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From System Level Synthesis to Robust Closed-loop Data-Enabled

Predictive Control

Yingzhao Lian and Colin N. Jones

Abstract— Willems’ fundamental lemma and system level
synthesis both characterize a linear dynamic system by its
input/output sequences. In this work, we extend the application
of the fundamental lemma from deterministic to uncertain LTI
systems and then further prove this extension to be equivalent
to system level synthesis. Based on this uncertain extension,
a robust closed-loop data-enabled predictive control scheme
is proposed, where a causal feedback control law is further
derived. Two numerical experiments, including the temperature
control of a single-zone building, are carried out to validate the
effectiveness of the proposed data-driven controller.

I. INTRODUCTION

Although linear control theory is well-developed, the

Willems’ fundamental lemma [17] and the system level

synthesis [1] still spark significant research interest. The

Willems’ fundamental lemma enables a data-driven charac-

terization of a deterministic linear time invariant (LTI) system

under reasonable assumptions on controllability and persis-

tent excitation. This result has been successfully applied in

controller design [5], [6], [12], [13], which shows better data

efficiency than, for example, reinforcement learning. Further

results in [19] relax the condition of the fundamental lemma,

which improves the scalability of Willems’ fundamental

lemma in practical applications. Beyond the scope of LTI

systems, [10], [4], [3], [14] attempt to extend the lemma to

various nonlinear systems.

Different from Willems’ fundamental lemma, system level

synthesis (SLS) [1] is a model-based framework built for

general uncertain linear systems, which are not necessarily

time-invariant. The main benefit of the SLS scheme is that

it provides an explicit link between a system’s response and

a linear feedback control law. As a model-based method, a

direct integration of SLS into well-developed linear control

theory allows the consideration of model structure and para-

metric uncertainty [9], [16].

The link between these two methods motivates this work.

In [18, Theorem 2], a link between SLS and the fundamental

lemma is derived for deterministic LTI systems. In this work,

we further generalize this result to uncertain LTI systems in

Lemma 2. Inspired by this observation, we develop a causal

robust closed-loop data-enabled predictive control scheme,

which results in the same scale of computational cost as a

model-based robust MPC with a linear feedback law and full
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state measurements. The major contributions of this work are

summarized as follows:

• Show the equivalence between the Willems’ fundamen-

tal lemma and the SLS for uncertain LTI systems.

• A robust closed-loop data-enabled predictive control

scheme is proposed with a causal feedback structure.

Notation

colspan(A) denotes the column space (e.g. range) of the

matrix A. I is the identity matrix and O is a matrix of all

zeros. x := {xi}
T
i=0 denotes a set of size T indexed by

i. xi denotes the measurement of x at time i, a boldface

x := [x⊤
0 , x

⊤
1 . . . x⊤

L ]
⊤ denotes a concatenated sequence of

xi. Meanwhile, the ˜ sign indicates that a measured datapoint

lies within the dataset. For the sake of consistency, L is

reserved for the length of the system responses and nc

denotes the number of columns of a Hankel matrix.

II. PRELIMINARIES

A. Willems’ Fundamental Lemma

Definition 1: A Hankel matrix of depth L associated with

a signal sequence {si}
T
i=0, si ∈ R

ns is

HL(s) :=








s0 s1 . . . sT−L

s1 s2 . . . sT−L+1

...
...

...

sL−1 sL . . . sT








.

A deterministic LTI system, dubbed B(A,B,C,D), is

defined as

xi+1 = Axi +Bui , yi = Cxi +Dui , (1)

whose order is denoted by D(B(A,B,C,D)) := nx. An

L-step trajectory generated by this system is

[u⊤, y⊤] := [u⊤
0 , . . . , u

⊤
L−1, y

⊤
0 , . . . , y

⊤
L−1]

⊤ .

