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Abstract— Given an additive network of input-output systems
where each node of the network is modeled by a locally
convergent Chen-Fliess series, two basic properties of the
network are established. First, it is shown that every input-
output map between a given pair of nodes has a locally
convergent Chen-Fliess series representation. Second, sufficient
conditions are given under which the input-output map between
a pair of nodes has a well defined relative degree as defined by
its generating series. This analysis leads to the conclusion that
this relative degree property is generic in a certain sense.

I. INTRODUCTION

Networks of nonlinear dynamical systems appear in many
fields, especially in the natural sciences where the nonlinear-
ity is often a key feature in generating the observed behavior
[5], [13]. The vast majority of analysis of such networks
is done in a finite dimensional state space setting using
coupled systems of ordinary differential equations. In [8],
however, the authors describe an alternative approach which
uses only input-output models at each node of the network
in the form of a locally convergent Chen-Fliess series [3],
[4]. These weighted infinite sums of iterated integrals pro-
vide a convenient algebraic framework for describing the
network’s behavior without relying on any particular choice
of coordinates as in the state space setting. Series coefficients
for each node can be estimated via system identification
techniques [10]. Computational tools were developed in [8]
to determine, for example, how an input injected at one node
affects the output observed at another node. Nevertheless,
there are still a number of open questions regarding the basic
properties of such networks. The focus here will be on so
called additive networks, where the outputs of the nodes
are simply added together and injected into other nodes,
including self-loops. Other classes of aggregation functions
such the multiplication of node outputs will not be addressed
here.

This paper has two goals. The first goal to address the open
problem stated in [8] regarding whether an additive network
of locally convergent Chen-Fliess series always yields map-
pings between nodes which have locally convergent Chen-
Fliess series representations. This hypothesis will be proved
to be true and is independent of the network’s topology.
The approach taken is to identify for a given network an
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associated maximal network whose growth bounds on the
coefficients of the generating series between nodes upper
bound all the growth bounds of the original network and
are much easier to determine using conventional methods as
presented in [18]. The particular growth bound derived turns
out to be exactly equivalent to one discovered for a class of
unity feedback systems described in [19]. The second goal
is to provide sufficient conditions under which the input-
output map between a pair of nodes has well defined relative
degree as defined by its generating series [6], [9]. A simple
counterexample will be given first to show that this property
can fail to hold in certain situations. The proofs of the
sufficient conditions rely on identifying certain properties
first described in [9] in relation to a subgraph connecting a
given input node and output node. It is also shown, however,
that this relative degree property is generic in a certain sense.
Namely, if the generating series for every node has relative
degree and the connection strengths between the nodes are
random, then every node pair has a generating series with
well defined relative degree with probability one. An obvious
application for this result is in the context of feedback
linearization for networks [15], however, that application will
not be pursued here.

The paper is organized as follows. To keep the presentation
as self-contained as possible, the required preliminaries are
briefly summarized in Section II. The question regarding
the convergence of Chen-Fliess series for mappings between
nodes is addressed in Section III. The subsequent section
treats the property of relative degree. The paper’s conclusions
are summarized in the final section.

II. PRELIMINARIES

An alphabet X = {x0, x1, . . . , xm} is any nonempty and
finite set of noncommuting symbols referred to as letters. A
word η = xi1 · · ·xik is a finite sequence of letters from X .
The number of letters in a word η, written as |η|, is called
its length. The empty word, ∅, is taken to have length zero.
The collection of all words having length k is denoted by
Xk. Define X∗ =

⋃
k≥0X

k, which is a monoid under the
concatenation (Cauchy) product. Any mapping c : X∗ →
R` is called a formal power series. Often c is written as
the formal sum c =

∑
η∈X∗〈c, η〉η, where the coefficient

〈c, η〉 ∈ R` is the image of η ∈ X∗ under c. The support of
c, supp(c), is the set of all words having nonzero coefficients.
A series c is proper when ∅ 6∈ supp(c). The set of all
noncommutative formal power series over the alphabet X is
denoted by R`〈〈X〉〉. The subset of series with finite support,
i.e., polynomials, is represented by R`〈X〉. For any c, d ∈
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R〈〈X〉〉, the scalar product is 〈c, d〉 :=
∑
η∈X∗〈c, η〉〈d, η〉,

provided the sum is finite. The set R`〈〈X〉〉 is an associative
R-algebra under the concatenation product and an associative
and commutative R-algebra under the shuffle product, that is,
the bilinear product uniquely specified by the shuffle product
of two words xiη, xjξ ∈ X∗:

(xiη) (xjξ) = xi(η (xjξ)) + xj((xiη) ξ),

where xi, xj ∈ X and with η ∅ = ∅ η = η [3].

