrently accomplish a diverse set of tasks, e.g. multiple
organizations contributing to the operation of a supply chain,
or a coalition of military units sent to secure a number of lo-
cations. The agents are often heterogeneous, each possessing
distinct roles and/or varying levels of capability. A central
problem for a system operator is to determine how to divide
available resources among the agents such that they can
most effectively accomplish their given tasks. In an ideal
setting, each of the tasks can be completed in isolation by
a specialized agent, and the optimal division of resources
would be straightforward. However, when the completion
of a task relies on the behaviors of multiple heterogeneous
agents, the question of how to divide resources may not be as
straightforward. For example, the agents’ combined decisions
can have a degree of interdependence on the completion of
a task.

In this paper, we consider such interdependencies in the
setting of a Colonel Blotto game, where a team of two sub-
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colonels compete against a common enemy over the same
two battlefields. It is important to note that randomizing allo-
cations on battlefields plays a significant role for optimizing
performance in Blotto games [1]. Each sub-colonel is in
control of a portion of the total available resources, and must
decide how to allocate them across the two battlefields. The
enemy responds to the sum of the sub-colonels’ allocations
on each battlefield. The measure of system performance we
consider here is the optimal security value, which is the
highest payoff the team can ensure regardless of the enemy’s
behavior, through the sub-colonels’ independent selection of
allocation strategies.

It is important to understand the limitations of a distributed
decision-making structure in comparison to a completely
centralized structure, i.e. one of the sub-colonels is in control
of all the resources. The sub-colonels’ ability to randomize
joint allocations of the entire resource pool to the battlefields
is constrained because they are independently in control of
how their portion of resources is allocated to the battlefields.
A completely centralized structure places no such restrictions
on the forms of randomization that can be produced. In this
light, performance guarantees for a distributed team structure
can be no better than a completely centralized structure.
Indeed, limitations in zero-sum games with team structures
have recently been studied [2].

The primary focus of the paper is on answering the
following question: “How should B available resources be
divided among the two sub-colonels by endowing each with
resources B1 and B2 (such that B1 + B2 = B), in order
to maximize their achievable performance guarantees?” In
the extreme case, the choice B1 = 0 and B2 = B reduces
to a completely centralized command structure, where sub-
colonel 2 is in control of all B resources. Meanwhile, the
case where B1, B2 > 0 represents a distributed command
structure wherein each sub-colonel has independent control
of a portion of the total B resources (see Figure 1). As the
division B1 increases to B/2, we say the system becomes
‘less centralized’, where the proportion of resources under
the control of sub-colonels become more equitable. Indeed,
if the extreme case B1 = 0 is an option, this is a trivial
decision to make because distributed structures only limit
the joint randomness on total allocations that are achievable
as a team.

However, the completely centralized option may not al-
ways be available to a system operator. For instance, a
single sub-colonel may not have the capability to operate the
entire pool of resources due to computational or complexity
constraints. In the presence of such constraints, is the most
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Equal division
<latexit sha1_base64="Q3+3FxqJyUhQEt0++e1FEN3Rp/o=">AAAB/nicbVDLSsNAFJ34rPUVFVduBovgqiRafOyKIrisYB/QhjKZTtqhk4czN8USCv6KGxeKuPU73Pk3TtIgaj0wcDjnXObe40aCK7CsT2NufmFxabmwUlxdW9/YNLe2GyqMJWV1GopQtlyimOABqwMHwVqRZMR3BWu6w8vUb46YVDwMbmEcMccn/YB7nBLQUtfc7QC7h+TqLiYC9/iIp8lJ1yxZZSsDniV2TkooR61rfnR6IY19FgAVRKm2bUXgJEQCp4JNip1YsYjQIemztqYB8Zlykmz9CT7QSg97odQvAJypPycS4is19l2d9AkM1F8vFf/z2jF4Z07CgygGFtDpR14sMIQ47ULfKxkFMdaEUMn1rpgOiCQUdGPFrITzFCffJ8+SxlHZPi5Xbiql6kVeRwHtoX10iGx0iqroGtVQHVGUoEf0jF6MB+PJeDXeptE5I5/ZQb9gvH8B/m6WSw==</latexit>

