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Abstract—We consider a class of multi-agent optimization
problems, where each agent has a local objective function that
depends on its own decision variables and the aggregate of
others, and is willing to cooperate with other agents to minimize
the sum of the local objectives. After associating each agent
with an auxiliary variable and the related local estimates, we
conduct primal decomposition to the globally coupled problem
and reformulate it so that it can be solved distributedly. Based
on the Douglas-Rachford method, an algorithm is proposed
which ensures the exact convergence to a solution of the original
problem. The proposed method enjoys desirable scalability by
only requiring each agent to keep local estimates whose number
grows linearly with the number of its neighbors. We illustrate our
proposed algorithm by numerical simulations on a commodity
distribution problem over a transport network.

I. Introduction
In a cooperative multi-agent system, there exists a group

of agents each of whom has a specific objective function
depending on the joint decision profile of all agents, and they
cooperate with each other to optimize the sum of their local
objectives. Over the past decade, considerable attention and
effort have been paid to the consensus optimization problem
[1], [2]. There is also some existing work where each agent
keeps its own distinct decision variables [3], [4]. In this paper,
we restrict our attention to a special case where the influences
of other agents’ strategies can be represented through some
aggregative coupling structures [5]. The aggregative coupling
structures have been used to model numerous applications,
e.g., network congestion control [6], demand side management
in smart grids [7], and charging control of electric vehicles [8].
Besides the aggregative coupling in the objective functions,
in many circumstances, the decisions of the agents may be
subject to some global resource constraints [9], [10], such
as total energy and communication channel capacity [11].
The coupled objectives and strategy sets of the agents are at
odds with local privacy concerns and limited scalability. Thus,
distributed algorithms are preferred to solve such problems
which only allow local exchanges of information.

Our proposed solution to the above problem is inspired
by some recent work in non-cooperative games on networks,
i.e., the generalized Nash equilibrium problem (GNEP) [12],
which has attracted increasing research interest, especially
through the avenue of operator splitting [13], [14], [15].
For example, the algorithms proposed in [16], [17] carry
out multiple rounds of communication within each iteration.
With sufficient rounds of information exchange, the proposed
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algorithms can converge to an 𝜖-neighborhood of a general-
ized Nash equilibrium (GNE). The authors of [18] design a
continuous-time algorithm based on the projected dynamics
and non-smooth tracking strategy, which is only applicable if
the coupling constraints can be expressed as a system of linear
equations. More recently, [19], [20] introduce local estimates
of the aggregates of interest, and then leverage the forward-
backward splitting and proximal-point algorithms to compute
the GNEs, respectively. The authors of [21] further develop
an algorithm that can deal with time-varying communication
networks by integrating the projected pseudo-gradient scheme
with dynamic tracking. The convergence of these methods
relies on a proper initialization and an invariance property
throughout the algorithm iterations to ensure valid estimates,
which make them vulnerable to system noise and malicious
attacks.

In this paper, we consider cooperative multi-agent optimiza-
tion problems that are globally coupled by some aggregates
as well as some affine global constraints. We focus on the
cases where the aggregates in objectives and global constraints
share the same linear functional form. Our main contributions
are as follows: a) we present a primal decomposition scheme
that converts the original globally coupled problem into local
problems among individual agents, subject to some consensus
constraints. We show that we can find a minimizer of the orig-
inal problem by computing a zero of an operator derived from
the decomposed problem; b) we use the Douglas-Rachford
(DR) splitting method to develop a distributed algorithm for
computing a zero of the previously derived operator. The exact
convergence of the algorithm can be established without the
need for the invariance property.

Basic Notations: For a set of matrices {𝑉𝑖}𝑖∈𝑆 , we let
blkd(𝑉1, . . . , 𝑉|𝑆 |) or blkd(𝑉𝑖)𝑖∈𝑆 denote the diagonal con-
catenation of these matrices, [𝑉1, . . . , 𝑉|𝑆 |] their horizontal
stack, and [𝑉1; · · · ;𝑉|𝑆 |] their vertical stack. For a set of
vectors {𝑣𝑖}𝑖∈𝑆 , [𝑣𝑖]𝑖∈𝑆 or [𝑣1; · · · ; 𝑣 |𝑆 |] denotes their vertical
stack. For a vector 𝑣 and a positive integer 𝑖, [𝑣]𝑖 denotes
the 𝑖th entry of 𝑣. Denote R B R ∪ {+∞}, R+ B [0, +∞),
and R++ B (0, +∞). S𝑛+ (resp. 𝑆𝑛++) represents the set of all
𝑛×𝑛 symmetric positive semi-definite (resp. definite) matrices.
𝜄S (𝑥) is defined to be the indicator function of a set S, i.e., if
𝑥 ∈ S, then 𝜄S (𝑥) = 0; otherwise, 𝜄S (𝑥) = +∞. 𝑁𝑆 (𝑥) denotes
the normal cone to the set 𝑆 ⊆ R𝑛 at the point 𝑥: if 𝑥 ∈ 𝑆,
then 𝑁𝑆 (𝑥) B {𝑢 ∈ R𝑛 | sup𝑧∈𝑆 〈𝑢, 𝑧 − 𝑥〉 ≤ 0}; otherwise,
𝑁𝑆 (𝑥) B ∅. We use ⇒ to indicate a point-to-set map. For an
operator 𝑇 : R𝑛 ⇒ R𝑛, Zer(𝑇) B {𝑥 ∈ R𝑛 | 𝑇𝑥 3 0} and
Fix(𝑇) B {𝑥 ∈ R𝑛 | 𝑇𝑥 3 𝑥} denote its zero set and fixed
point set, respectively.
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II. Problem Formulation And Preliminaries
A. Cooperative Multi-Agent Optimization Problem

We consider a group of agents indexed by N = {1, . . . , 𝑁},
where each agent 𝑖 ∈ N shall choose its decision variables 𝑥𝑖
from its local feasible set X𝑖 ⊆ R𝑛𝑖 . The goal of each agent 𝑖 is
to minimize its objective 𝐽𝑖 (𝑥𝑖 , 𝑠𝑖 (𝑥−𝑖)), which depends both
on its own local decision 𝑥𝑖 and the aggregate of other agents’
decisions 𝑠𝑖 (𝑥−𝑖). We let the vector 𝑥−𝑖 represent the vertical
stack of other agents’ decisions. The aggregate 𝑠𝑖 : R𝑛−𝑖 → R𝑙
is assumed to be of the form 𝑠𝑖 (𝑥−𝑖) B

∑
𝑗∈N−𝑖

𝐴 𝑗𝑥 𝑗 , where
𝐴 𝑗 ∈ R𝑙×𝑛 𝑗 , 𝑛−𝑖 B

∑
𝑗∈N−𝑖

𝑛 𝑗 , and N−𝑖 denotes the set of all
agents except 𝑖. Besides the local feasible sets, the decisions of
all agents should also satisfy the global constraints given by
X̃ B {𝑥 ∈ X | ∑𝑖∈N 𝐴𝑖𝑥𝑖 ≤ 𝑐}, where 𝑥 B [𝑥1; · · · ; 𝑥𝑁 ],
X B

∏
𝑖∈N X𝑖 , and 𝑐 ∈ R𝑙 is a constant vector denoting

the total availability of 𝑙 global resources shared among all
involved agents.