A. Chen-Fliess series

Given any c ∈ R`〈〈X〉〉 one can associate a causal m-
input, `-output operator, Fc, in the following manner. Let p ≥
1 and t0 < t1 be given. For a Lebesgue measurable function
u : [t0, t1]→ Rm, define ‖u‖p = max{‖ui‖p : 1 ≤ i ≤ m},
where ‖ui‖p is the usual Lp-norm for a measurable real-
valued function, ui, defined on [t0, t1]. Let Lmp [t0, t1] denote
the set of all measurable functions defined on [t0, t1] having
a finite ‖·‖p norm and Bmp (R)[t0, t1] := {u ∈ Lmp [t0, t1] :
‖u‖p ≤ R}. Assume C[t0, t1] is the subset of continuous
functions in Lm1 [t0, t1]. Define inductively for each word η =
xiη̄ ∈ X∗ the map Eη : Lm1 [t0, t1] → C[t0, t1] by setting
E∅[u] = 1 and letting

Exiη̄[u](t, t0) =

∫ t

t0

ui(τ)Eη̄[u](τ, t0) dτ,

where xi ∈ X , η̄ ∈ X∗, and u0 = 1. The Chen–Fliess series
corresponding to c ∈ R`〈〈X〉〉 is

y(t) = Fc[u](t) =
∑
η∈X∗

〈c, η〉Eη[u](t, t0)

[3]. If there exist real numbers K,M > 0 such that

|〈c, η〉| ≤ KM |η||η|!, ∀η ∈ X∗,

then Fc constitutes a well defined mapping from Bmp (R)[t0,
t0 + T ] into B`q(S)[t0, t0 + T ] for sufficiently small R, T >
0 and some S > 0, where the numbers p, q ∈ [1,∞]
are conjugate exponents, i.e., 1/p + 1/q = 1 [11]. (Here,
|z| := maxi |zi| when z ∈ R`.) The set of all such locally
convergent series is denoted by R`LC〈〈X〉〉, and Fc is referred
to as a Fliess operator.

B. System interconnections

Given Fliess operators Fc and Fd, where c, d ∈
R`LC〈〈X〉〉, the parallel and product connections satisfy Fc+
Fd = Fc+d and FcFd = Fc d, respectively [3]. When Fliess
operators Fc and Fd with c ∈ R`LC〈〈X〉〉 and d ∈ RmLC〈〈X〉〉
are interconnected in a cascade fashion, the composite sys-
tem Fc◦Fd has the Fliess operator representation Fc◦d, where
the composition product of c and d is given by

c ◦ d =
∑
η∈X∗

〈c, η〉ψd(η)(1)

[2]. Here 1 denotes the monomial 1∅, and ψd is the con-
tinuous (in the ultrametric sense) algebra homomorphism
from R〈〈X〉〉 to the vector space endomorphisms on R〈〈X〉〉,
End(R〈〈X〉〉), uniquely specified by ψd(xiη) = ψd(xi) ◦

ψd(η) with ψd(xi)(e) = x0(di e), i = 0, 1, . . . ,m for any
e ∈ R〈〈X〉〉, and where di is the i-th component series of
d (d0 := 1). By definition, ψd(∅) is the identity map on
R〈〈X〉〉.

C. Relative degree of a generating series

Let X = {x0, x1}. Following [6], a series c ∈ R〈〈X〉〉
has relative degree r if and only if it has the decomposition

c = cN +Kxr−1
0 x1 + xr−1

0 e

for some K 6= 0 and proper e ∈ R〈〈X〉〉 with x1 6∈ supp(e).
This definition of relative degree is consistent with the
classical definition whenever y = Fc[u] is realizable [6],
[7]. The following results will be of central importance in
the work that follows.

Theorem 1: [9] If c, d ∈ R〈〈X〉〉 have distinct relative
degrees rc and rd, respectively, then c+d has relative degree
min(rc, rd). On the other hand, if rc = rd =: r, then c+d has
relative degree r if and only if 〈c, xr−1

0 x1〉+〈d, xr−1
0 x1〉 6= 0.