Team budget division
<latexit sha1_base64="+X8TdRGYVfL1lBJB1M1meB8m0Jc=">AAACBHicbVC7TgJBFJ3FF+ILtaSZSEysyKLER0e0scQEkAQ2ZHa4wITZR2buEsmGwsZfsbHQGFs/ws6/cRY2RsWTTHJyzr25c44bSqHRtj+tzNLyyupadj23sbm1vZPf3WvqIFIcGjyQgWq5TIMUPjRQoIRWqIB5roRbd3SV+LdjUFoEfh0nITgeG/iiLzhDI3XzhQ7CHcZ1s0LdqDcApD0xFsn8tJsv2iV7BrpIyikpkhS1bv6j0wt45IGPXDKt22U7RCdmCgWXMM11Ig0h4yM2gLahPvNAO/EsxJQeGqVH+4Eyz0c6U39uxMzTeuK5ZtJjONR/vUT8z2tH2D93YuGHEYLP54f6kaQY0KQRk1cBRzkxhHElzF8pHzLFOJrecrMSLhKcfkdeJM3jUvmkVLmpFKuXaR1ZUiAH5IiUyRmpkmtSIw3CyT15JM/kxXqwnqxX620+mrHSnX3yC9b7F1rQmLE=</latexit>

Fig. 1: The range of command structures in the team Blotto game
under consideration in this paper. There is a total of B resources
to be divided among sub-colonels 1 and 2, who together compete
against the enemy with E resources. Here, B1 ∈ [0, B/2] indicates
the amount of resources endowed to sub-colonel 1, and hence B2 =
B−B1 resources endowed to sub-colonel 2. The sub-colonels have
independent control over their endowed resources, and decide how
to allocate them over the same two battlefields. When B1 = 0, the
system reduces to a completely centralized command, wherein a
single colonel has control over all B resources. This is the classic
1 vs 1 Colonel Blotto game with two battlefields, well studied in
[1] and [3]. As B1 increases up to B/2, the system becomes less
centralized, as the majority portion of resources under player 2’s
control becomes less dominant.

centralized option (making one sub-colonel as strong as
possible within the constraints) still the best choice to make?

Our main contribution in this paper asserts that the most
centralized option is not the best division of resources in
general. We show that the team’s achievable performance
guarantees are not, in general, monotonic in B1 ∈ [0, B/2].
Furthermore, we identify non-centralized divisions of the
resources in which the team can recover the same perfor-
mance as the completely centralized case. This occurs when
the team’s joint randomization can re-create the optimal
strategy from a completely centralized command structure.
Technically, this requires identifying when a convolution
of two distributions can re-create a target distribution. Our
results suggest that the problem of optimally dividing re-
sources among agents that comprise autonomous systems is
highly non-trivial, especially when the agents’ actions are
interdependent (e.g. they allocate to the same battlefields).
Hence, an understanding of the particular system at hand is
required.
Related works: Much research in the game theory litera-
ture is devoted to characterizing how system performance
guarantees can improve through the design of agents’ utility
functions [4]–[6]. Optimal designs facilitate self-interested
behaviors that lead to Nash equilibria with good system
performance guarantees. Instead of altering agents’ utility
functions to achieve different system designs, the present
paper focuses on how altering the degree of centralization,
i.e. through agents’ resource endowments, ultimately affects
behavior and achievable performance guarantees.

Colonel Blotto games have been studied for 100 years, and
are known to be difficult to solve in general. This is largely

due to the fact that they do not admit pure strategy Nash
equilibria [7], [8]. They are commonly formulated as zero- or
constant-sum games, and hence equilibrium (mixed) strate-
gies of the opposing colonels are optimal security strategies,
i.e. strategies that ensure the highest payoff regardless of
the opponent’s behavior. The primary literature on Colonel
Blotto is concerned with characterizing the value of this
highest payoff, or optimal security value, in completely
centralized settings [1], [3], [9]–[12]. In recent years, simpler
variants of Blotto games have been considered to study team
settings. For instance, [13], [14] study coalitional scenarios
where two players opposing a common enemy can decide to
unilaterally transfer resources among themselves before play
begins. The model in [15] considers a similar setup, where a
team’s players instead decide to pre-commit resources onto
battlefields. These models, however, do not incorporate any
task interdependence, i.e. the team players compete against
the enemy on their own sets of battlefields. In the present
paper, we are primarily concerned with the scenario where
the players on the team have full overlap over their tasks.