The set of all possible L-step trajectories generated by

B(A,B,C,D) is denoted by BL(A,B,C,D).
Given a sequence of input-output measurements

{ũi, ỹi}
T
i=0, we call the input sequence persistently

exciting of order L if HL(ũ) is full row rank. By building

the following nc-column stacked Hankel matrix

HL(ỹ, ũ) :=

[
HL(ũ)
HL(ỹ)

]

, (2)

we state the Fundamental Lemma as

Lemma 1: [17, Theorem 1] Consider a controllable lin-

ear system and assume {ũ}Ti=0 is persistently exciting of

order L + O(B(A,B,C,D). Then colspan(HL(ũ, ỹ)) =
BL(A,B,C,D).
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B. Data-enabled Predictive Control

Data-enabled predictive control (DeePC) [5] is a predictive

control scheme, which applies the fundamental lemma to

enable data-driven prediction for deterministic LTI systems.

With a noise-free dataset measured offline, ũ and ỹ, a

predictive control problem of horizon nh is formulated as

min
ypred,upred,g

J(ypred, upred)

s.t.







HL,init(ũ)
HL,init(ỹ)
HL,pred(ũ)
HL,pred(ỹ)






g =







uinit

yinit

upred

ypred







Fuupred ≤ fu, Fyypred ≤ fy

, (3)

where J(·, ·) is a convex objective function. Fu, fu, Fy and

fy models polytopic input and output constraints. uinit, yinit

are a fixed-length sequence of measured inputs and outputs

preceding the current point in time. The matrix HL(ũ) is

split into two sub-Hankel matrices as

HL(ũ) =

[
HL,init(ũ)
HL,pred(ũ)

]

.

The matrix HL,init(ũ) is of depth tinit and HL,pred(ũ) is of

depth nh such that tinit +nh = L. The matrices HL,init(ỹ),
HL,pred(ỹ) are defined accordingly. The choice of tinit is

made to ensure a unique estimation of the initial state; please

refer to [13] for more details.

C. System Level Synthesis

For the sake of simplicity, system level synthesis (SLS) is

introduced for a fully observed uncertain LTI system and a

more general setup can be found in [1].

xi+1 = Axi +Bui + wi , (4)

where wi is the process noise. To proceed, we further define

A := blkdiag(

L−1
︷ ︸︸ ︷

A,A, . . . , A,O) ,

B := blkdiag(B,B, . . . , B
︸ ︷︷ ︸

L−1

,O) .

The response of system (4) is

x = ZA x + Z B u + w ,

where x, u,w are the sequences of states, inputs and distur-

bances with x := [x⊤
0 , x

⊤
1 . . . x⊤

L ]
⊤ and u and w are defined

accordingly, where Z is the shift operator. A linear time-

varying feedback control law is defined as

u =








K0,0

K1,0 K1,1

...
. . .

. . .

KT,0 . . . KL,L−1 KL,L








x := Kx , (5)

where Ki,j is the feedback law injecting into ui with

respect to the measurement xj . System level synthesis (SLS)

characterizes all trajectories driven by some linear feedback

control law and it is stated as

Theorem 1: ([1, Theorem 2.1]) Over a horizon t =
0, ..., L − 1, the system dynamics (4) with block-lower-

triangular state feedback law K defining the control action

as u = Kx, the following are true

1) The affine subspace defined by

[
I − ZA −Z B

]
[
Φx

Φu

]

= I , (6)

parametrizes all possible system responses as
[

x

u

]

=

[
Φx

Φu

] [
x0

w

]

(7)

2) For any block-lower-triangular matrices Φx,Φu sat-

isfying (6), the controller K = ΦuΦ
−1
x achieves the

desired response.

