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Abstract—We describe an efficient implementation
of a recent simplex-type algorithm for the exact so-
lution of separated continuous linear programs, and
compare it with linear programming approximation
of these problems obtained via discretization of the
time horizon. The implementation overcomes many
numerical pitfalls often neglected in theoretical anal-
ysis allowing better accuracy or acceleration up to
several orders of magnitude both versus previous
implementation of the simplex-type algorithms and
versus a state-of-the-art LP solver using discretization.
Numerical study includes medium, large, and very
large examples of scheduling problems and problems
of control of fluid processing networks. We discuss
online and offline optimization settings for various
applications and outline future research directions.

I. Introduction

In this paper we present an implementation and
evaluate the performance of a simplex-type algorithm for
the solution of a separated continuous linear programming
problem (SCLP):

max
u(t),x(t)

∫ T
0 (γT + (T − t)cT)u(t) + dTx(t) dt,

s.t.
∫ t

0 Gu(s) ds+ Fx(t) ≤ α+ at,
Hu(t) ≤ b,
x(t), u(t) ≥ 0, 0 ≤ t ≤ T,

(1)

SCLP problems are a special case of continuous linear
programs (CLP) formulated by Bellman [1], and were
first suggested for the solution of job shop scheduling
problems by Anderson [2]. Many important problems
can be formulated as SCLP’s, but up to date these
problems were always solved by discretizing the time.
The simplex-type algorithm (SCLP-simplex) studied here
was derived by Weiss [3], and in this paper we present
the first streamlined stable and efficient implementation
of this algorithm and compare its performance to the
discretized LP approximation.

SCLP-simplex has several important advantages:
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- SCLP shares many of the properties of standard LP:
it has a symmetric dual, it satisfies strong duality,
solutions are obtained at extreme points, and extreme
points are characterized by a combinatorial analog of
basic solutions, with a well defined pivot operation.

- SCLP-simplex solves SCLP in a finite number of
iterations, exactly, using a parametric approach similar
to Lemke’s algorithm [4].

- The form of the SCLP-simplex solution lends itself to
perform sensitivity analysis.

- The SCLP-simplex can be implemented as a model
predictive control for online long term optimization.

These can be contrasted to some disadvantages of time
discretization:
- The time discretized LP are large and may require
substantial computational effort.

- The solution of the discretized approximation of SCLP
may be inaccurate. To be accurate some regions of
the time horizon need only rough discretization, while
others require a very fine discretization. However it is
difficult to tell where these regions are, so the quality
of the approximation is very uncertain.

- The structure of the optimal solution is lost in the
discretized solution with many spurious basic variables
that reduce the value of sensitivity analysis, and make
it practically unsuitable for model predictive control,
where a new discretized problem needs to be solved
from scratch in every update.
Despite the advantages of the SCLP-simplex of [3] it

has so far only been implemented by the author as a
trial pilot aimed to verify the algorithm on very small
examples. While it received many citations referring to
the theoretical results, it has never been used in practice.
Our contribution in this paper is a revised SCLP-

simplex, that is taking advantage of several computa-
tional techniques, and is the first stable and efficient
implementation of the algorithm. As a result, the revised
SCLP-simplex often outperforms the discretized method,
both in computation time as well as solution quality: for
some large problems the discretization method fails to
complete the calculation with reasonable accuracy, while
SCLP-simplex solves these problems in a reasonable time,
with perfect accuracy.

The rest of this paper is structured as follows: Section II
provides the structure of optimal solutions and briefly de-
scribes the SCLP-simplex algorithm. Section III discusses
details of our revised implementation. Section IV describes
the potential applications and sets the experimental setup,
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followed by a computational study in Section V. Section
VI summarizes the work and discusses future directions.