II. MODEL

A. Centralized Colonel Blotto game with two battlefields

Blotto (resp. Enemy) has B > 0 (resp. E > 0) resources
to allocate over two battlefields. A pure strategy for Blotto
(resp. Enemy) is a number b ∈ [0, B] (resp. e ∈ [0, E]),
which is the amount of resources sent to the first battlefield
– the remaining B−b (resp. E−e) is thus sent to the second
battlefield. Each battlefield j ∈ {1, 2} is associated with a
value vj ≥ 0. Given a strategy profile (b, e), Blotto’s payoff
is given by

UB(b, e) := v1 ·W (b, e) + v2 ·W (B − b, E − e) (1)

where

W (x, y) :=


1, if x > y

1/2, if x = y

0, if x < y

. (2)

Enemy’s payoff is defined as UE(e, b) := v1 +v2−UB(b, e).
A mixed strategy for Blotto (resp. Enemy) is any measurable,
univariate probability distribution FB (resp. FE) with com-
pact support [0, B] (resp. [0, E]). Here, FB represents the
cumulative distribution function on Blotto’s allocation b to
the first battlefield. We will use lower case f to denote a
distribution’s density function. Note that FB completely de-
termines the probability distribution on B− b, the allocation
on the second battlefield. The payoff (1) can be extended to
admit mixed strategies, where UB(FB , FE) is the expected
payoff with respect to FB , FE . Let us denote ∆(B) as the
set of all mixed strategies FB with support on [0, B].

The value associated with Blotto’s strategy FB is the worst
payoff it attains among Enemy’s strategies:

V (FB) := min
e∈[0,E]

UB(FB , e). (3)

The security value is defined as

V ∗ := max
FB∈∆(B)

V (FB). (4)
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We call a distribution FB that satisfies V (FB) = V ∗ a
security strategy. Note that the enemy’s optimal response
to FB can be taken over pure allocations e ∈ [0, E] in
(3), since responding with a mixed strategy yields a convex
combination of the payoffs from the allocations in its sup-
port. Gross and Wagner [1] first characterized the security
value (equivalently, equilibrium payoff) and some security
strategies for the two battlefield Colonel Blotto game. To
simplify exposition, we set v1 = v2 = 1:

V ∗ =


1− 1

m , if B
E ∈ (m−1

m , m
m+1 ], for m = 1, 2, . . .

1, if B
E = 1

1 + 1
m , if B

E ∈ (m+1
m , m

m−1 ], for m = 1, 2, . . .
(5)

Hence, V ∗ is the security value achievable by a completely
centralized command structure – a single player, Blotto, is in
control of B resources. We thus refer to V ∗ as the centralized
security value. Note the range of budgets is split into a
countably infinite number of partitions. We say the budgets
are in partition m if B

E ∈ (m−1
m , m

m+1 ].

B. Team Colonel Blotto game with two battlefields

Blotto’s total resource budget B is divided among two
sub-players. We will use the terminology ‘sub-player’ or
simply ‘player’ instead of ‘sub-colonel’ for the remainder
of the paper. Player 1 (resp. player 2) is under control of
B1 (resp. B2) resources, with B1 + B2 = B. Both players
have the ability to independently allocate resources to both
battlefields – player i ∈ {1, 2} chooses bi ∈ [0, Bi] resources
to allocate to battlefield 1, and the rest Bi− bi to battlefield
2. Given b1 and b2, the team’s overall resource allocation on
battlefield 1 is b1 + b2, and on battlefield 2 is B− (b1 + b2).
A mixed strategy for sub-player i is any Fi ∈ ∆(Bi),
which is the (cumulative) distribution function on allocations
bi to battlefield 1. A pair of mixed strategies thus induces
FB ∈ ∆(B) on the team’s combined allocation on battlefield
1, whose density function is given by the convolution

fB(x) = (f1 ~ f2)(x) :=

∫ B2

0

f1(x− s)f2(s) ds (6)

for all x ∈ [0, B]. With some abuse of notation, we will use
FB = F1~F2 to denote the cumulative distribution function
of f1 ~ f2. Let us define the distributed security value as

V ∗d (B1) := max
FB∈∆(B)

V (FB)

s.t. FB = F1 ~ F2, Fi ∈ ∆(Bi), i = 1, 2

B2 = B −B1

(7)

and a distributed security strategy as a pair Fi ∈ ∆(Bi),
i = 1, 2, that satisfies V (F1 ~ F2) = V ∗d (B1). Due to the
convolution constraint on FB in (7), the relation V ∗d ≤ V ∗

follows immediately.