III. EQUIVALENCE BETWEEN FUNDAMENTAL LEMMA

AND SLS IN UNCERTAIN LTI SYSTEMS

For the sake of clarity, the equivalence between the funda-

mental lemma and the SLS is established by the system (4),

its general equivalence for the following uncertain LTI sys-

tem will be discussed in Remark 2.

xi+1 = Axi +Bui + Ewi

yi = Cxi +Dui + Fwi .
(8)

The dimensions of the inputs u, the states x and the process

noise w are denoted by nu, nx and nw. Because the

disturbance can be considered as an uncontrolled input, the

fundamental lemma can be generalized to the system (8).

Given an augmented input/output sequence {ũi, w̃i, ỹi}
T
i=0,

by defining HL(ỹ, w̃, ũ) and BL(A,B,C,D,E, F ) in a form

similar to the fundamental lemma (Lemma 1), the extension

of the fundamental lemma is concluded as follows.

Corollary 1: Consider a controllable linear system and

assume ũ and w̃ are both persistently exciting of order

L+O(B(A,B,C,D,E, F )). Then colspan(HL(ỹ, w̃, ũ)) =
BL(A,B,C,D,E, F ).

Consider the fully observed system (4), Corollary 1 im-

plies that for each trajectory x driven by inputs u and

disturbance w, there exists a g ∈ R
nc such that







HL(ũ)
HL(w̃)

HL+1,1(x̃)
HL+1,2:L+1(x̃)






g =





u

w

x



 , (9)

where HL+1(x̃) is split into two parts as

HL+1(x̃) :=

[
HL+1,1(x̃)
HL,2:L(x̃)

]

.

In particular, HL+1,1(x̃) := [x̃0, x̃1 . . . , x̃nc−1] are the first

row block of HL+1(x̃) corresponding to the initial com-

ponents. Accordingly, HL+1,2:L+1(x̃) is the second to the

(L+ 1)-th row block of HL+1(x̃). It is noteworthy to point

out that the Hankel matrix of x̃ is of depth L + 1, because

system (4) has a one-step delay from u to x. We conclude

the following Lemma

Lemma 2: The subspace defined in (6) and (7) is the same

as the subspace defined by (9).



Proof: Equation (7) implies that
[

x

u

]

∈ colspan

([
Φx

Φu

])

.

By Corollary 1, there exists a linear map G such that
[
Φx

Φu

]

=

[
HL+1(x̃)
HL(ũ)

]

G ,

therefore equation (6) is rewritten as

[
I − Z A −Z B

]
[
HL+1(x̃)
HL(ũ)

]

G = I

(a)
=⇒

[
HL+1,1(x̃)
HL(w̃)

]

G = I , (10)

where (a) comes from the substitution of dynamics (4). By

denoting ĝ = G[x⊤
0 ,w]⊤, we have

[
x0

w

]

= I

[
x0

w

]
(b)
=

[
HL+1,1(x̃)
HL(w̃)

]

G

[
x0

w

]

=

[
HL+1,1(x̃)
HL(w̃)

]

ĝ ,

where (b) results from (10). Meanwhile, we have
[

x

u

]

=

[
Φx

Φu

] [
x0

w

]

=

[
HL+1(x̃)
HL(ũ)

]

G

[
x0

w

]

=

[
HL+1(x̃)
HL(ũ)

]

ĝ ,

which shows that every element in the subspace (6) and (7)

corresponds to an element in the subspace (9) by linear trans-

formation. Finally, since the feedback law can be arbitrary,

the subspace (6) and (7) is of dimension nx +L(nu + nw),
which is equal to the dimension of subspace (9). Hence, these

two subspaces are equivalent.

Remark 1: Lemma 2 holds intuitively as they both repre-

sent the same system. The proof shows the exact link be-

tween the fundamental lemma and the SLS. Meanwhile, this

Lemma implies that a model-based controller is essentially

equivalent to a data-driven control.

Remark 2: To generalize the equivalence to system (8),

we only need to further assume the observability of the

system (8). The observability essentially implies that the

sequence of {u,w, y} uniquely determines the sequence of

x, a further application of Lemma 2 shows the general

equivalence.