Corollary 1: If c1, c2, . . . , cm have relative degree
r1, r2, . . . , rm, respectively, with ri 6= rj when i 6= j, then
the relative degree of c1 + c2 + · · ·+ cm is mini(ri).

Corollary 2: Suppose c1, c2, . . . , cm have relative degree
r1, r2, . . . , rm, respectively. Let sj denote the multiplicity
of relative degree rj . If for each sj > 1 the series
ck1 , ck2 , . . . , cksj having relative degree rj satisfy

〈ck1 , x
rj−1
0 x1〉+ 〈ck2 , x

rj−1
0 x1〉+ · · ·+ 〈cksj , x

rj−1
0 x1〉 6= 0,

then the relative degree of c1 + c2 + · · ·+ cm is mini(ri).
Theorem 2: [9] If c, d ∈ R〈〈X〉〉 have relative degrees rc

and rd, respectively, then rc◦d has relative degree rc + rd.

D. Formal realizations and representations

It is shown in [14] that a given Chen-Fliess series y =
Fc[u] can be written in terms of a state z evolving on a
formal Lie group G(X) with Lie algebra L̂(X) and output
map y = 〈c, z〉. This notion of a universal control system
was generalized in [8] as follows to describe networks of
Chen-Fliess series.

Definition 1: Let Vi be a vector field on Gn(X) :=
G(X)× G(X)× · · · × G(X), i = 0, 1, . . . ,m with

Vi : Gn(X)→ TzGn(X)

z = (z1, . . . , zn) 7→ Vi(z) = (Vi1(z)z1, . . . , Vin(z)zn),

where Vij(z(t)) ∈ L̂(X). The j-th component of the corre-
sponding state equation on Gn(X) is

żj =

m∑
i=0

Vij(z)zjuij , zj(0) = zj0.

Given ĉk ∈ R⊗nLC〈〈X〉〉, k = 1, 2, . . . , `, the k-th output
equation is defined to be

yk = ĉk(z).

Collectively, (V, z0, ĉ) is a formal realization on Gn(X) of
the formal input-output map u 7→ y.



Analogous to the standard finite dimensional theory [12],
[16], a series c ∈ R`〈〈X〉〉 is said to have a formal
representation when there exists a formal realization with
the property that every coefficient of c can be written in
terms of iterated Lie derivatives of the vectors fields acting
on the output map and evaluated at z0, i.e., 〈c, xi1 · · ·xik〉 =
LVik

· · ·LVi1
ĉ(z0).

III. ADDITIVE NETWORKS OF CHEN-FLIESS SERIES:
LOCAL CONVERGENCE

In this section it is shown that every network of additively
interconnected locally convergent Fliess operators has the
property that the input-output maps between any two nodes
can be represented by a locally convergent Fliess operator.
The first definition describes the specific class of networks
under consideration.

Definition 2: A set of m single-input, single-output Chen-
Fliess series mapping ui to yi with generating series ci ∈
RLC〈〈Xi〉〉, where Xi = {x0, xi} is said to be an additively
interconnected network Nm with weighting matrix W ∈
Rm×m if ui = vi +

∑m
j=1Wijyj , i = 1, 2, . . . ,m.

A networkNm can therefore be viewed as a directed graph
connecting m nodes, where the i-th node corresponds to a
Chen-Fliess series with generating series ci, i = 1, 2, . . . ,m.
Henceforth, it will be assumed that the connection weights
are normalized so that Wij ∈ [0, 1], i, j = 1, 2, . . . ,m. The
following theorem follows directly from Theorem 5.1 in [8].

Theorem 3: The input-output map vi 7→ yj in any ad-
ditively interconnected network Nm has generating series
dji ∈ R〈〈Xi〉〉 which can be computed from a formal
representation in terms of the vector fields

V0(z) =


x0z1

x0z2

...
x0zm

+ diag(x1z1, . . . , xmzm)W


〈c1, z1〉
〈c2, z2〉

...
〈cm, zm〉


Vi(z) = xiziei

acting on ĉj = 1 ⊗ · · · ⊗ 1 ⊗ cj ⊗ 1 · · · ⊗ 1 ∈ R⊗mLC 〈〈X〉〉
(cj appears in the j-th position) and evaluated at zj0 = 1,
i, j = 1, 2 . . . ,m.