The setting above gives rise to the specific formulations of
the multi-agent optimization problem we are going to study. In
this problem, this group of agents aim to cooperatively solve
the following convex optimization problem:{

minimize
𝑥𝑖 ∈X𝑖 ,𝑖∈N

𝐽 (𝑥) B ∑
𝑖∈N 𝐽𝑖 (𝑥𝑖 , 𝑠𝑖 (𝑥−𝑖))

subject to
∑

𝑖∈N 𝐴𝑖𝑥𝑖 ≤ 𝑐.
(1)

Assumption 1. (Existence of Subgradient) For each agent 𝑖 ∈
N , 𝐽𝑖 (𝑥𝑖 , 𝑠𝑖) : X𝑖 × R𝑙 → R is an extended-real-valued closed
convex proper (CCP) function in 𝑥𝑖 and 𝑠𝑖 .

Assumption 2. (Feasible Sets) Each local feasible set X𝑖 is
nonempty, closed and convex. The set X̃ is nonempty and
satisfies Slater’s constraint qualification [22, Sec. 3.2].

Under Assumptions 1 and 2, the problem (1) admits a
nonempty minimizer set if and only if there exists a multiplier
𝜆 ∈ R𝑙 such that the Karush-Kuhn-Tucker (KKT) system below
holds [22, Sec. 1.3]:

𝜕𝑥𝑖 𝐽 (𝑥) + 𝐴𝑇
𝑖 𝜆 + 𝑁X𝑖

(𝑥𝑖) 3 0, ∀𝑖 ∈ N ,

0 ≤ 𝜆 ⊥ 𝑐 −∑
𝑖∈N𝐴𝑖𝑥𝑖 ≥ 0,

(2)

where the subgradient can be more explicitly written as
𝜕𝑥𝑖 𝐽 (𝑥) = 𝜕𝑥𝑖 𝐽𝑖 (𝑥𝑖 , 𝑠𝑖 (𝑥−𝑖)) +

∑
𝑗∈N−𝑖

𝐴𝑇
𝑖
𝜕𝑠 𝑗 𝐽 𝑗 (𝑥 𝑗 , 𝑠 𝑗 (𝑥− 𝑗 )).

Assumption 3. The set of minimizers of (1), i.e., {𝑥 | 𝐽 (𝑥) <
+∞, 𝐽 (𝑥) ≤ 𝐽 (𝑥 ′),∀𝑥 ′ ∈ X̃}, is nonempty.

A (typically sparse) communication graph G = (N , E) is
assumed to exist to implement local information exchanges,
where E ⊆ N × N denotes the set of directed edges. Let 𝐸

be the cardinality of E. We denote by (𝑖, 𝑗) a directed edge
with agent 𝑖 as its tail and agent 𝑗 as its head. Each agent
can communicate with its neighbors through arbitrators on
the incident edges and then update its local decision variables
accordingly. For brevity of notation, define the sets of agent
𝑖’s in- and out-neighbors as N+

𝑖
B { 𝑗 ∈ N | ( 𝑗 , 𝑖) ∈ E}

and N−
𝑖
B { 𝑗 ∈ N | (𝑖, 𝑗) ∈ E}, the cardinalities of which

are denoted by 𝑁+
𝑖

and 𝑁−
𝑖
, respectively. Note that although

the multipliers we are going to introduce are defined in a
directed fashion, we assume each node can send messages

to both its in- and out-neighbors, and G should satisfy the
following assumption.

Assumption 4. (Communicability) The underlying commu-
nication graph G = (N , E) is undirected and connected.
Besides, it has no self-loops and ∀𝑖 ∈ N , N−

𝑖
≠ ∅.

B. The Douglas-Rachford (DR) Splitting Method
A set-valued operator T : R𝑛 → 2R𝑛 is called maximally

monotone if ∀(𝑥, 𝑢) ∈ gra(T ) and ∀(𝑦, 𝑣) ∈ gra(T ), 〈𝑥−𝑦, 𝑢−
𝑣〉 ≥ 0, and its graph is not properly contained in the graph
of any other monotone operators. By leveraging the resolvent
of T , i.e., 𝐽T B (𝐼 + T )−1, the proximal point iteration can
generate a sequence converging to a zero of T [23, Sec. 23.4].
However, this method has a drawback that the resolvent of T
often can not be easily evaluated. Another potential difficulty
is that in a network with multiple agents, 𝐽T usually cannot
be implemented distributedly.

The DR splitting method decomposes the operator T as the
sum of two other operators A and B, whose resolvents are
easier to evaluate. This can thus alleviate the computational
burden by evaluating 𝐽A B (𝐼 + A)−1 and 𝐽B B (𝐼 + B)−1

instead. Moreover, if Zer(T ) ≠ ∅, the convergence of the DR
method can be obtained under very mild assumptions, i.e., A
and B are set-valued and maximally monotone [23, Sec. 26.3].

A common strategy to solve networked problems is that,
rather than focusing on T (𝜓) 3 0, we consider Φ−1 T (𝜓) 3
0. Here, Φ is a positive definite matrix, called the design
matrix, which is introduced to facilitate the distributed im-
plementation. By applying the DR method to the splitting
Φ−1 A +Φ−1 B, we obtain the following updating steps:

Calculate 𝐽Φ−1 A : 𝜓 (𝑘+1) B 𝐽Φ−1 A (𝜓̃ (𝑘) );
R-R updates : 𝜓̂ (𝑘+1) B 2 · 𝜓 (𝑘+1) − 𝜓̃ (𝑘) ;
Calculate 𝐽Φ−1 B : 𝜓̄ (𝑘+1) B 𝐽Φ−1 B (𝜓̂ (𝑘+1) );
K-M updates : 𝜓̃ (𝑘+1) B 𝜓̃ (𝑘) + 2𝛾 (𝑘) (𝜓̄ (𝑘+1) − 𝜓 (𝑘+1) ).