IV. ROBUST CLOSED-LOOP DEEPC

Based on our discussion in Remark 1, there must exist

a data-driven robust controller for system (8), which is

constructed by augmented input-output data {ũi, w̃i, ỹi}
T
i=0.

According to the Corollary 1, we first modify the prediction

part in DeePC (3) to

∀ wpred ∈ W := {w|Fww ≤ fw}










HL,init(ũ)
HL,init(w̃)
HL,init(ỹ)
HL,pred(ũ)
HL,pred(w̃)
HL,pred(ỹ)











g =











uinit

winit

yinit
upred

wpred

ypred











,
(11)

whose elements are all defined in an approach similar to

the standard DeePC (3) and the disturbance is assumed to

be bounded in a polytope. For the sake of compactness, we

denote the prediction part in (11) as






Hinit

HL,pred(ũ)
HL,pred(w̃)
HL,pred(ỹ)






g =







hinit

upred

wpred

ypred







In this section, we will first formulate a general, but not

necessarily causal, data-driven robust controller. Its causal

realization, which we coin Robust DeePC, is further intro-

duced in Theorem 2.

A. General Robust DeePC

Unlike a feedback controller defined by a state space

model, in a DeePC scheme, inputs upred and ypred are

coupled indirectly through g. Hence, we propose to define

a feedback control law on g and then show that this is

equivalent to state feedback. Similar to most feedback laws

used in robust MPC, g is decomposed into a nominal part g

and a linear feedback part Kdwpred as

g = g +Kdwpred . (12)

Based on this control law, a robust data-driven control is

stated as

Lemma 3: If g and Kd satify following constraints, then

the control law (12) guarantees nh-step robust feasibility.
[

Hinit

HL,pred(w̃)

]

g =

[
hinit

0

]

,

HinitKd = O , HL,pred(w̃)Kd = I ,

∀ wpred ∈ W ,
[
HL,pred(ũ)

HL,pred(ỹ)

]

(g +Kdwpred) =

[
upred + ufb

ypred + yfb

]

[
Fu O

O Fy

][
upred + ufb

ypred + yfb

]

≤

[
fu

fy

]

.

(13)

Proof. In the control law (12), the nominal g generates

a disturbance-free nh step prediction. Hence, based on the

prediction equation (11), we enforce

∀ wpred ∈ W






Hinit

HL,pred(ũ)

HL,pred(w̃)

HL,pred(ỹ)






( g
︸︷︷︸

(a)

+Kdwpred
︸ ︷︷ ︸

(b)

) =







hinit

upred

0

upred






+







0

ufb

wpred

yfb







,

(14)

where the matrix products of (a) and (b) correspond to

the components on the right-hand side accordingly. As the

future disturbance wpred is unknown and arbitrary within the

polytope W , the matrix product of term (b) in (14) implies

HinitKd = O , HL,pred(w̃)Kd = I. (15)

Due to the perturbation of the unknown future disturbance,

the actual input and the actual output under the control

law (12) are upred+ufb and ypred+yfb respectively, which

give the the robust constraints in (13). Hence, we conclude

the proof. �



Lemma 3 allows us to define a robust data-driven control

problem

min
g,Kd,

upred,ypred

max
wpred∈W

J(ypred, upred)

s.t

[

Hinit

HL,pred(w̃)

]

g =

[

hinit

0

]

,

HinitKd = O , HL,pred(w̃)Kd = I ,

∀ wpred ∈ W ,
[

HL,pred(ũ)

HL,pred(ỹ)

]

(g +Kdwpred) =

[

upred + ufb

ypred + yfb

]

[

Fu O

O Fy

][

upred + ufb

ypred + yfb

]

≤

[

fu

fy

]

.

(16)

This problem is a standard robust optimization problem,

which can be reformulated as a convex optimization problem

with a dualization technique [2]. To clarify this procedure,

we define
[

f̃u

f̃y

]

:=

[

fu

fy

]

−

[

Fu O

O Fy

][

HL,pred(ũ)

HL,pred(ỹ)

]

g; .