C. Numerical examples and discussion

Note that setting B1 = 0 recovers the centralized Blotto
game, as all B resources are under the control of player 2.
Consequently, V ∗d (0) = V ∗. The choice of how to divide the

0 5 10 15

0.5

0.6

0.7

0.8

Fig. 2: Computed security values in an integer team Blotto game
using the numerical scheme described in Example 1. Here, E = 50,
B = 36, and B1 ∈ {0, 1, . . . , 18}. The distributed security value
appears to be non-monotonic in the size of the division B1, contrary
to intuition. There are divisions, e.g. B1 = 15, B2 = 21, that
perform as well as the centralized case. Moreover, this division
outperforms more centralized divisions, e.g. B1 = 10, B2 = 26.
These points are marked by red dots.

sub-players’ budgets so as to maximize V ∗d (B1) is thus a
trivial task if the centralized option B1 = 0 is available.
However, suppose the constraint B1 ∈ [αB,B/2] must
hold, i.e. player 1 must be in control of at least a positive
fraction α ∈ (0, 1/2) of the total resources. Indeed, less
centralized divisions restrict the team’s ability to employ
the jointly randomized strategies necessary for optimizing
their security value. Does it hold that ’more centralized’
divisions always do better than less centralized divisions?
Specifically, is V ∗d (B1) a monotonically decreasing function
in B1 ∈ [0, B/2]?

To see if this intuition holds, we performed numerical
evaluations on an integer version of the team Blotto game,
as detailed in the following example. We stress that the
following example is provided solely to develop intuition and
does not serve as a valid proof for our forthcoming analytical
results in Section III.

Example 1. Consider an integer Blotto game, i.e. allocations
to battlefields are restricted to be integers. The sub-players’
mixed strategies are probability vectors of length Bi + 1,
which specify the randomization over all possible allocations
{0, 1, . . . , Bi} to battlefield 1. We can thus re-formulate (7)
as a finite-dimensional optimization problem that is non-
convex, due to the convolution constraint. We then used
numerical optimization techniques to find the distributed
security value in this setting. In particular, we applied the
nonlinear function solver fmincon in Matlab, to solve the
re-formulation of (7). We stress here that the computed
security values V ∗d from this scheme may not be completely
accurate, as (7) is highly non-convex and the nonlinear
function solver is not guaranteed to converge to the optimal
point. As such, one would treat any resulting numerical
computation as a lower bound on the actual security value.
We use such numerical tools here to simply gauge the
behavior of V ∗d , and to develop our intuition for general
theoretical properties one might establish on V ∗d in the non-
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integer setting.
Now, consider an enemy budget of E = 50, and the

total resources B = 36 are divided among the two sub-
players in the range B1 ∈ {0, . . . , 18}. Figure 2 depicts
the computed distributed security values in this range. Most
notably, V ∗d does not appear to be monotonic in the division
B1. Moreover, there are less centralized divisions (e.g. B1 =
15, B2 = 21) that provide better performance guarantees
than more centralized divisions (e.g. B1 = 10, B2 = 26).

Our numerical study suggests that the intuition with
respect to more centralized divisions of resources always
performing better than less centralized divisions is incorrect.
While this is merely a numerical study on a single instance
of an approximate, integer version of the class of games we
consider, it raises interesting questions about how resources
should be distributed among multiple team members. In
particular, we seek to establish analytically whether V ∗d is in
fact, non-monotonic. Moreover, Figure 2 also suggests there
are less centralized divisions that can recover the completely
centralized security value, whereas slightly more centralized
divisions cannot.

In the next section, we identify a broad class of instances
of the (non-integer) team Blotto game where such properties
do in fact hold. In particular, V ∗d is not monotonic in general,
and one can find disjoint intervals within B1 ∈ [0, B/2]
that correspond with divisions that recover the centralized
security value. These properties demonstrate that the resource
division problem is highly non-trivial in such interdependent
multi-agent environments.

III. MAIN RESULTS

In this section, we focus on the (non-integer) team Blotto
game and identify a number of non-intuitive properties of the
distributed security value V ∗d . In particular, we establish for
a broad class of instances that there exist disjoint intervals
within B1 ∈ [0, B/2] corresponding with divisions where the
centralized security value can be recovered from a distributed
command structure (Proposition 1). Additionally, and most
importantly, we establish the following:

Theorem 1. The distributed security value V ∗d (B1) is not, in
general, a monotonic function of B1 ∈ [0, B/2].