The next theorem states the main convergence result
concerning additive networks.

Theorem 4: IfNm is an additively interconnected network
where the generating series for each node ci ∈ RLC〈〈Xi〉〉,
then the generating series for every input-output map dji ∈
RLC〈〈Xi〉〉. More specifically, if Ki,Mi denote the growth
constants for ci, then for all i, j = 1, 2, . . . ,m

|〈dji, η〉| < KM |η| |η|!, ∀η ∈ X∗

for some K > 0 and any M > Minf , where

Minf =
M̄

1−mK̄ ln
(
1 + 1

mK̄

) (1)

with K̄ = maxiKi and M̄ = maxiMi.
Proof: It is first shown that each generating series
dji is locally convergent. Consider the case where every

node series ci ∈ RLC〈〈Xi〉〉 is a maximal series c̄i :=∑
η∈X∗ KiM

|η|
i |η|! η. That is, every coefficient of c̄i is

growing at its maximal rate. While yi = Fci [ui] may not
have a finite dimensional state space realization, it is easily
shown that a maximal series has the realization

żi =
Mi

Ki
z2
i (1 + ui), zi(0) = Ki, yi = zi

[19, Lemma 3]. Therefore, the corresponding network can be
realized by

żi =
Mi

Ki
z2
i

1 +

m∑
j=1

Wijzj + vi

, zi(0) = Ki, yi = zi,

(2)
i = 1, 2, . . . ,m. As this realization of the input-output map
v 7→ y is polynomial, it is clearly real analytic. Therefore,
every generating series for vi 7→ yj , say d̄ji, must be locally
convergent [18, Lemma 4.2]. The claim now is that dji must
also be locally convergent since |〈dji, η〉| ≤ 〈d̄ji, η〉 for all
η ∈ X∗. This inequality is most easily deduced from the
formal realization of vi 7→ yj given in Theorem 3, where
the Lie derivatives used to compute the coefficients of dji
will all be upper bounded in magnitude by the Lie derivatives
computed using maximal series.

Next, a suitable geometric growth constant for the network
Nm is determined. First observe that the growth constants
K̄ and M̄ constitute a worst case maximum growth rate
for every node in the network. In light of the formal
representation of any dji in Theorem 3, the growth rate
of dji is upper bounded by the growth rate of the natural
response 〈d̄ji, xk0〉 = LkV0

ĉj(1), k ≥ 0, where Wij = 1 for
all i, j, and every non-trivial component of ĉj is the maximal
series c̄ =

∑
η∈X∗ K̄M̄

|η| |η|! η. (See [19, Lemma 7] for an
alterative approach when m = 1, 2.) From the symmetry of
such a maximal network, zi = zj for all i, j. Applying these
conditions to (2), the natural response at each node is given
by the solution of the Abel differential equation

ż =
M̄

K̄
(z2 +mz3), z(0) = K̄. (3)

It can be directly verified that this equation has the solution

z(t) =
− 1
m

1 +W
[
−
(
1 + 1

mK̄

)
exp

(
M̄
mK̄

t−
(
1 + 1

mK̄

))] ,
where W denotes the Lambert W -function, that is, the
inverse of the function f(x) = x exp(x) corresponding to
the principal branch of this multi-valued function [1]. As
W is known to be holomorphic on the complex plane, z(t)
will therefore be analytic at t = 0. The corresponding
Taylor series has a radius of convergence determined by the
singularity nearest to the origin, in this case

t∗ =
1

M̄

(
1−mK̄ ln

(
1 +

1

mK̄

))
.

Applying a well known theorem from complex analysis (see
[20, Theorem 2.4.3]) gives the infimum of all geometric
growth constants for the maximal network, namely Minf =



TABLE I
INTEGER SEQUENCES GENERATED BY MAXIMAL ADDITIVE NETWORK

WITH UNITY GROWTH CONSTANTS

m an Minf M̂n

1 1, 2, 10, 82, 938, 13778, 247210, . . . 3.2589 3.22634
2 1, 3, 24, 318, 5892, 140304, . . . 5.2891 5.23618
3 1, 4, 44, 804, 20556, 675588, . . . 7.3017 7.22873
4 1, 5, 70, 1630, 53120, 2225480, . . . 9.3088 9.21567
5 1, 6, 102, 2886, 114294, 5819190, . . . 11.3132 11.2001
6 1, 7, 140, 4662, 217308, 13022688,. . . 13.3163 13.1831

0 0.05 0.1 0.15

time

0
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10

15
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30

35

node 1
node 2
node 3

t*

Fig. 1. Natural response of three node maximal network in Example 1.