The resulting convex optimization based on the dualization

technique is

min
g,Kd,Λ

upred,ypred

J(ypred, upred)

s.t.











Hinit

HL,pred(w̃)

HL,pred(ũ)

HL,pred(w̃)











g =











hinit

0

upred

ypred











,

HinitKd = O , HL,pred(w̃)Kd = I ,

Λ⊤
fw ≤

[

f̃u

f̃y

]

,

F
⊤

w Λ = K
⊤

d

[

Fu O

O Fy

]⊤

,

Λ ≥ O , (17)

where constraint (17) is imposed element-wise. The dual

variable matrix is Λ ∈ R
nw×nneq with nneq the total number

of inequality constraints imposed on inputs and outputs,

each column of Λ corresponds to the dual variable of one

inequality constraint of the outputs or the inputs.

B. Causal Robust DeePC

Before discussing the details of this section, we first

recall some notation of the cardinalities used in the previous

sections. ny, nu and nw are the dimensions of the inputs, the

outputs and the process noise, nc is the number of columns

in the Hankel matrices, nh is the prediction horizon in the

optimal control problem (16) and tinit is the depth used in the

initialization Hankel matrix. Based on this, we define HL,i(·)

to be the i-th row block of the Hankel matrix HL, for example

HL,i(x̃) = [x̃i, x̃i+1 . . . , x̃i+nc−1] and the i-th row block of

HL,pred,i(x̃) is [x̃i + tinit, x̃i+1+tinit
. . . , x̃i+nc−1+tinit

]. For

the sake of compactness, we further use the MATLAB index

notation, such that HL,i:j is the i-th to j-th row block of

HL and the i-th to the j-th measurement of sequence x is

xi:j = [x⊤
i , x

⊤
i+1 . . . , x

⊤
j ]

⊤. Finally, we define Kd,:,j as the j-th

block column of feedback law Kd, which corresponds to the

feedback generated by wpred,i and that is the (nw×(i−1))+1-

th to nw × i-th column of wpred

Here starts the main result of this section. If the feedback

matrix Kd is arbitrary, then the feedback control law is not

necessarily causal. In particular, the feedback computed from

wpred,i should not be able to change upred,1:i and ypred,1:i−1,

because those events happen before wpred,i.

Consider now a causal linear feedback control law on the

disturbance

upred = upred +Kwwpred ,

where the feedback law Kw has a causal structure as

Kw :=













O

Kw,1,0 O

...
. . .

. . .

Kw,nh ,0 . . . Kw,nh,nh−1 O













.

The sub-matrices Kw,i,j are of size R
nu×nw . We define a

standard robust MPC controller based on this causal control

law as

min
upred,Kw

ypred

max
wpred

J(ypred, upred)

s.t. xpred,0 = xtinit

∀ i = 0, 1 . . . , nh

xpred,i+1 = Axpred,i +Bupred,i + Ewpred,i

ypred,i = Cxpred,i +Dupred,i + Fwpred,i

∀ wpred ∈ W

upred = upred +Kwwpred

Fuupred ≤ fu Fyypred ≤ fy ,

(18)

where upred := [u⊤
pred,0, . . . , u

⊤
pred,nh

], ypred and wpred are

defined accordingly. The goal of this section is to design

a data-driven robust controller, whose resulting control law

is identical to the model-based controller (18).

To construct the causal data-driven control law, we define

H =































HL,init(ũ)

HL,init(w̃)

HL,init(ỹ)

HL,pred,1(ũ)

HL,pred,1(ỹ)
...