(3)

In addition to the aforementioned conditions, if (𝛾 (𝑘) )𝑘∈N is a
sequence in [0, 1] satisfying

∑
𝑘∈N 𝛾 (𝑘) (1 − 𝛾 (𝑘) ) = +∞, then

the sequence (𝜓 (𝑘) )𝑘∈N generated by (3) will converge to a
zero of T [23, Thm. 26.11]. The second and fourth steps in
(3) are trivial and the major workload resides in the first and
third steps. We use 𝜓̂ (𝑘) to denote the results of the reflected
resolvent (R-R) updates 𝑅Φ−1 A (𝜓̃ (𝑘) ) = 2𝜓 (𝑘) − 𝜓̃ (𝑘) and 𝜓̃ (𝑘+1)

the results of the Krasnoselskĳ-Mann (K-M) updates 𝜓̃ (𝑘) +
2𝛾 (𝑘) (𝜓̄ (𝑘+1) − 𝜓 (𝑘+1) ). This set of notations is used throughout
for brevity, and similar notations are defined for decisions 𝑥 (𝑘)

(𝑥 (𝑘) , 𝑥 (𝑘) , 𝑥 (𝑘) ), multipliers 𝜆 (𝑘) (𝜆̂ (𝑘) , 𝜆̄ (𝑘) , 𝜆̃ (𝑘) ), etc.

III. Distributed Algorithm Using Primal Decomposition
A. Primal Decomposition of the Problem

Given the multi-agent optimization problem (1), we intro-
duce for each agent 𝑖 a variable 𝜎𝑖 B

∑
𝑗∈N−𝑖

𝐴 𝑗𝑥 𝑗 ∈ R𝑙 to
track the aggregate of other agents. The global problem (1)
can be equivalently recast into the following problems:

(∀𝑖 ∈ N)
{

minimize
𝑥𝑖 ∈X𝑖 ,𝜎𝑖

𝐽𝑖 (𝑥𝑖 , 𝜎𝑖)

subject to 𝐴𝑖𝑥𝑖 + 𝜎𝑖 ≤ 𝑐;
all agents collectively satisfy: 𝜎𝑖 =

∑
𝑗∈N−𝑖

𝐴 𝑗𝑥 𝑗 ,∀𝑖 ∈ N .

(4)
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The equivalent relationship between the problem (1) and (4)
is given in the following lemma for sake of clarity.

Lemma 1. Suppose Assumptions 1 and 2 hold. Then for any
stack vector 𝑥∗ B [𝑥∗

𝑖
]𝑖∈N where each {𝑥∗

𝑖
,
∑

𝑗∈N−𝑖
𝐴 𝑗𝑥

∗
𝑗
}

is a minimizer of agent 𝑖’s recast problem (4), there exists
a proper 𝜆∗ ∈ R𝑙 such that (𝑥∗, 𝜆∗) is a solution of (2).
Conversely, if the KKT system (2) admits a solution (𝑥†, 𝜆†),
where 𝑥† B [𝑥†

𝑖
]𝑖∈N , for each agent 𝑖 ∈ N , {𝑥†

𝑖
,
∑

𝑗∈N−𝑖
𝐴 𝑗𝑥

†
𝑗
}

is a minimizer of its optimization problem (4).

Proof. See Appendix A. �

However, the current formulation of 𝜎𝑖 is still globally
dependent, while we need to estimate this aggregate with only
local communications. To this end, we associate a weight
matrix 𝑊 ∈ R𝑁×𝑁 with the communication graph G that
satisfies the conditions in Assumption 4. If there is a directed
edge from agent 𝑖 to agent 𝑗 ( 𝑗 ≠ 𝑖), 𝑊𝑖 𝑗 is assigned some
proper negative value; otherwise, 𝑊𝑖 𝑗 = 0. The diagonal
entries are set to be 𝑊𝑖𝑖 = −∑

𝑗∈N 𝑊𝑖 𝑗 = −∑
𝑗∈N−

𝑖
𝑊𝑖 𝑗 > 0. By

the connectivity condition in Assumption 4, the defined weight
matrix 𝑊 has an eigenvalue 0 with multiplicity 1, with an
associated eigenvector 1𝑁 . Furthermore, we endow each agent
𝑖 with an auxiliary variable 𝑦𝑖 ∈ R𝑙 . With the introduction of
{𝑦𝑖}𝑖∈N and weight matrix 𝑊 , we can rewrite the problem (4)
as follows:

minimize
𝑥𝑖 ∈X𝑖 ,𝜎𝑖 ,𝑦𝑖

𝐽𝑖 (𝑥𝑖 , 𝜎𝑖)

subject to 𝐴𝑖𝑥𝑖 + 𝜎𝑖 ≤ 𝑐

(𝑁 − 1)𝐴𝑖𝑥𝑖 − 𝜎𝑖 = 𝑊𝑖𝑖𝑦𝑖 +
∑

𝑗∈N+
𝑖
𝑊 𝑗𝑖𝑦 𝑗

𝐴𝑖𝑥𝑖 + 𝜎𝑖 = 𝐴 𝑗𝑥 𝑗 + 𝜎𝑗 ,∀ 𝑗 ∈ N+
𝑖
.

(5)

A proof of the equivalence between (4) and (5) can be found
in Appendix B. Besides its own variables, the problem (5) of
agent 𝑖 only involves the auxiliary variables of its in-neighbors.
Hence, (5) is a locally dependent problem. To facilitate the
distributed implementation, each agent 𝑖 is assumed to keep
a local estimate for the auxiliary variable of each of its in-
neighbors. Let 𝑦 𝑗𝑖 denote the local estimate of 𝑦 𝑗 kept by agent
𝑖. With these local estimates, we can rewrite the preceding
problem (5) as:

minimize
𝑥𝑖 ∈X𝑖 ,𝜎𝑖 ,𝒚𝑖

𝐽𝑖 (𝑥𝑖 , 𝜎𝑖)

subject to 𝐴𝑖𝑥𝑖 + 𝜎𝑖 ≤ 𝑐

(𝑁 − 1)𝐴𝑖𝑥𝑖 − 𝜎𝑖 = 𝑊𝑖𝑖𝑦𝑖 +
∑

𝑗∈N+
𝑖
𝑊 𝑗𝑖𝑦 𝑗𝑖

𝐴𝑖𝑥𝑖 + 𝜎𝑖 = 𝐴 𝑗𝑥 𝑗 + 𝜎𝑗 ,∀ 𝑗 ∈ N+
𝑖

𝑦 𝑗𝑖 = 𝑦 𝑗 ,∀ 𝑗 ∈ N+
𝑖
,

(6)

where 𝒚𝑖 B [𝑦𝑖; [𝑦 𝑗𝑖] 𝑗∈N+
𝑖
]. By this reformulation, the cou-

pling with other agents is sandboxed inside the consensus
constraints between each auxiliary variable 𝑦𝑖 and the local
estimate 𝑦𝑖 𝑗 kept by each out-neighbor 𝑗 . As will be shown
later, these consensus constraints can be enforced by some
simple updating steps, making (6) more tractable than the one
in (5). It is worth highlighting that the local variables kept by
each agent 𝑖 has dimension 𝑛𝑖 + 𝑙 (2+𝑁+