1/t∗. (Note that the function λ(x) = 1 − x ln(1 + 1/x)
is a decreasing function, which further justifies using the
maximum Ki in the network as the worst case.) Since for
any M > Minf there is a K > 0 to upper bound the fastest
coefficient growth in the maximal network, the generating
series for every node in the original network must also be
upper bounded by this growth rate.

It is worth noting that (1) is in fact identical to the growth
constant identified for unity feedback systems with m inputs
as described in [19, Corollary 2]. While the network topolo-
gies are clearly distinct, this point of tangency is derived from
the fact that unity feedback systems and additive maximal
networks both have natural responses satisfying (3).

Example 1: Consider a maximal additive network where
Ki = Mi = 1, i = 1, 2, . . . ,m. The Taylor series of the
natural response has integer coefficients an, n ≥ 1 as shown
in Table I. The coefficients when m = 1 correspond to the
OEIS integer sequence A112487 [17]. The table also shows
the growth rate Minf computed from (1) and an estimate of
the growth constant M computed from M̂n = nan/an−1

when n = 50. The corresponding three node network was
simulated in MatLab for the zero input case. The node
responses, which are identical, are shown in Figure 1. Since
the coefficients of every generating series are positive, it is
known that the natural response of every node will have a
finite escape time at t = t∗ (see [19, Theorem 11]). In this
case, t∗ = 1/Minf = 0.1379, which is what was observed in
the simulation.

0 0.005 0.01 0.015 0.02 0.025 0.03

time
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10
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30

35
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node 2
node 3

t*

Fig. 2. Natural response of three node network in Example 2.

Example 2: Consider a three node additive network in-
volving maximal series with Ki = i, Mi = 5− i and

W =

 1 0.5 1
1 1 0

0.25 1 1

 .
Thus, K̄ = 3, M̄ = 4, and Minf = 77.2867. The node
natural responses are shown in Figure 2. As this network is
not maximal, t∗ = 1/Minf = 0.01294 provides only a lower
bound on the escape times of each node.

IV. ADDITIVE NETWORKS OF CHEN-FLIESS SERIES:
RELATIVE DEGREE

In this section the following question is addressed: When
does the generating series of the mapping vi 7→ yj in an
additively interconnected network Nm have a well defined
relative degree? The treatment starts with the easiest case
first as described next. It is assumed throughout that Nm is
comprised of systems with generating series ci which have
relative degree ri for i = 1, 2, . . . ,m.

Definition 3: The i-th node in a network Nm is said to be
fully connected if Wij 6= 0 for all j 6= i. A network Nm is
said to be fully connected if every node is fully connected.

Note that self-loops, i.e., when Wii 6= 0, are not important
in the present context as proportional output feedback is
easily shown to preserve relative degree [9].

Theorem 5: If the i-th node inNm is fully connected, then
the generating series dji for mapping vi 7→ yj has relative
degree rji = rj + ri.
Proof: Observe that the full output at node j is

yj = Fcj

[
vj +

m∑
k=1

Wjkyk

]

= Fcj

vj +

m∑
k,l=1

WjkFdkl
[vl]

 .



For any i 6= j, that part of yj in response to vi acting alone
(i.e., vl = 0 for l 6= i) is given by

yj = Fcj

[
WjiFci [vi] +

m∑
k=1
k 6=i

WjkFdki
[vi]+

m∑
k,l=1
l 6=i

WjkFdkl
[0]

]
.

Note that for all k 6= i, supp(dki) ⊆ xr0X∗, where r ≥ ri+1,
since vi passes through Fci in every path leading to the j-
th node. In which case, the argument of Fcj above has a
generating series with relative degree ri. The conclusion then
follows immediately from Theorem 2.

c1 

c3 

c4 

c2 

W41 

W21 

W31 

W42 

W43 

Fig. 3. Four node network in Example 3.