II. Background on SCLP

The main relevant SCLP references to our approach
are [1], [2], [5], [6], [7], [8], [9]. Additional approaches are
shown in [10], [11], [12]. The SCLP-simplex algorithm
is based on [3], several extensions and generalizations
are shown in [13], [14], [15], [16], [17]. In this section we
describe the structure of optimal solutions
In (1), the matrices G,H,F are K × J , I × J ,

K × L dimensional respectively, and we number the
slacks x1, . . . , xK , and uJ+1, . . . , uJ+I . Denote by K =
(1, . . . ,K + L) the indexes of the primal state variables
xk(t) and by J = (1, . . . , J + I) the indexes of the primal
control variables uj(t). The symmetric dual to (1) is

min
p(t),q(t)

∫ T
0 (αT + (T − t)aT)p(t) + bTq(t) dt,

s.t.
∫ t

0 G
T p(s) ds+HTq(t) ≥ γ + ct,

F Tp(t) ≥ d,
q(t), p(t) ≥ 0, 0 ≤ t ≤ T,

(2)

with dual state variables, including slacks, qj(t), j ∈ J and
dual control variables pk(t), k ∈ K. Note that the dual
problem runs in reversed time. Complementary slackness
is defined by:∫ T

0 x(t)Tp(T − t)dt =
∫ T

0 u(t)Tq(T − t)dt = 0 (3)

Under easily checked feasibility and boundedness con-
ditions, and under non-degeneracy, SCLP has a unique
strongly dual solution. The optimal solution has piece-
wise constant primal and dual controls and continuous
piecewise linear primal and dual state variables, with
breakpoints 0 = t0 < t1 < · · · < tN = T . The
solution is then fully described by the breakpoints, by
the initial state values x(0) = x0, q(0) = qN , and by the
values of the controls and of the derivatives of the states
unj = uj(t) , pnk = pk(T − t), ẋnk = ẋk(t), q̇nj = q̇j(T − t)
for tn−1 < t < tn, n = 1, . . . , N . The values of the primal
and dual states at the breakpoints are xnk = xk(tn), qnj =
qj(T − tn), n = 0, . . . , N . The initial values, x0, qN , are
optimal solutions of the Boundary-LP:

max [0 dT]x0, min [bT 0]qN ,
s.t. [I F ]x0 = α, s.t. [HT − I]qN = γ,

x0 ≥ 0, qN ≥ 0.
(4)

with K0, JN+1 the indexes of the basic variables x0
k, q

N
j .

Note: the LP for x0, qN does not involve T , so the
boundary values are the same for all time horizons.
Values of the controls and slopes of states in the

intervals are complementary slack basic solutions of the
primal and dual Rates-LP(K,J ):

max [cT 0]u+ [0 dT]ẋ
s.t. [G 0]u+ [I F ]ẋ = a,

[H I]u = b,

ẋk ∈ R ∀k ∈ K,
ẋk ∈ R+ ∀k /∈ K,
uj = 0 ∀j ∈ J ,
uj ∈ R+ ∀j /∈ J ,

(5)

min [aT 0]p+ [0 bT]q̇
s.t. [GT 0]p+ [HT -I]q̇ = c,

[F T -I]p = d,

q̇j ∈ R ∀j ∈ J ,
q̇j ∈ R+ ∀j /∈ J ,
pk = 0 ∀k ∈ K,
pk ∈ R+ ∀k /∈ K,

(6)

where for interval (tn−1, tn) the primal basis is Bn =
{unj , ẋnk : j 6∈ Jn, k ∈ Kn} with complementary dual basis
B∗n = {pnk , q̇nj : k 6∈ Kn, j ∈ Jn}.
The bases have the following properties:

– Compatibility to the boundary: K0 ⊆ K1, JN+1 ⊆ JN .
– Adjacency: Bn, Bn+1 are adjacent: in the pivot Bn →
Bn+1 a single basic variable vn leaves the basis and a
single basic variable wn enters.
The breakpoints t1, . . . , tN−1 are determined by the

following equations for the interval lengths τn = tn− tn-1:
xk(tn) = x0

k +
∑n
m=1 ẋ

m
k τm = 0 if vn = ẋk,

qj(T − tn) = qNj +
∑n+1
m=N q̇

m
j τm = 0 if vn = uj ,

τ1 + · · ·+ τN = T.

(7)

The remaining values are determined by:
xk(tn) = x0

k +
∑n
m=1 ẋ

m
k τm,

qj(T − tn) = qNj +
∑n+1
m=N q̇

m
j τm.