𝑖
) which merely grows

linearly with the number of its in-neighbors and allows better
scalability in a sparsely connected communication network.

To study agent 𝑖’s local optimization problem (6), we
consider its associated Lagrangian L𝑖 defined as follows:

L𝑖 = 𝐽𝑖 (𝑥𝑖 , 𝜎𝑖) + 𝜄X𝑖
(𝑥𝑖) + 𝜄Q𝑖

(𝑥𝑖 , 𝜎𝑖) + 𝜄F𝑖 (𝑥𝑖 , 𝜎𝑖 , 𝒚𝑖)
+∑

𝑗∈N+
𝑖

(
𝜆𝑇𝑗𝑖 (𝐴𝑖𝑥𝑖 + 𝜎𝑖 − 𝐴 𝑗𝑥 𝑗 − 𝜎𝑗 ) + 𝜇𝑇𝑗𝑖 (𝑦 𝑗𝑖 − 𝑦 𝑗 )

)
,

where 𝜆 𝑗𝑖 is the Lagrange multiplier of the constraint 𝐴𝑖𝑥𝑖 +
𝜎𝑖−𝐴 𝑗𝑥 𝑗−𝜎𝑗 = 0; 𝜇 𝑗𝑖 is the Lagrange multiplier incentivizing
the consensus between 𝑦 𝑗𝑖 and 𝑦 𝑗 ; Q𝑖 B {(𝑥𝑖 , 𝜎𝑖) | 𝐴𝑖𝑥𝑖+𝜎𝑖 ≤
𝑐} denotes the local feasible set corresponding to the first
constraint of (6); and F𝑖 B {(𝑥𝑖 , 𝜎𝑖 , 𝒚𝑖) | (𝑁 − 1)𝐴𝑖𝑥𝑖 −
𝜎𝑖 = 𝑊𝑖𝑖𝑦𝑖 +

∑
𝑗∈N+

𝑖
𝑊 𝑗𝑖𝑦 𝑗𝑖} denotes the local feasible set

corresponding to the second constraint of (6).
Summing the Lagrangians of all agents, we obtain the

Lagrangian for the network optimization problem given by:

Lnet =
∑︁
𝑖∈N

(
𝐽𝑖 (𝑥𝑖 , 𝜎𝑖) + 𝜄X𝑖

(𝑥𝑖) + 𝜄Q𝑖
(𝑥𝑖 , 𝜎𝑖) + 𝜄F𝑖 (𝑥𝑖 , 𝜎𝑖 , 𝒚𝑖)

)
+

∑︁
( 𝑗 ,𝑖) ∈E

(
𝜆𝑇𝑗𝑖 (𝐴𝑖𝑥𝑖 + 𝜎𝑖 − 𝐴 𝑗𝑥 𝑗 − 𝜎𝑗 ) + 𝜇𝑇𝑗𝑖 (𝑦 𝑗𝑖 − 𝑦 𝑗 )

)
.

(7)

As will be shown later in the paper, by finding a saddle point
of the network Lagrangian, we can obtain a solution of the
original problem (1). For convenience, we shall write {𝒚𝑖} in
replacement of the more cumbersome notation {𝒚𝑖}𝑖∈N and
similarly for other variables on nodes and edges (e.g. {𝜇 𝑗𝑖} in
replacement of {𝜇 𝑗𝑖} ( 𝑗 ,𝑖) ∈E𝑔

), unless otherwise specified.
Noting the structure of the consensus term in the net-

work Lagrangian defined above, i.e.,
∑

( 𝑗 ,𝑖) ∈E 𝜇𝑇
𝑗𝑖
(𝑦 𝑗𝑖 − 𝑦 𝑗 ),

we can organize {𝒚𝑖} and {𝜇 𝑗𝑖} into a single vector
𝜔 B [𝜔1; · · · ;𝜔𝑖; · · · ;𝜔𝑁 ], and construct a matrix 𝑀𝑦 B
blkd(𝑀𝑦𝑖 )𝑖∈N ∈ R(2𝐸+𝑁 )×(2𝐸+𝑁 ) with 𝜔𝑖 and 𝑀𝑦𝑖 defined by:

𝜔𝑖 B



𝑦𝑖
𝜇𝑖 𝑗1
𝑦𝑖 𝑗1
...

𝜇𝑖 𝑗𝑁−
𝑖

𝑦𝑖 𝑗𝑁−
𝑖


, 𝑀𝑦𝑖 B



0 −1 0 · · · −1 0
−1 0 1 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...

−1 0 0 · · · 0 1
0 0 0 · · · 1 0


, (8)

where ( 𝑗1, . . . , 𝑗𝑁 −
𝑖
) is an arbitrary ordered list of N−

𝑖
. Then,

the consensus term can be written as 1
2𝜔

𝑇 (𝑀𝑦 ⊗ 𝐼𝑙)𝜔.
To solve the multi-agent optimization problem, we need to

find the stationary points of the network Lagrangian (7). By
taking the subgradient of Lnet w.r.t. each variable and reversing
the sign of the rows corresponding to the dual variables, we
can derive the set-valued operator T given by:

T : 𝜓 ↦→ 𝜕
(∑

𝑖∈N𝐽𝑖 (𝑥𝑖 , 𝜎𝑖) + 𝜄X𝑖
(𝑥𝑖) + 𝜄Q𝑖

(𝑥𝑖 , 𝜎𝑖)