HL,pred,nh
(ũ)

HL,pred,nh
(ỹ)































, (19)

with H ∈ R
nr×nc and nr the number of rows. The QR

decomposition [15] of its transpose is

H
⊤ =

[

Qa Qb

]

[

R

O

]

,



Theorem 2: If the system (8) is observable, then the model-

based robust control law in (18) is identical to the following data-

driven control law,

min
g,Kp,

upred,ypred

max
wpred∈W

J(ypred,upred)

s.t.

[
Hinit

HL,pred(w̃)

]

g =

[
hinit

0

]

Kd =
[
Qa,:,ninit+1:nr

Qb

]
Kp ,

HinitKd = O , HL,pred(w̃)Kd = I

∀ wpred ∈ W
[
HL,pred(ũ)

HL,pred(ỹ)

]

(g +Kdwfb) =

[
upred + upred

ypred + yfb

]

[
Fu O

O Fy

] [
upred + ufb

ypred + yfb

]

≤

[
fu

fy

]

(20)

where ninit := tinit × (nu + ny) + nu and Kp has a lower block

triangular structure as

Kp =













Kp,1,1 O O . . . O

Kp,2,1 Kp,2,2 O . . . O

...
...

. . .
. . .

...

Kp,nh,1 Kp,nh,2 Kp,nh,3 . . . Kp,nh,nh













.

Kp,i,j are dense matrix blocks, whose sizes are (nu + ny) × nw

for ∀ i < nh and are [ny + (nc − nr)]× nw when i = nh.

Proof. First, it is observed that the data-driven formulation

is based on the robust controller (16), where ypred and upred

are both well-defined. By Lemma 2 and our discussion in

Remark 1, the control law will be equivalent once causality

is enforced.

We recall a useful property of QR decomposition [15]:

the range of the first n rows of H is spanned by the first

n columns of Qa. Because [Qa, Qb] is an unitary matrix, the

remaining nr−n columns in Qa and the matrix Qb forms the

null space of the first n rows in matrix H . Considering the

constraint HinitKd = O in problem (16), each column of ma-

trix Kd must lie within the null space of Hinit. Meanwhile,

the feedback ingredients from wpred cannot change the value

of the first input upred,0. In conclusion, we enforce

colspan(Kd) ⊂ colspan([Qa,:,ninit+1:nr , Qb]) ,

with ninit := tinit × (nu + ny) + nu. The j-th column

in matrix Kd, Kd,:,j , defines the feedback ingredient with

respect to wpred,j . By causality, the feedback from wpred,j

should not be able to change the inputs and outputs that

occur before wpred,j . In particular, Kd,:,j should further lie in

the null space of the matrices HL,pred,1:i(ũ),HL,pred,1:i−1(ỹ),

we therefore enforce

Kd,:,j ⊂ colspan([Qa,:,ninit+(j−1)(nu+ny)+1:nr
, Qb]) .

All the constraints on the null spaces can be reformulated as

Kd =
[

Qa,:,ninit+1:nr Qb

]

Kp ,

which concludes the proof. �

We call the controller proposed in Theorem 2 a robust

data-enabled predictive controller (robust DeePC). The robust

DeePC problem can also be reformulated into a convex op-

timization problem with the dualization technique discussed

in the Section IV-A.

C. Discussion

In comparison with a model-based robust controller (18),

the proposed controller distinguishes itself by a data-driven

convex formulation. Meanwhile, the proposed scheme has

the same scale of computational cost. In particular, the size of

the optimization problem (20) only differs in the formulation

of the feedback, where the number of decision variables in

the feedback control law is O(nh × (nu + ny)) due to the

causal reformulation. Hence, the computational cost of the

robust DeePC control scheme is similar to the robust MPC.

In terms of the online data-driven control, the computa-

tional cost of the Hankel matrix update is low. In particular,

the computational cost of the QR decompostion update by

adding or removing a column scales linearly with respect to

the size of the Hankel matrix [7, Section 6.5].