Example 3: Consider the network shown in Figure 3. The
corresponding weighting matrix is

W =


0 0 0 0
W21 0 0 0
W31 0 0 0
W41 W42 W43 0

 .
The network is clearly not fully connected, but node 4 is
fully connected assuming W4j 6= 0, j = 1, 2, 3. Therefore,
applying the theorem above gives, for example, that r41 =
r4 + r1.

Suppose now that W41 = 0 so that the theorem no longer
applies. Further assume that r2 = r3 = r. Observe that

u4 = W42Fc2 [W21Fc1 [u1]] +W43Fc3 [W31Fc1 [v1]],

and thus,

d41 = c4 ◦ [W42(c2 ◦ (W21c1)) +W43(c3 ◦ (W31c1))].

Both c2 ◦ (W21c1) and c3 ◦ (W31c1) have relative degree
r+ r1, but d41 can fail to have relative degree. As a simple
example, suppose c1 = c2 = c4 = x1 and c3 = −x1 so
that d41 = (W42W21 − W43W31)x2

0x1. If W is such that
W42W21 = W43W31, then d41 = 0 does not have relative
degree. On the other hand, if the symmetry condition r2 = r3

is broken, then it follows that d41 has relative degree r41 =
r4 + min(r2, r3) + r1.

The final case in the example above suggests a sufficient
condition for the general case. Namely, in the absence of
these degenerate situations where a node is presented with
an input whose underlying generating series does not have
relative degree, the relative degree for dji will be well defined

and determined by a path from node i to node j whose
accumulated relative degrees is minimal. To make this claim
more precise, the following language adapted from signal
flow graph theory will be useful.

Let Nm be a given additive network. An edge is a directed
line segment connecting two nodes. A path is a continuous
set of edges connecting two nodes in Nm and traversed in
the direction indicated. A forward path is a path in which
no node is encountered more than once. A loop is a path
that originates and ends on the same node in which no node
is encountered more than once. Finally, the subgraph Gji
from node i to node j is the simple graph (i.e., all loops are
omitted) consisting of all forward paths connecting node i
and node j.

The following theorems provide a sufficient condition
under which the relative degree is well defined for a given
input-output map vi 7→ yj in an additive network. Given
a subgraph Gji, the accumulated relative degree of node i
is r+

i = ri. If node k 6= i in Gji has N incoming edges
from nodes i1, i2, . . . , iN with accumulated relative degrees
r+
i1
, r+
i2
, . . . , r+

iN
, respectively, then the accumulated relative

degree at node k is

r+
k = rk + min{r+

i1
, r+
i2
, . . . , r+

iN
}.

Note this definition does not imply that any mappings defined
by the network have relative degree, it simply computes the
potential relative degree of such a mapping should it be well
defined.

Theorem 6: Let i and j be fixed nodes in Nm. If at every
node l 6∈{i, j} the accumulated relative degrees of the nodes
from every incoming edge are distinct, then the generating
series dji for vi 7→ yj in Nm has well defined relative degree
equivalent to rji = r+

j .
Proof: As feedback loops do not affect the relative degree
of any forward path, it is sufficient to consider only the sub-
graph Gji. The claim then follows directly from Corollary 1,
Theorem 2, and the definition of accumulated relative degree.

The distinctness condition in the above theorem can be
relaxed by utilizing instead the condition in Corollary 2.

Theorem 7: Let i and j be fixed nodes in Nm. If at
every node l 6∈{i, j} the accumulated relative degrees of the
nodes from every incoming edge satisfy the condition in
Corollary 2, then the generating series dji for vi 7→ yj in
Nm has well defined relative degree equivalent to rji = r+

j .

c2 
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Fig. 4. Network in Example 4.



c2 

c1 

c3 

c4 

c5 

c6 

c7 

1 

3 

2 

2 

3 

1 

1 

4 

3 

5 

7 

6 

1 7 

Fig. 5. Subgraph of forward paths for v1 7→ y7 in Example 4. The relative
degree of each generating series ci is the circled number. The accumulated
relative degree at each node is the number in the triangle.