+ 𝜄F𝑖 (𝑥𝑖 , 𝜎𝑖 , 𝒚𝑖)
)
+


0 0 𝐴𝑇 𝐵𝑙 0
0 0 𝐵𝑙 0

−𝐵𝑇
𝑙
𝐴 −𝐵𝑇

𝑙
0 0

0 0 0 𝑀 ′
𝑦

 𝜓,
(9)

where 𝐴 B blkd(𝐴𝑖)𝑖∈N ; 𝐵 is the incidence matrix of the
communication graph G; 𝐵𝑙 B (𝐵 ⊗ 𝐼𝑙); 𝑀 ′

𝑦 B blkd(𝑀 ′
𝑦𝑖
)𝑖∈N

with 𝑀 ′
𝑦𝑖

being a skew-symmetric matrix generated by revers-
ing the sign of the even rows of 𝑀𝑦𝑖 ; 𝜎 and 𝜆 are the stack
vectors of {𝜎𝑖} and {𝜆 𝑗𝑖}; 𝜓 denotes the stack of the these
variables, i.e. 𝜓 B [𝑥;𝜎;𝜆;𝜔].
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Theorem 1. Suppose Assumptions 1, 2, and 4 hold. Then for
any zero point [𝑥∗;𝜎∗;𝜆∗;𝜔∗] ∈ Zer(T ), 𝑥∗ is a minimizer of
(1). Conversely, for any minimizer 𝑥† of the problem (1), we
can choose proper 𝜎†, 𝜆†, and 𝜔†, such that [𝑥†;𝜎†;𝜆†;𝜔†] ∈
Zer(T ).
Proof. See Appendix B. �

B. Operator Splitting and Distributed Algorithm
We can split the operator T into two operators A and B,

and construct a design matrix Φ, which are given by:

A :


𝑥

𝜎

𝜆

𝜔

 ↦→ 𝜕 (
∑︁
𝑖∈N

𝐽𝑖 (𝑥𝑖 , 𝜎𝑖))

+


0 0 1

2 𝐴
𝑇 𝐵𝑙 0

0 0 1
2𝐵𝑙 0

− 1
2𝐵

𝑇
𝑙
𝐴 − 1

2𝐵
𝑇
𝑙

0 0
0 0 0 𝑀 ′

𝑦



𝑥

𝜎

𝜆

𝜔

 ,
(10)

B :


𝑥

𝜎

𝜆

𝜔

 ↦→ 𝜕
(∑︁
𝑖∈N

𝜄X𝑖
(𝑥𝑖) + 𝜄Q𝑖

(𝑥𝑖 , 𝜎𝑖) + 𝜄F𝑖 (𝑥𝑖 , 𝜎𝑖 , 𝒚𝑖)
)

+


0 0 1

2 𝐴
𝑇 𝐵𝑙 0

0 0 1
2𝐵𝑙 0

− 1
2𝐵

𝑇
𝑙
𝐴 − 1

2𝐵
𝑇
𝑙

0 0
0 0 0 0



𝑥

𝜎

𝜆

𝜔

 ,
(11)

Φ B


𝝉−1

1 0 − 1
2 𝐴

𝑇 𝐵𝑙 0
0 𝝉−1

2 − 1
2𝐵𝑙 0

− 1
2𝐵

𝑇
𝑙
𝐴 − 1

2𝐵
𝑇
𝑙

𝝉−1
3 0

0 0 0 𝝉−1
4

 , (12)

where 𝝉1 B blkd(𝜏11𝐼𝑛, . . . , 𝜏1𝑁 𝐼𝑛) with the scalars 𝜏1𝑖 > 0
for 𝑖 ∈ N ; similarly for 𝝉2, 𝝉3, and 𝝉4. These step sizes can
be chosen based on the Gershgorin circle theorem [24] to
guarantee Φ ∈ S++. The operator A is maximally monotone
since in Assumption 1, each objective 𝐽𝑖 is assumed to be
jointly convex in 𝑥𝑖 and 𝜎𝑖 , and 𝐷 + 𝑀̄ ′

𝑦 is skew-symmetric.
The maximal monotonicity of B can be similarly established.

As suggested in the DR splitting (3), we next evaluate the
analytical expressions for 𝐽Φ−1 A and 𝐽Φ−1 B . For brevity, let
𝜆
(𝑘)
𝑖𝐵
B

∑
𝑗∈N+

𝑖
𝜆
(𝑘)
𝑗𝑖

− ∑
𝑗∈N−

𝑖
𝜆
(𝑘)
𝑖 𝑗

, which can be obtained
through the communications among agent 𝑖 and its incident
edges. The variable 𝜆̂

(𝑘)
𝑖𝐵

is defined similarly.
For 𝜓 (𝑘+1) B 𝐽Φ−1 A (𝜓̃ (𝑘) ), it corresponds to the inclusion

(Φ + A)𝜓 (𝑘+1) 3 Φ𝜓̃ (𝑘) . Each agent 𝑖 can update its local
decisions 𝑥𝑖 and local estimates 𝜎𝑖 by solving the following
problem using local information 𝑥

(𝑘)
𝑖

, 𝜎̃
(𝑘)
𝑖

and the dual
information 𝜆̃

(𝑘)
𝑖𝐵

from its incident edges:

minimize
𝑥𝑖 ,𝜎𝑖

𝐽𝑖 (𝑥𝑖 , 𝜎𝑖) + 1
2 (𝜆̃

(𝑘)
𝑖𝐵

)𝑇 (𝐴𝑖𝑥𝑖 + 𝜎𝑖)

+ 1
2𝜏1𝑖

‖𝑥𝑖 − 𝑥
(𝑘)
𝑖

‖2
2 + 1

2𝜏2𝑖
‖𝜎𝑖 − 𝜎̃

(𝑘)
𝑖

‖2
2.

(13)

After both incident agents solve (13), the dual variable 𝜆
(𝑘+1)
𝑗𝑖

maintained by the edge ( 𝑗 , 𝑖) can be updated by:

𝜆
(𝑘+1)
𝑗𝑖 = 𝜆̃

(𝑘)
𝑗𝑖 + 1

2𝜏3 𝑗𝑖 ·
(
𝐴

𝑖
𝑥
(𝑘+1)
𝑖 + 𝜎̂

(𝑘+1)
𝑖 − 𝐴

𝑗
𝑥
(𝑘+1)
𝑗 − 𝜎̂

(𝑘+1)
𝑗 ), (14)

where 𝑥 (𝑘+1)
𝑖 and 𝜎̂

(𝑘+1)
𝑖 are the results of 𝑅Φ−1 A as shown in (3).