(8)

Given a sequence of adjacent bases B1, . . . , BN we can
calculate all the controls and slopes of states, the break-
points, and the values of the primal and dual states at
all breakpoints. It is an optimal base sequence if:
Theorem 2.1 ([3]): If a sequence of bases B1, . . . , BN

are compatible with K0,JN+1 and are adjacent, and if
all the values of the primal and dual state variables and
the interval lengths determined by equations (4)–(8) are
positive, then this is an optimal solution of the SCLP.

The SCLP-simplex algorithm is similar to the paramet-
ric self dual simplex algorithm, also known as Lemke’s
[4] algorithm, for the solution of standard LP. In Lemke’s
algorithm a pair of dual LP’s is solved parametrically,
starting from an objective of −1’s and a r.h.s. of 1’s with
the trivial optimal solution where the primal and dual
basic variables are the slacks. Then it solves all the LP’s
along the parametric line L(θ) = (1−θ)

[−1
1
]
+θ
[ c
b

]
. The

solution partitions 0 < θ1 < · · · < θM = 1, and at each
θ` either a primal or a dual variable shrinks to 0, and a
single pivot or several pivots are performed to obtain the
optimal basis for θ > θ`.
The SCLP-simplex is initiated by solving (4) for

x(0), q(0) and obtaining B1, the optimal basis for Rates-
LP(K0,JN+1). B1 is the initial optimal base sequence
for small time horizons. Then, in analogy to Lemke’s
algorithm, SCLP-simplex solves SCLP parametrically, by
increasing the time horizon θT over 0 < θ ≤ 1, with
iterations needed at 0 < θ1 < · · · < θM = 1. In each
validity range θ`−1 < θ < θ`, the optimal solution is
defined by an optimal base sequence B1, . . . , BN , and
the values of xn, qn, τn are affine functions of θ with well
defined derivatives δ(·) = d(·)

dθ . At θ` a collision occurs:
either one or several intervals or else a primal or a dual
state variable shrink to zero at a breakpoint tn, and
an SCLP-pivot is performed to obtain the optimal base



sequence in the next validity range.
The main difference is that in Lemke’s LP at each step,

only the one basis defines the optimal solution, while in
SCLP-simplex the optimal solution consists of the base
sequence. Each iteration of SCLP-simplex consists of two
steps: calculation of the validity range, and SCLP-pivot.
– Calculation of the validity range, θ`

θ` = θ`−1 + infδ(·)<0

{
θ : − τn

δτn
,− xn

k

δxn
k
,− qn

j

δqn
j

}
. (9)

We then obtain the type of collision, interval shrinking
or state variable shrinking, the location of the collision,
tn, and the bases on both sides to the collision, B′, B′′.
– SCLP-pivot, consists of the the following:
- If intervals shrunk to 0, remove bases between B′, B′′. If
B′, B′′ are adjacent, you found the new base sequence.

- Otherwise, B′ \ B′′ = {v1, v2}, choose proper v′, v′′ ∈
{v1, v2}, and solve Rates-LP(K∗,J ∗), where K∗ = {k :
ẋk ∈ B′} \ v′′,J ∗ = {j : uj 6∈ B′′} ∪ v′ to obtain basis
D. If D is adjacent to B′, B′′, insert it between B′, B′′,
you found the new base sequence.

- Otherwise, formulate a subproblem, which is an SCLP
of smaller dimension, and solve it to obtain an optimal
base sequence D1, . . . , DL, and insert it between B′, B′′,
you found the new base sequence.

For collisions at 0 or T the steps of the pivot are slightly
modified.

III. Revised SCLP-simplex Algorithm
SCLP-simplex [3] will always work perfectly under

the following conditions: The problem needs to be non-
degenerate, and all calculations need to be done with
perfect accuracy. However, previous implementation, that
was intended only as a pilot for concept verification,
used Matlab with floating point calculations and was
vulnerable to degeneracy and inaccuracies. Moreover
straightforward implementation suffered from memory
and performance issues, that substantially slowed down
the algorithm. As a result only problems with K + L+
J + I ≤ 100 could be solved before the program crashed
or ran out of time.