Remark 1. The statement of Theorem 1 would hold even
if it is true for only a single game instance. However, our
approach to verify Theorem 1 studies a wide range of game
instances where we are able to prove the non-monotonicity
of V ∗d (B1). The instances we identify do not exhaust all
two battlefield Blotto games. Indeed, there may be an even
broader range of instances for which non-monotonicity holds
(left for future work). Nonetheless, our analysis demonstrates
that the non-monotonicity property is not an anomalous edge
case.

Our approach to proving Proposition 1 and Theorem 1
is as follows. We first state the necessary and sufficient
conditions on FB to be a (centralized) security strategy.
Call ΩB the set of all centralized security strategies. We
then show on particular disjoint intervals of divisions within

B1 ∈ [0, B/2], one can reconstruct a security strategy
F1 ~ F2 ∈ ΩB (Proposition 1). We then identify a class
of game instances parameterized by the budgets B/E for
which there are at least two such intervals, and characterize
a range of divisions B1 that lie between two intervals where
FB = F1 ~ F2 /∈ ΩB for any F1 ∈ ∆(B1), F2 ∈ ∆(B2),
and hence V ∗d (B1) < V ∗. This fact establishes Theorem 1.

Throughout, we will assume that B < E and v1 = v2 = 1
to simplify exposition. The arguments can be generalized to
v1 6= v2. Let d := E−B be the budget difference. In partition
m, i.e. B/E ∈ (m−1

m , m
m+1 ], it holds that (m− 1)d < B ≤

md. We define rB := B− (m−1)d ∈ (0, d]. We denote [m]
as the set of integers {1, . . . ,m}.
Lemma 1 (Necessary and sufficient conditions for centralized
security strategies). Suppose B/E < 1 and rB < d. Then
FB ∈ ΩB if and only if∫

Ij

dFB = 1/m, ∀j ∈ [m] (SS-1)∫
Ij+1∩[0,x]

dFB ≤
∫
Ij∩[0,x−d)

dFB (SS-2)

∀j ∈ [m− 1], ∀x ∈ Ij+1

where I1 := [0, rB ] and Ij := ((j − 1)d, (j − 1)d+ rB ] for
all j = 2, . . . ,m.

The proof is provided in the online version [16] due to
space constraints. Intuitively, (SS-1) says a security strategy
must have equal probability mass located in small intervals
spaced d apart. Condition (SS-2) states the probability mass
must be placed in such a way that prevents the Enemy from
having an allocation e ∈ [0, E] such that UB(FB , e) < V ∗.

Remark 2. Conditions (SS-1) and (SS-2) are special cases
of the properties identified in [3] that ensure equilibrium
exchangeability in a more general class of two battlefield
Blotto games. That is, any FB satisfying these properties,
paired with any FE satisfying similar properties, forms a
Nash equilibrium. While these properties satisfy sufficiency
– any equilibrium strategy in a zero or constant-sum game
is also a security strategy – our proof of Lemma 1 also
establishes necessity.

Our next result identifies the disjoint intervals of divisions
within B1 ∈ [0, B/2] for which the distributed security value
coincides with the centralized security value.

Proposition 1. If
B1 ∈ Īk1 , (8)

where k1 is any factor of m, then V ∗d (B1) = V ∗. Here, Ī
indicates the closure of an interval I .

Proof. The strategy FB ∈ ∆(B), whose density is given by

fB(x) =
1

m

m−1∑
j=0

δ(x− jd) (9)

satisfies (SS-1) and (SS-2), and thus is a member of ΩB .
Now, let k1 be any factor of m. The approach is to recon-
struct FB (9) through the convolution F1 ~ F2. Consider
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f1(x) = 1
k1

∑k1−1
j=0 δ(x− jd) and f2(x) = 1

k2

∑k2−1
j=0 δ(x−

j · k1d), where k2 is such that k1k2 = m. Then (f1 ~
f2)(x) = fB(x) for all x ∈ [0, B] – we have reconstructed
FB through the convolution of two independent strategies.
However, F1 and F2 must also be feasible for the budget
division B1, B2. They are feasible for the range of budgets
B1 ∈ [(k1 − 1)d, (k1 − 1)d+ (B − (m− 1)d)]. �

Because 1 is a factor of m, the centralized security value
can always be achieved on the “edge” interval B1 ∈ I1 =
[0, rB ]. To prove the non-monotonicity of V ∗d , we need to
show V ∗d (B1) < V ∗ for a division B1 that lies in between
consecutive intervals Ik, Ik′ , where k, k′ are consecutive
factors of m. In particular, let us focus on when m > 2
is even: I1 and I2 are two such consecutive intervals, and
any B1 ∈ (rB , d) lies in between them. In the next result,
we identify necessary and sufficient conditions for which
a distribution FB satisfies the first property (SS-1) for a
centralized security strategy. We first need the following
definitions.
Definition 1. Given an interval P = [p`, pr] ⊆ [0, X] and
F ∈ ∆(X) such that

∫
P
dF > 0, we say P is reduced with

respect to F if

P =
⋂{

P ′ = [p′`, p′r] ⊆ P :

∫
P ′
dF =

∫
P

dF

}
(10)

Consequently, for a reduced interval P with respect to F ,
it holds that

∫
[p`,p`+ε)

dF and
∫

(pr−ε,pr]
dF > 0 for any

ε > 0.
Lemma 2. Suppose B/E < 1, m is even, and B1 ∈ (d −
rB , d). Then FB = F1 ~ F2 satisfies (SS-1), with F1 ∈
∆(B1) (F2 ∈ ∆(B2)), if and only if there exist reduced
intervals {Pi = [p`i , p

r
i ]}i=1,2 with respect to F1 and {Qi =

[q`i , q
r
i ]}

m/2
i=1 with respect to F2 such that for all i ∈ [m/2],

[p`1 + q`i , p
r
1 + qri ] ⊆ I2i−1 and [p`2 + q`i , p

r
2 + qri ] ⊆ I2i

(11)

and it holds that∫
P1

dF1 =

∫
P2

dF1 = 1/2 (12)∫
Qi

dF2 = 2/m, ∀i ∈ [m/2] (13)

The final lemma we will need to establish Theorem 1
asserts that no FB = F1 ~ F2 ∈ ΩB in the range B1 ∈
(d− rB , d) can give V ∗d (B1) = V ∗.
Lemma 3. Suppose B/E < 1, m is even, B1 ∈ (d− rB , d),
and FB = F1 ~ F2 satisfies (SS-1). Then FB /∈ ΩB .

Proof. By the previous lemma, there exist reduced intervals
P1, P2, {Qi}m/2i=1 that satisfy (11) - (13), such that FB
satisfies (SS-1):

∫
Ij
dFB = 1/m for j ∈ [m]. Here,

supp(FB) =

m/2⋃
i=1

[p`1 + q`i , p
r
1 + qri ]∪ [p`2 + q`i , p

r
2 + qri ] (14)

where [p`1+q`i , p
r
1+qri ] ⊂ I2i−1 and [p`2+q`i , p

r
2+qri ] ⊂ I2i for

each i ∈ [m/2]. These intervals are reduced w.r.t FB , since

they were generated from a convolution of reduced intervals.
Because B1 < d, we have pr2 +qri −(pr1 +qri ) = pr2−pr1 < d.
Consequently, the interval (pr2 + qri −d, pr2 + qri ] contains the
1/m mass in I2i in addition to a nonzero mass in I2i−1:∫

(pr2+qri−d,pr2+qri ]

dFB > 1/m. (15)

Hence, (SS-2) is not satisfied. �

Lemmas 1 - 3 and Proposition 1 thus establish Theorem
1. Proposition 1 asserts any game in an even partition m > 2
(implying B/E > 2/3) will have two intervals, [0, rB ] and
(d, d+rB ], within B1 ∈ [0, B/2] where V ∗d (B1) = V ∗. Lem-
mas 2 and 3 show there are divisions B1 between these two
intervals such that one can find strategies FB = F1~F2 that
satisfy (SS-1), but never (SS-2). Hence, V ∗d (B1) < V ∗ for
these divisions. Note that while showing non-monotonicity
of the distributed security value for only a single instance of
B/E is required to prove the statement of Theorem 1, we
have done so for a broad class of instances.