The update of 𝜔 (𝑘+1) is given by (𝝉−1
4 +𝑀 ′

𝑦) ·𝜔 (𝑘+1) = 𝝉−1
4 𝜔̃ (𝑘) ,

which is independent of the updates of 𝑥, 𝜎 and 𝜆. To have
the analytical solution to it, notice that:

𝜇
(𝑘+1)
𝑖 𝑗 + 𝜏4𝑖 (𝑦

(𝑘+1)
𝑖 − 𝑦

(𝑘+1)
𝑖 𝑗 ) = 𝜇̃

(𝑘)
𝑖 𝑗 , edge (𝑖, 𝑗);

𝑦
(𝑘+1)
𝑖 + 𝜏4𝑖 (−

∑
𝑗∈N−

𝑖
𝜇

(𝑘+1)
𝑖 𝑗 ) = 𝑦̃

(𝑘)
𝑖 , agent 𝑖;

𝑦
(𝑘+1)
𝑖 𝑗 + 𝜏4𝑖𝜇

(𝑘+1)
𝑖 𝑗 = 𝑦̃

(𝑘)
𝑖 𝑗 , agent 𝑗 .

(15)

The above computation is restricted to the agent 𝑖, its out-
edges, and its out-neighbors. We can thus derive the analytical
expressions for the local updates of auxiliary variables and
their dual variables, which are summarized in Subroutine 1.

Subroutine 1: Auxiliary-Consensus-Update (ACU)
Input: { 𝒚̃ (𝑘)

𝑖 }, {𝜇̃ (𝑘)
𝑗𝑖 };

for agent 𝑖 ∈ N do
For each 𝑗 ∈ N−

𝑖
, receive 𝜇̃

(𝑘)
𝑖 𝑗 and 𝑦̃

(𝑘)
𝑖 𝑗 ;

𝑦
(𝑘+1)
𝑖 B

1+𝜏2
4𝑖

1+𝜏2
4𝑖 (1+𝑁

−
𝑖
) ( 𝑦̃

(𝑘)
𝑖 + 𝜏4𝑖

1+𝜏2
4𝑖

∑
𝑗∈N−

𝑖

( 𝜇̃ (𝑘)
𝑖 𝑗 + 𝜏4𝑖 𝑦̃

(𝑘)
𝑖 𝑗 ));

end
for edge ( 𝑗 , 𝑖) ∈ E do

Receive 𝑦
(𝑘+1)
𝑗 from its tail and 𝑦̃

(𝑘)
𝑗𝑖 from its head ;

𝜇
(𝑘+1)
𝑗𝑖 B 1

1+𝜏2
4 𝑗
𝜇̃

(𝑘)
𝑗𝑖 + 𝜏4 𝑗

1+𝜏2
4 𝑗
( 𝑦̃ (𝑘)

𝑗𝑖 − 𝑦
(𝑘+1)
𝑗 );

end
for agent 𝑖 ∈ N do

For each 𝑗 ∈ N +
𝑖
, receive 𝜇

(𝑘+1)
𝑗𝑖 from its in-edge ;

𝑦
(𝑘+1)
𝑗𝑖 B 𝑦̃

(𝑘)
𝑗𝑖 − 𝜏4 𝑗𝜇

(𝑘+1)
𝑗𝑖 ;

end
Return: {𝒚 (𝑘+1)

𝑖 }, {𝜇 (𝑘+1)
𝑗𝑖 }.

For 𝜓̄ (𝑘+1) B 𝐽Φ−1 B (𝜓̂ (𝑘+1) ), the inclusions of 𝑥, 𝜎̄, and 𝑦̄

are coupled locally, and each agent 𝑖 should update them by
solving the following local system of inclusions:

𝜕𝑥𝑖 𝜄Q𝑖
(𝑥 (𝑘+1)

𝑖 , 𝜎̄
(𝑘+1)
𝑖 ) + 𝜕𝑥𝑖 𝜄F𝑖 (𝑥

(𝑘+1)
𝑖 , 𝜎̄

(𝑘+1)
𝑖 , 𝒚̄ (𝑘+1)

𝑖 )
+𝜕𝑥𝑖 𝜄X𝑖

(𝑥 (𝑘+1)
𝑖 ) + 1

2 𝐴
𝑇
𝑖 𝜆̂

(𝑘+1)
𝑖 + 1

𝜏1𝑖
(𝑥 (𝑘+1)

𝑖 − 𝑥
(𝑘+1)
𝑖 ) 3 0

𝜕𝜎𝑖
𝜄Q𝑖

(𝑥 (𝑘+1)
𝑖 , 𝜎̄

(𝑘+1)
𝑖 ) + 𝜕𝜎𝑖

𝜄F𝑖 (𝑥
(𝑘+1)
𝑖 , 𝜎̄

(𝑘+1)
𝑖 , 𝒚̄ (𝑘+1)

𝑖 )
+ 1

2 𝜆̂
(𝑘+1)
𝑖 + 1

𝜏2𝑖
(𝜎̄ (𝑘+1)

𝑖 − 𝜎̂
(𝑘+1)
𝑖 ) 3 0

𝜕𝒚𝑖 𝜄F𝑖 (𝑥
(𝑘+1)
𝑖 , 𝜎̄

(𝑘+1)
𝑖 , 𝒚̄ (𝑘+1)

𝑖 ) + 1
𝜏4𝑖

( 𝒚̄ (𝑘+1)
𝑖 − 𝒚̂ (𝑘+1)

𝑖 ) 3 0.

(16)

Define 𝑀F𝑖 B [(𝑁 − 1)𝐴𝑖 ,−𝐼𝑙 ,−𝑊𝑖𝑖 ⊗ 𝐼𝑙 ,−[𝑊 𝑗𝑖]𝑇𝑗∈N+
𝑖

⊗ 𝐼𝑙] ∈
R𝑙×(𝑛𝑖+𝑙 (𝑁+

𝑖
+2) ) , and 𝑥

(𝑘+1)
𝑖 B 𝑥

(𝑘+1)
𝑖 − 𝜏1𝑖

2 𝐴𝑇
𝑖
𝜆̂

(𝑘+1)
𝑖 and 𝜎̌

(𝑘+1)
𝑖 B

𝜎̂
(𝑘+1)
𝑖 − 𝜏2𝑖

2 𝜆̂
(𝑘+1)
𝑖 . Then, finding zeros of (16) is equivalent to

solving the following constrained minimization problem:
minimize
𝑥𝑖 ∈X𝑖 ,𝜎𝑖 ,𝒚𝑖

1
2𝜏1𝑖

‖𝑥𝑖 − 𝑥
(𝑘+1)
𝑖 ‖2 + 1

2𝜏2𝑖
‖𝜎𝑖 − 𝜎̌

(𝑘+1)
𝑖 ‖2

+ 1
2𝜏4𝑖

‖𝒚𝑖 − 𝒚̂ (𝑘+1)
𝑖 ‖2

subject to 𝑀F𝑖 · [𝑥𝑖;𝜎𝑖; 𝒚𝑖] = 0, 𝐴𝑖𝑥𝑖 + 𝜎𝑖 ≤ 𝑐

. (17)