To improve performance and numerical stability of the
SCLP-simplex algorithm we thoroughly analyzed each
step and developed the revised SCLP-simplex algorithm.
Python implementation of the algorithm is available at
GitHub https://github.com/IBM/SCLPsolver.
The following analysis and implementation enhance-

ments led to substantial performance gains.
- Base sequence representation is one of the problematic
points of the SCLP-simplex: the choice to store only
the indexes of the basic variables, and re-solve all
Rates-LP fresh at each iteration requires an impractical
amount of computations, and storage of the simplex
dictionaries for all bases involves memory issues, in
storage and in updating. Since all bases are adjacent
our algorithm stores simplex dictionaries only for some
of them, keeping the list of pivots between all bases.
This requires more computations when a new basis

(D) needs to be calculated, but drastically reduces
the required memory. The code obtains the available
RAM and adjusts the number of stored dictionaries
accordingly, maintaining evenly spaced dictionaries.

- Values of all ẋ, q̇ are kept since only a small part of
them is updated during the SCLP pivot.

- Equations (7) are re-structured to increase sparsity.
The resulting system is solved for δτ(θ`) using LU
factorization, while τ(θ`) is calculated as τ(θ`−1) +
δτ(θ`−1). In a case when exactly one interval shrinks to
0 and is replaced by a single interval, the corresponding
SCLP pivot changes only one column of coefficients
in (7). In this case we use product form of inverse
(PFI) to calculate δτ(θ`) from δτ(θ`−1) using LU
decomposition obtained in the previous iteration. Such
design reduces the number of operations from O(N3)
to O(N) complexity.

- To evaluate θ` − θ`−1 in (9) we use only the values of
δτn, τn and of xn, qn at local minima where δxn, δqn
are negative. This allows us to solve only part of (8).
For this purpose we keep a list of all the local minima of
x(t), q(t). Updating this list involves only small changes
in each iteration.

- The basis D is calculated by pivoting the simplex dic-
tionary of B′ or B′′ using non-standard pivoting rules,
where entering and leaving variables are determined by
B′′ \B′ and B′ \B′′ and by the type of the collision. If
and optimal D which is adjacent to both B′, B′′ exists,
it is always found by this single pivot.

- To calculate B′′\B′ and B′\B′′ we use the list of pivots,
and avoid computationally expensive set differences.

- The subproblems are solved with reduced dimension,
and are therefore quite small.
Numerical pitfalls lead to poor stability of the naive

implementation that depends on non-degeneracy of all
dictionaries, and on correct identification of the collision
types. In theory, perturbation of the data, in particular of
a and c can achieve all the required non-degeneracy, and
ensure unique execution of all the steps of the algorithm.
However, in practice, accumulation of numerical errors
due to floating point operations may impede such clean
runs. In most cases numerical problems arise when we
should decide if a value is 0 or just a small floating
point number or when we should compare close floating
point numbers to determine the sequence of intervals
that shrink to 0. Numerical instabilities lead to incorrect
collision classification which may not be recognized at
the classification time, but will appear in further steps.
This creates situations that are impossible in theory, but
do occur in practice, such as
- Incorrect collision: τn, . . . , τn′ shrink to 0 in the middle
of the base sequence, but |Bn−1 \Bn′+1| > 2.

- Incorrect pivot: the new basis D is adjacent to B′ and
B′′ but values of ẋk and/or q̇j for this basis leading to
a discontinuity in the state variables.

- Incorrect subproblem formulation: during the solution
of a subproblem the base sequenceD1, . . . , DL arrives at

https://github.com/IBM/SCLPsolver


an infeasible or unbounded basis Dl, or the subproblem
parametric line reaches θ = 1, but D1 and B′ or DL

and B′′ are not adjacent.
- Zero lengths interval shrink: a new interval obtained at
the previous iteration shrinks, introducing infinite loop,
where the parametric line is not moving forward, or a
number of zero lengths intervals shrink, which impedes
the collision classification.

In these cases we return to the classification step, then
change the numerical tolerances and reclassify the colli-
sion. Once the problem is resolved, tolerances are read-
justed. In addition, starting from an iteration where the
collision classification was not clear, we store information
that allows us to go back. If the reclassification fails, we
go to an earlier iteration trying to reclassify the collision
there.