V. NUMERICAL EXAMPLE

In this section, numrical experiments are carried out to

validate the proposed robust DeePC. First, a second order

system is used to show the equivalence between the proposed

robust DeePC and a the MPC (18) with full state measure-

ment. After that, we test the proposed scheme in a building

control problem to adapt power consumption with respect

to the occupation patterns. The code is implemented with

YALMIP [11] interfacing the GUROBI solver [8]

A. Second Order System

The proposed scheme is compared against a robust MPC

controller (18) , and is tested on a second order system:

xi+1 =

[

0.9535 0.0761

−0.8454 0.5478

]

xi +

[

0.0465

0.8454

]

ui +

[

0.0465

0.8454

]

wi

yi =
[

1 0
]

xi ,

the process noise w is bounded within [−0.1, 0.1], the inputs

and outputs are constrained by u ∈ [−5, 5], y ∈ [−0.5, 0.5]. A

quadratic stage cost is used

J(ypred, upred) =

nh
∑

i=1

(ypred,i+1 − r)⊤Q(ypred,i+1 − r)

+ u
⊤

pred,iRupred,i ,

where Q = 10, R = 0.1 and r is the reference. The Hankel

matrices in the robust DeePC are built with a sequence

of length 100. The tracking performance of the proposed

controller is shown in Figure 1, where the robust MPC has

full state measurement. As we claimed in Section IV, the

response of the proposed controller is the same as the robust

MPC (18) with full state measurement. The controller can

safely protect the system away from the constraint by con-

sidering the perturbation caused by the future disturbance.



0 10 20 30 40

−0.5

0

0.5

time

y
Robust DeePC MPC Reference Constraint

Fig. 1: Comparison of the Robust DeePC and the MPC controller.
Note that the two responses are the same.

B. Building Control

We consider a single zone building model, which is

disturbed by internal heat gain, solar radiation and external

temperature. The model used to generate the data is

xi+1 =







0.8511 0.0541 0.0707

0.1293 0.8635 0.0055

0.0989 0.0032 0.7541






xi +







0.0035

0.0003

0.0002






ui

+ 10−3







22.2170 1.7912 42.2123

1.5376 0.6944 2.29214

103.1813 0.1032 196.0444






wi ,

yi =
[

1 0 0
]

xi ,

where x models the indoor temperature, wall temperature and

the corridor temperature respectively. In a building control

problem, the controller is designed to maintain occupant

comfort while minimizing energy consumption. During the

heating season, the indoor temperature is kept above 23◦C

to maintain occupant comfort during the day. When the

room is not used at night, the room temperature is only

required stay above 17◦C. Beyond the control requirements,

the disturbances also show a time dependent pattern. Without

loss of generality, we assume that during the day, the solar

radiation and the internal heat gain are bounded within [4, 6]

with an external temperature fluctuating between [6◦C, 8◦C].

During the night, the solar radiation is 0 with much lower

internal heat gain ranging between [0, 2]. Meanwhile, the

external temperature is also lower at around [2◦C, 4◦C]. As

the controller is designed to minimize power consumption,

the loss function is

J(ypred, upred) = ‖upred,i‖1 .

By building all the relevant Hankel matrices with a 100-

step measurement sequence, the performance of the proposed

controller is shown in Figure 2, where the operation starts

from 6 A.M, and it is already overheated at that point before

the controller effectively lowers the indoor temperature. It

is also observed that the controller pre-heats the room to

slightly above 23◦C before the 6 A.M before the second

morning. This whole cycle shows the effectiveness of the

controller.

VI. CONCLUSION

In this work, we show the equivalence between the SLS

and the Willems’ fundamental lemma for uncertain LTI
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Fig. 2: Temperature control with rboust DeePC

systems. A convex data-driven controller is further proposed,

which has a control law identical to the robust MPC. A toy

example is used to show the equivalence between the robust

DeePC and the robust MPC. The robust DeePC is further val-

idated through a building control problem, which maintains

occupants’ comfort with minimal power consumption.
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