IV. SIMULATIONS

In this section, we provide some numerical simulations
that further highlight the non-monotonic nature of the dis-
tributed security value V ∗d . As described in Example 1 in Sec-
tion II, we employ numerical techniques to calculate V ∗d (B1)
(7) in the analogous integer Blotto game, where allocations
to battlefields are restricted to the integers. The reformu-
lated optimization problem (7) is thus finite-dimensional, but
remains non-convex. Here, the sub-players’ mixed strate-
gies are probability vectors of length Bi + 1 that specify
their independent randomizations over all possible alloca-
tions to battlefield 1. In particular, their strategy spaces are
{(0, Bi), (1, Bi − 1), . . . , (Bi, 0)}. The optimization is non-
convex because of the convolution constraint – the joint prob-
ability vector over the strategy space {(0, B), . . . , (B, 0)}
must be a product distribution from the sub-players’ mixed
strategies. We implemented the nonlinear function solver
fmincon in Matlab to solve this optimization problem.

Once again, we stress that the computed security values
V ∗d from this scheme may not be completely accurate, as
(7) is non-convex and the nonlinear function solver is not
guaranteed to converge to the optimal point. As such, one
should treat any resulting numerical computation as a lower
bound on the actual security value. We used such numerical
tools in Section II (Figure 2) to gauge the behavior of V ∗d and
to develop intuition for general theoretical properties on V ∗d .
We proceeded to establishing such properties analytically in
Section III for the non-integer Blotto setting.

Figure 3 shows distributed security values computed from
our numerical scheme, over the range of budget divisions
B1 ∈ {0, 1, . . . , B/2}. These plots illustrate the non-
monotonic behavior of V ∗d (B1) and validate Proposition 1,
which identifies intervals where V ∗d (B1) = V ∗.
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Fig. 3: Plots of computed distributed security values in the integer version of the team Blotto game. They display non-monotonic behavior
as the division B1 ranges from 0 (completely centralized) to 18 (distributed, most balanced budgets). (Left) B = 36, E = 50. The red
dots indicate the particular setups studied in Example 1. This game instance is in partition m = 3. Proposition 1 states the distributed
security value coincides with the centralized (for non-integer version) in the interval B1 ∈ [0, rB ] (blue line), where rB = 8 here. The
simulation is in accordance with this prediction. As Proposition 1 is only a sufficient condition for V ∗

d (B1) = V ∗, it does not account
for the distributed value at B1 = 15 shown here that recovers the centralized security value. Further study is required to verify and to
find distributed strategies that recover the centralized value here. (Right) B = 42, E = 50. This game instance is in an even partition
(m = 6), hence the theoretical arguments for non-monotonicity in Section III apply. In particular V ∗

d (B1) < V ∗ in the identified interval
B1 ∈ (rB , d), where rB = 2 and d = 8. Proposition 1 states V ∗

d (B1) = V ∗ on the intervals B1 ∈ [0, rB ], (d, d+ rB ], and (2d, 2d+ rB ].
The simulation is in accordance with these predictions, with the exception of the division B1 = 8. Indeed, fmincon does not guarantee
the global solution to a nonlinear, non-convex optimization. Any such solution it returns would serve as a lower bound.

V. CONCLUSION

Multi-agent systems are designed to concurrently accom-
plish a diverse set of complex tasks by distributing decision-
making abilities and shared resources among the agents.
However, when the actions of multiple agents are interdepen-
dent with regards to completing the same task, inefficiencies
can arise as a result of their independent decision-making
processes. In this paper, we framed such a scenario in the
context of a Colonel Blotto game, where a team of two
players compete against a common enemy over the same
two battlefields. We studied how the division of resources
among the two players affects their chances against the
enemy. The divisions range from a completely centralized
command structure, i.e. one of the team players has control
over all resources, to varying degrees of distributed command
structures, where each player has control over a portion of the
total resources. Our main contribution asserts that the team’s
performance is non-monotonic in this range of command
structures.

While we have identified an interesting relationship be-
tween resource division and performance in a symmetric
team setting, this paper is clearly a first step in studying
a range of research questions on this topic. For instance, one
would like to characterize the set of Nash equilibria in these
team settings, and identify any inefficiencies that can arise in
such stable outcomes. One can then consider utility design
problems as a means to coordinate the team’s behavior. The
presence of multiple concurrent tasks and interdependencies
for the team generalizes our current setting, and is also
worthy of study.
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