IV. Applications and Experimental Setup
The original motivation for SCLP was to define

tractable optimization models for the job shop scheduling
problems [2]. For example, micro-chips wafer fabricalion:
starting as a wafer of pure silicon crystal, the wafer
undergoes up to 1200 operations revisiting a set of up to
60 workstations, in a re-entrant line production process,
to produce several hundred computer chips, in a cycle
time of some six weeks. The problem is to control the
movement of some 60,000 wafers over a time horizon of
6 weeks, with work in process value of 200 × 106$. A
rich literature on this problem includes [18], [19], [20],
[21]. Specifically, solution of SCLP to these problems is
described in [10], [22] with small to medium size examples.
This application motivates our first experiment solving
problems of the full size.
– Transient control of multi-class queueing networks: Items
of several types arrive at the system, and need to follow
individual paths through various service stations, and
we need to control admissions, routing and sequencing
items throughout the system [23], [24], [25], [26], [27],
[28]. In the second experiment we test the revised SCLP-
algorithm to solve the SCLP formulation of this problem
enabling asymptotically optimal control of the stochastic
system [29].
[22] have shown that robust optimization of both

problems can also be formulated as SCLP. The formula-
tion increases the problem sizes even further. Moreover,
many additional application benefit from the proposed
algorithm, e.g., health systems, where the flow of patients
through emergency rooms, hospitalization, operating
theaters, requires concerted use of resources, and patients
follow complex paths through the system, see [30], [31];
the quickest evacuation problem for evacuation of stadiums,
convention centers, amusement parks; and even the
standard maximum flow problem over time usually solved
via discretization of time can be easily solved as an SCLP.

We chose two types of SCLP problems to evaluate
the performance of our revised SCLP-simplex: SCLP for
a re-entrant line that approximates the wafer fab job

shop scheduling problem, and SCLP for transient control
of a multi-class queueing network, that approximates a
stochastic service system.
The re-entrant line SCLP: The state variable xk(t) is

the quantity of wafers waiting to complete production
step k, also referred to as contents of buffer k. The control
variable uk(t) is the processing capacity allocated to buffer
k. The objective is:

minu(t),x(t) V =
∫ T

0 (hTx(t) + gTu(t))dt

where h is the vector of holding costs, and g the vector of

operating costs. G =


1 0 0 . . . 0
−1 1 0 . . . 0
0 −1 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 −1 1

 represents the re-

entrant line, with items moving from buffer 1 to 2 etc, until
K and out. H is the resource constraints matrix where
rows i = 1, . . . , I represent workstations, and Hi,k = mk

where mk is the processing time per item at production
step k performed at workstation i. The vector b is all 1’s,
as capacity of workstation i. Initial inventory in buffer
k is αk, ak is the rate of wafers input to buffer k, often
a1 > 0, and all other ak = 0. To conform to (1) we
substitute x(t) = α + at −

∫ t
0 Gu(s)ds in the objective

to obtain a surrogate equivalent maximization objective,
where γ = −g and c = hTG. For this problem F and d of
(1) are nil.

Transient control MCQN: queues k = 1, . . . ,K have
xk(t) discrete items waiting for processing. Activity j =
1, . . . , J will process an item from k = k(j) for a random
time with mean mj , and then route the completed item
to queue l with probability pjk(j),l, or send it out of the
system with probability 1 −

∑
l p
j
k(j),l. To do so it will

use workstation i = s(j). Items arrive at queue k in a
random stream, at rate ak. We wish to decide which
activities to employ at each time unit, so as to minimize
the expected sojourn times or equivalently the (weighted)
queue lengths, starting from some initial xk(0), over finite
time horizon [0, T ]. The SCLP approximation has
− G is K × J with elements: Gl,j =

{
1, l = k(j)
−pj

k(j),l
, l 6= k(j) .

− H is I × J with elements Hi,j =
{
mj , s(j) = i
0, s(j) 6= i .

V. Computational Results

We compare our implementation of SCLP-simplex vs.
LP discretization with up to 1000 time intervals. for the
two problem classes presented in Section IV. For each
class we defined five settings with different amounts of
servers, buffers, and job classes and randomly generated
10 problems. Randomly generated parameters include
initial fluids, arrival rates, processing rates and time
horizons. Their probability distributions, were chosen to
avoid trivial or degenerate situation. All experiments were
performed on Lenovo ThinkPad W541 notebook computer
with Intel Core i7-4810MQ processor and 16GB RAM
running Windows 10. SCLP-simplex ran on Python 3.7.7
with NumPy 1.18.1, linked to Intel MKL. Some vector



and matrix operations parallelized using Cython and Intel
OpenMP library. The discretized problems were solved
by IBM Ilog Cplex Optimization Studio 12.10 using a
barrier algorithm that showed the best performance for
these problems. Both algorithms ran on eight cores.