Example 4: Consider the network shown in Figure 4,
where each weight Wij ∈ {0, 1} (i.e., 0 ∼ not connected,
1 ∼ connected), and the generating series for the nodes are:

c1 = K1x1 + 2x0x1

c2 = x0 +K2x
2
0x2

c3 = K3x0x3 + 3x2
0x

2
3

c4 = 1 +K4x0x4 − x2
0x4x0

c5 = 4x0 +K5x
2
0x5 − 2x4

0x5

c6 = K6x6 − x2
6

c7 = x0 + 2 +K7x7 + 4x0x7

with Ki 6= 0 in every case. The subgraph of forward paths
is shown in Figure 5. The relative degree of the generating
series at each node is the circled number shown next to
each node. The accumulated relative degree at each node
is the number in the triangle The goal is to determine the
relative degree of the mapping v1 7→ y7, provided it is
well defined. Observe that only nodes 4, 5 and 7, have
more than one incoming edge. In each case, the accumulated
relative degrees are distinct, namely, 3, 4; 4, 5; and 6, 7,
respectively. Therefore, Theorem 6 applies, and r71 = 7.
To independently verify this claim, the generating series d71

was computed using the full network via Theorem 3 with
the aid of Mathematica and found to be

d71 = d71,N +K1K3K4K6K7x
6
0x1 + x6

0e,

where

d71,N =x0 + (4K7 +K6K7)x2
0 + (16 + 4K6 −K7)x3

0+

(−4 +K5K7 + 2K4K6K7)x4
0 + (4K5 + 8K4K6−

8K4K7 +K5K7 + 2K4K6K7)x5
0 + · · ·

e = (4K1K3K4K6 − 6K1K3K4K7 +K1K2K5K7+

K1K2K4K6K7 + 2K3K4K6K7)x0x1 + · · ·

The relative degree of d71 is 7 as expected.

An additive network Nm is said to have complete relative
degree if every mapping vi 7→ yj , i, j = 1, 2, . . . ,m has
relative degree. From Theorem 5 it is immediate that fully
connected networks have this property. Another class of
networks sharing this property is given in the following
theorem. It states that in some sense the property of a
network having complete relative degree is generic.

Theorem 8: Consider an additive network Nm where the
weighting matrix has entries Wij ∈ {0, 1}. If the unity
weights are replaced with continuous random variables, then
every sample network has complete relative degree.
Proof: At any given node, the incoming nodes may or
may not have distinct accumulated relative degree. In the
case where they do, then Theorem 6 applies, otherwise,
Theorem 7 applies provided the condition for multiplicities
greater than one can be met. Specifically, at node k with
incoming edges from nodes j1, j2, . . . , jN with accumulated
relative degrees r+

j1
, r+
j2
, . . . , r+

jN
, it is required that if r+

j is
repeated sj > 1 times then

Wij(1)〈dj(1)i, x
r+j −1

0 xi〉+Wij(2)〈dj(2)i, x
r+j −1

0 xi〉+ · · ·

+Wij(sj)〈dj(sj)i, x
r+j −1

0 xi〉 6= 0,

where j(l) ∈ {j1, j2, . . . , jN}, and the Wijl are random vari-
ables with any continuous distribution(s). But this condition
is always true with probability one, and hence, the theorem
is proved.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Fig. 6. Estimate of density function for
∣∣〈d41, x2

0x1〉
∣∣ in Example 5.

Example 5: Reconsider Example 3, where W41 = 0 and
now W21, W31, W42 and W43 are i.i.d. random variables with
a uniform distribution on [0, 1]. An estimate of the density
function for the random variable

∣∣〈d41, x
2
0x1〉

∣∣ is shown
in Figure 6. In every case of the 1000 random networks
generated, d41 had relative degree r = 3 as expected.

V. CONCLUSIONS

Two basic properties were established for an additive
network of input-output systems where each node of the
network is modeled by a convergent Chen-Fliess series.
First it was shown that every input-output map between a
pair of nodes has a locally convergence Chen-Fliess series
representation. An explicit and in some cases achievable
growth bound on the coefficients was computed using the
notion of a maximal network. Second, sufficient conditions
were given under which the input-output map between a pair



of nodes has a well defined relative degree as defined by its
generating series. This analysis led to the conclusion that
this relative degree property is generic when the connection
strengths between nodes are randomized.

REFERENCES

[1] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E.
Knuth, On the Lambert W function, Adv. Comput. Math., 5 (1996)
329–359.

[2] A. Ferfera, Combinatoire du monoı̈de libre et composition de certains
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de Lie filtrées transitives et séries génératrices non commutatives,
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