For the variables maintained by the edges, the dual variable 𝜇̄

remains the same, while 𝜆̄ 𝑗𝑖 is updated by:

𝜆̄
(𝑘+1)
𝑗𝑖 = 𝜆̂

(𝑘+1)
𝑗𝑖 + 𝜏3 𝑗𝑖 ·

(
𝐴

𝑖
𝑥
(𝑘+1)
𝑖 + 𝜎̄

(𝑘+1)
𝑖 − 𝐴

𝑗
𝑥
(𝑘+1)
𝑗

− 𝜎̄
(𝑘+1)
𝑗 − 1

2 (𝐴𝑖
𝑥
(𝑘+1)
𝑖 + 𝜎̂

(𝑘+1)
𝑖 − 𝐴

𝑗
𝑥
(𝑘+1)
𝑗 − 𝜎̂

(𝑘+1)
𝑗 )

)
.

(18)

Overall, Algorithm 2 summarizes the proposed algorithm for
finding a minimizer of (1) based on the DR framework (3).
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Theorem 2. Suppose that Assumptions 1-4 hold, the sequence
(𝛾 (𝑘) )𝑘∈N satisfies 𝛾 (𝑘) ∈ [0, 1] and

∑
𝑘∈N 𝛾 (𝑘) (1 − 𝛾 (𝑘) ) =

+∞, and 𝝉1, 𝝉2, 𝝉3 and 𝝉4 are properly chosen such that
the design matrix Φ is positive definite. Then the sequence
(𝑥𝑘 )𝑘∈N generated by Algorithm 2 will converge to a zero of
the operator T and thereby to a v-GNE of the original GNEP
in (1).

Proof. The convergence of the proposed algorithm immedi-
ately follows from the fact that the operators A and B are
both maximally monotone [23, Thm. 26.11]. �

Algorithm 2: Algorithm for Globally-Coupled Multi-
Agent Optimization Problem

Initialize: {𝑥 (0)
𝑖 }, {𝜎̃ (0)

𝑖 }, {𝜆̃ (0)
𝑗𝑖 }, { 𝒚̃

(0)
𝑖 }, {𝜇̃ (0)

𝑗𝑖 };
Iterate until convergence:
({𝒚 (𝑘+1)

𝑖 }, {𝜇 (𝑘+1)
𝑗𝑖 }) B ACU({ 𝒚̃ (𝑘)

𝑖 }, {𝜇̃ (𝑘)
𝑗𝑖 }) ;

for agent 𝑖 ∈ N do
Receive 𝜆̃

(𝑘)
𝑗𝑖 and 𝜆̃

(𝑘)
𝑖 𝑗 from its in- and out-edges ;

Obtain 𝑥
(𝑘+1)
𝑖 and 𝜎

(𝑘+1)
𝑖 by solving (13);

R-R updates: 𝑥 (𝑘+1)
𝑖 , 𝜎̂

(𝑘+1)
𝑖 , 𝒚̂ (𝑘+1)

𝑖 ;
end
for edge ( 𝑗 , 𝑖) ∈ E do

Receive 𝐴𝑖𝑥
(𝑘+1)
𝑖 + 𝜎̂

(𝑘+1)
𝑖 and 𝐴𝑖𝑥

(𝑘+1)
𝑗 + 𝜎̂

(𝑘+1)
𝑗 ;

Obtain 𝜆
(𝑘+1)
𝑗𝑖 by (14); R-R updates: 𝜆̂ (𝑘+1)

𝑗𝑖 ;
end
for agent 𝑖 ∈ N do

Receive 𝜆̂
(𝑘+1)
𝑗𝑖 and 𝜆̂

(𝑘+1)
𝑖 𝑗 from its in- and out-edges ;

Obtain 𝑥
(𝑘+1)
𝑖 , 𝜎̄ (𝑘+1)

𝑖 and 𝒚̄ (𝑘+1)
𝑖 by solving (17);

end
for edge ( 𝑗 , 𝑖) ∈ E do

Receive 𝐴𝑖𝑥
(𝑘+1)
𝑖 + 𝜎̄

(𝑘+1)
𝑖 and 𝐴𝑖𝑥

(𝑘+1)
𝑗 + 𝜎̄

(𝑘+1)
𝑗 ;

Obtain 𝜆̄
(𝑘+1)
𝑗𝑖 by (18);

end
K-M updates: 𝜓̃ (𝑘+1) = 𝜓̃ (𝑘) + 2𝛾 (𝑘) (𝜓̄ (𝑘+1) − 𝜓 (𝑘+1) );
Return: {𝑥 (𝑘)

𝑖 }.

IV. Commodity Distribution Problem
We consider a commodity distribution problem adapted

from [22, Sec. 1.4.3], [16], where several branches of the
same company produce a common homogeneous commodity.
A transport network exists that has markets as its nodes and
roads as its edges. Denote the node set of this network by N𝑇

and the edge set E𝑇 , the cardinalities of which are 𝑁𝑇 and 𝐸𝑇 ,
respectively. These branches attempt to cooperatively optimize
their total profit by deciding the production quantities at the
factories and the distribution quantities over the markets.