LP discretization
Naive discretization may produce a quadratic number

of unnecessary non-zero coefficients in the LP problem.
Here we show a much more efficient discretization method
to obtain an approximate solution of SCLP by regular
LP solvers.

We consider a uniform time partition 0 = t0, . . . , tN =
T , where N is the number of intervals and for n =
1, . . . , N : tn = tn−1 + τ, τ = T/N . For each time interval
n = 1, . . . , N we define a vector of discrete controls
u[n] and state variables x[n]. Then the discretizition of
problem (1) without F and d can be represented as:

min
u,x

VLP =
∑N
n=1(τgTu[n] + 0.5hT(x[n] + x[n-1])

s.t. τGu[n] + x[n]− x[n-1] = aτ ∀n
with x[0] = α
H · u[n] ≤ b, u[n], x[n] ≥ 0, ∀n.

(10)

Results
The objective value V provided by SCLP-simplex is

the accurate theoretical minimum, the relative error is
measured as (VLP − V )/V . To compare performance, we
measure relative time as the ratio of run times of CPLEX
over SCLP-simplex. The results for re-entrant line and
NCQN problems are shown in Table I, Fig. 1, 2 and
Table II, Fig. 3, 4, respectively.

TABLE I
Results on re-entrant line problems

Se
rv
er
s

B
uff

er
s

T
im

e
ho

riz
on Average numbers Discretization

Run
time,
sec

Steps

In
te
rv
al
s 10 100 1000

Relative: Relative: Relative:
error time error time error time

20 400 600 3.352 921.7 440.8 4.87 0.0625 0.400 0.763 0.022 12.449
30 600 900 7.842 2244.7 667.8 11.36 0.0289 1.013 0.336 0.067 7.105
40 800 1200 16.570 3109.3 883.8 13.54 0.0165 1.236 0.214 0.090 4.454
50 1000 1500 34.753 4402.3 1113.4 19.97 0.0099 1.866 0.125 0.146 2.429
60 1200 1800 67.419 5699.0 1322.9 23.10 0.0066 2.183 0.081 0.176 1.617

Fig. 1. Re-entrant line dis-
cretization relative time

Fig. 2. Re-entrant line dis-
cretization relative error

For both problems, low discretization leads to non-
optimal solutions with large relative errors while high

discretization is resource-thirsty with long run times. We
remark, that Cplex provide almost constant 100% load
on all processor cores, while for the revised SCLP-simplex
implementation the load of all cores is not constant with
50% average load for all cores. This indicates that we may
be able to further improve SCLP-simplex by exploiting
more parallelization.

TABLE II
Results on MCQN problems

Se
rv
er
s

B
uff

er
s

T
im

e
ho

riz
on Average numbers Discretization

Run
time,
sec

Steps

In
te
rv
al
s 10 100 1000

Relative: Relative: Relative:
error time error time error time

20 200 100 0.988 663 271 1.244 1.027 0.049 12.494 0.0013 212.83
40 400 100 4.817 1887 535 0.893 1.395 0.034 18.770 0.0009 448.42
60 600 100 17.098 3899 815 0.913 1.242 0.036 19.992 0.0009 946.59 1

80 800 100 41.655 6424 1080 1.017 1.217 0.039 23.967
100 1000 100 91.809 9466 1356 0.922 1.051 0.036 15.809

Fig. 3. MCQN discretization
relative time

Fig. 4. MCQN discretization
relative error

Discussion
To check our conjecture on linear empirical complexity

similarly to Lemke’s algorithm for LP, we compare the
number of iterationsM (steps) to the problem dimensions
that are usually expressed by the number of variables (2K)
and the number of constraints (K + I). Our results show
that the number of steps is proportional to 2K · (K + I)
and even decreasing with the problem size: the number
of steps normalized by 2K · (K + I) is in a range of
[1.9 . . . 3.3] · 10−3 and [4.3 . . . 7.5] · 10−3 for re-entrant line
and MCQN problems, respectively, where the lower values
happen for larger settings in both problem classes.

VI. Summary and Future Directions
To summarize, we have shown that SCLP-simplex is

viable for re-entrant line and control of queueing networks
problems. It indicates that our implementation opens
new opportunities in optimizing important classes of
problems, as listed in Section IV. For all these applications
we stress the important advantage of the SCLP-simplex
in enabling us to do sensitivity analysis. In addition,
it can be easily adjusted to online environments, e.g.,

1Solution of one of the problems with 60 servers and 600 buffers
took 131211 sec. Excluding this problem the average relative
time becomes 484.46. Discretization to 1000 intervals is currently
infeasible for larger MCQN problems.



with rolling time horizon or model predictive control.
Solution for a new period [t0, T + t0] could be obtained
by truncating the solution for time horizon T at t0 and
then re-solving the problem starting from the truncated
solution by increasing the time horizon from T − t0 up to
T through its regular parametric line. During numerical
experiments we found that the number of iterations of
SCLP-simplex decreases exponentially with the growth
of the time horizon that may be especially useful in these
settings. On the other hand, in many cases the discretized
LP model will need to be solved for the whole new time
horizon from scratch since solutions of previous iterations
may be infeasible for the new period.

There is a wide scope for further research and develop-
ment of the continuous-time SCLP-simplex algorithms:
- Measure valued SCLP: while strong duality may fail
in SCLP, formulation in the space of measures rather
than the space of densities achieves strong duality, by
allowing impulse controls at 0 and T , see [15], [16], [17].

- Piecewise constant data: can be solved similarly to [17].
- Continuous fractional programming: can be formulated
as SCLP.

- Maximum flow over time with loses and arc delays: as
formulated and discussed in [32], [33] is a challenging
problem for which we may be able to characterize
optimal solutions.

- Piecewise analytic objective and right hand side: these
models were discussed in [8], [7], and it may be possible
to define a simplex-type algorithm for them.

- General continuous linear programs: as formulated by
Bellman [1] seem to be of a different nature than SCLP,
and present a challenging area of future research.

References

[1] R. Bellman, “Bottleneck problems and dynamic programming,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 39, no. 9, p. 947, 1953.

[2] E. J. Anderson, “A new continuous model for job-shop schedul-
ing,” International J. of Systems Science, vol. 12, no. 12,
pp. 1469–1475, 1981.

[3] G. Weiss, “A simplex based algorithm to solve separated con-
tinuous linear programs,” Mathematical Programming, vol. 115,
no. 1, pp. 151–198, 2008.

[4] C. E. Lemke and J. T. Howson, Jr, “Equilibrium points of
bimatrix games,” J. of the Society for industrial and Applied
Mathematics, vol. 12, no. 2, pp. 413–423, 1964.

[5] E. J. Anderson and P. Nash, Linear programming in infinite-
dimensional spaces: theory and applications. John Wiley, 1987.

[6] M. C. Pullan, “An algorithm for a class of continuous linear
programs,” SIAM J. on Control and Optimization, vol. 31,
no. 6, pp. 1558–1577, 1993.

[7] M. C. Pullan, “A duality theory for separated continuous linear
programs,” SIAM J. on Control and Optimization, vol. 34, no. 3,
pp. 931–965, 1996.

[8] M. C. Pullan, “Forms of optimal solutions for separated contin-
uous linear programs,” SIAM J. on Control and Optimization,
vol. 33, no. 6, pp. 1952–1977, 1995.

[9] M. C. Pullan, “Convergence of a general class of algorithms
for separated continuous linear programs,” SIAM J. on Opti-
mization, vol. 10, no. 3, pp. 722–731, 2000.

[10] X. Luo and D. Bertsimas, “A new algorithm for state-
constrained separated continuous linear programs,” SIAM J.
on control and optimization, vol. 37, no. 1, pp. 177–210, 1998.

[11] L. Fleischer and J. Sethuraman, “Efficient algorithms for
separated continuous linear programs: the multicommodity
flow problem with holding costs and extensions,” Math. of
Oper. Research, vol. 30, no. 4, pp. 916–938, 2005.

[12] D. Bampou and D. Kuhn, “Polynomial approximations for
continuous linear programs,” SIAM J. on Optimization, vol. 22,
no. 2, pp. 628–648, 2012.

[13] X. Wang, S. Zhang, and D. D. Yao, “Separated continuous conic
programming: strong duality and an approximation algorithm,”
SIAM J. on Control and Optimization, vol. 48, no. 4, pp. 2118–
2138, 2009.

[14] A. Shapiro, “On duality theory of conic linear problems,” in
Semi-infinite programming, pp. 135–165, Springer, 2001.

[15] E. Shindin and G. Weiss, “Symmetric strong duality for a
class of continuous linear programs with constant coefficients,”
SIAM J. on Optimization, vol. 24, no. 3, pp. 1102–1121, 2014.

[16] E. Shindin and G. Weiss, “Structure of solutions for continuous
linear programs with constant coefficients,” SIAM J. on
Optimization, vol. 25, no. 3, pp. 1276–1297, 2015.

[17] E. Shindin and G. Weiss, “A simplex-type algorithm for contin-
uous linear programs with constant coefficients,” Mathematical
Programming, pp. 1–45, 2018.

[18] P. Van Zant, Microchip Fabrication: A Practical Guide to
Semiconductor Processing: A Practical Guide to Semiconductor
Processing. McGraw Hill Professional, 2013.

[19] H. Chen, J. M. Harrison, A. Mandelbaum, A. Van Ackere,
and L. M. Wein, “Empirical evaluation of a queueing network
model for semiconductor wafer fabrication,” Oper. Research,
vol. 36, no. 2, pp. 202–215, 1988.

[20] L. M. Wein, “Scheduling semiconductor wafer fabrication,”
IEEE Transactions on semiconductor manufacturing, vol. 1,
no. 3, pp. 115–130, 1988.

[21] P. Kumar, “Re-entrant lines,” Queueing Systems, vol. 13, no. 1-
3, pp. 87–110, 1993.

[22] D. Bertsimas, E. Nasrabadi, and I. C. Paschalidis, “Robust
fluid processing networks,” IEEE Transactions on Automatic
Control, vol. 60, no. 3, pp. 715–728, 2014.

[23] J. M. Harrison, “Brownian models of queueing networks with
heterogeneous customer populations,” in Stochastic differential
systems, stochastic control theory and applications, pp. 147–186,
Springer, 1988.

[24] L. M. Wein, “Scheduling networks of queues: heavy traffic
analysis of a multistation network with controllable inputs,”
Oper. Research, vol. 40, no. 3-supp.-2, pp. S312–S334, 1992.

[25] F. Kelly and C. Laws, “Dynamic routing in open queueing
networks: Brownian models, cut constraints and resource
pooling,” Queueing systems, vol. 13, no. 1-3, pp. 47–86, 1993.

[26] J. G. Dai, “On positive harris recurrence of multiclass queueing
networks: a unified approach via fluid limit models,” The
Annals of Applied Probability, pp. 49–77, 1995.

[27] M. Bramson, Stability of queueing networks. Springer, 2008.
[28] S. Meyn, Control techniques for complex networks. Cambridge

University Press, 2008.
[29] Y. Nazarathy and G. Weiss, “Near optimal control of queueing

networks over a finite time horizon,” Annals of Oper. Research,
vol. 170, no. 1, p. 233, 2009.

[30] N. Gans, G. Koole, and A. Mandelbaum, “Telephone call cen-
ters: Tutorial, review and research prospects,” Manufacturing
and Services Operations Management, vol. 5, no. 2, pp. 79–141,
2003.

[31] A. Mandelbaum, P. Momčilović, and Y. Tseytlin, “On fair
routing from emergency departments to hospital wards: Qed
queues with heterogeneous servers,” Management Science,
vol. 58, no. 7, pp. 1273–1291, 2012.

[32] M. C. Pullan, “A study of general dynamic network programs
with arc time-delays,” SIAM J. on Optimization, vol. 7, no. 4,
pp. 889–912, 1997.

[33] M. Groß and M. Skutella, “Generalized maximum flows over
time,” in International Workshop on Approximation and Online
Algorithms, pp. 247–260, Springer, 2011.


	I Introduction
	II Background on SCLP
	III Revised SCLP-simplex Algorithm
	IV Applications and Experimental Setup
	V Computational Results
	VI Summary and Future Directions
	References