Each branch 𝑖 delivers the commodity from the factories,
denoted by N𝑇𝑖 , to different markets through the transport
network. Let 𝑁𝑇𝑖 B |N𝑇𝑖 |. Its decision vector 𝑥𝑖 ∈ R𝑛𝑖 with
𝑛𝑖 B 𝐸𝑇 + 𝑁𝑇𝑖 consists of two parts: 𝑢𝑖 ∈ R𝐸𝑇

+ represents
the quantities of commodity transported through each road
𝑒𝑇 ∈ E𝑇 ; 𝜈𝑖 ∈ R𝑁𝑇𝑖

+ denotes the quantities of commodity
produced by the factories owned by branch 𝑖. These two
parts uniquely determine the distribution of commodity over
the markets. Assuming the factories owned by branch 𝑖 have
maximum production capacities 𝑏𝑖 ∈ R𝑁𝑇𝑖

++ , each entry of
the vector 𝑢𝑖 ∈ R𝐸𝑇 is upper-bounded by ‖𝑏𝑖 ‖1. Denote by

Figure 1: Performances of Algorithm 2 (a)
∑

𝑖∈N ‖𝑥 (𝑘+1)
𝑖 −𝑥 (𝑘)

𝑖 ‖/𝑁𝑥 (𝑘)
𝑖 ,

(b)
∑

𝑖∈N ‖𝑦 (𝑘+1)
𝑖 − 𝑦

(𝑘)
𝑖 ‖/𝑁 ‖𝑦 (𝑘)

𝑖 ‖, (c) ‖max{0,∑𝑖∈N 𝐴𝑖𝑥
(𝑘)
𝑖 − 𝑐}‖,

(d)
∑

( 𝑗,𝑖)∈E ‖𝑦 (𝑘+1)
𝑗𝑖 − 𝑦

(𝑘)
𝑗 ‖/𝐸 , (e)

∑
𝑖∈N ‖𝜎 (𝑘)

𝑖 − ∑
𝑗∈N−𝑖

𝐴 𝑗𝑥
(𝑘)
𝑗 ‖/𝑁 ,

(f)
∑

𝑖∈N ‖𝑥 (𝑘+1)
𝑖 − 𝑥∗𝑖 ‖/𝑁 ‖𝑥∗𝑖 ‖.

Figure 2: The Commodity Distribution over the Transport Net

𝐵𝑇 ∈ R𝑁𝑇 ×𝐸𝑇 the incidence matrix of this transport network,
and by 𝐸𝑖 ∈ R𝑁𝑇 ×𝑁𝑇𝑖 the indicator matrix which maps from
each entry of 𝜈𝑖 to the corresponding markets. Then, we have
the local matrix 𝐴𝑖 B [𝐵𝑇 , 𝐸𝑖] and the local feasible set X𝑖 B
{𝑥𝑖 ∈ R𝐸𝑇 +𝑁𝑇𝑖 |0 ≤ 𝜈𝑖 ≤ 𝑏𝑖 , 0 ≤ 𝑢𝑖 ≤ ‖𝑏𝑖 ‖1 ⊗ 1𝐸𝑇

, 𝐴𝑖𝑥𝑖 ≥ 0}.
The objective function of branch 𝑖 ∈ N is given by

𝐽𝑖 (𝑥𝑖 , 𝑥−𝑖) = 1
2𝑥𝑖

𝑇𝑄𝑖𝑥𝑖 + 𝛼𝑖 ‖𝐴𝑥‖2
2 − (𝑤 − Σ𝐴𝑥)𝑇 𝐴𝑖𝑥𝑖 , where

𝐴 B [𝐴1, . . . , 𝐴𝑁 ], 𝑥 B [𝑥1; · · · ; 𝑥𝑁 ], 𝑄𝑖 ∈ S𝑛𝑖++ is a diagonal
matrix, and we let 𝑤 ∈ R𝑁𝑇

++ denote the initial unit price,
and Σ ∈ S𝑁𝑇

++ the decreasing rate of unit price. We further
assume that there is a maximum capacity 𝑐 ∈ R𝑁𝑇

++ for the
commodity sold at different markets, and the global constraints
are accordingly defined as

∑
𝑖∈N𝐴𝑖𝑥𝑖 ≤ 𝑐.

We use the transport network of the city of Oldenburg [25]:
it consists of 𝑁𝑇 = 29 nodes (markets) and 𝐸𝑇 = 2 × 34
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edges (roads). Five branches (𝑁 = 5) participate in this
problem, each owning a single factory at the given location
({8, 14, 21, 10, 29}). Each factory has a maximum production
capacity uniformly randomly chosen from [10, 14]. The nor-
malized length 𝜂𝑒𝑇 is defined as the ratio between the length of
road 𝑒𝑇 and the maximum road length. Each diagonal entry
of matrix 𝑄𝑖 corresponding to 𝑢𝑖 is set as 7𝜂𝑒𝑇 , while the
entries corresponding to 𝜈𝑖 are fixed to be 2.8. Moreover,
𝑤 = 36 · 1𝑁𝑇

, and Σ is a matrix with [Σ]𝑖𝑖 = 0.23, for all
𝑖 ∈ N𝑇 , [Σ] 𝑗𝑖 = 0.069 · (1 − 𝜂 ( 𝑗 ,𝑖) ), for all ( 𝑗 , 𝑖) ∈ E𝑇 , and
otherwise zero. We also let 𝛼𝑖 B 0.21 and 𝑐 B 2 · 1𝑁𝑇

. We
can verify numerically that each 𝐽𝑖 is jointly convex in 𝑥𝑖 and
𝑠𝑖 as required in Assumption 1. The communication network
G contains a directed circle and

⌊
𝑁
2
⌋
= 2 randomly selected

directed edges.
The package CVXPY 1.0.31 [26], [27] is used to solve

the constrained optimization problem for each agent. We
illustrate the performances of Algorithm 2 in Fig.1. Fig.1(a)(b)
describe the relative updating step sizes at each iteration for 𝑥𝑖
and 𝑦𝑖 . Fig.1(c)(d)(e) illustrate how the feasibility conditions
are satisfied at each iteration. Fig.1(e) shows the normalized
distance between the decision variables obtained by the pro-
posed algorithm and the unique minimizer. Fig.2 visualizes
the solution computed by Algorithm 2, which is reflected by
the commodity distribution over the markets and the quantity
of commodity transported through each road. These numerical
results verify the validity of Algorithm 2, and show a linear
convergence rate towards a solution.

V. Conclusions and Future Directions
We propose a distributed solution for multi-agent opti-

mization problems that are globally coupled by aggregates.
Although we only discuss the cases with homogeneous ag-
gregates in objectives and constraints, with the introduction
of a new set of auxiliary variables and its associated local
estimates, the proposed algorithm can solve problems with
heterogeneous aggregates. Moreover, the results can be directly
extended to handle the problems with convex constraints. One
of our future directions is to extend the primal decompo-
sition method to the non-cooperative setting. Even though
the analysis in this paper can be applied to non-cooperative
aggregative games with minor modifications, yet to ensure the
convergence of the algorithm candidate, we need to postu-
late that the invoked extended pseudogradient operators are
maximally monotone, which holds if and only if the partial
derivatives of local objectives w.r.t. local decisions do not
depend on others’ decisions [13], [28], [29]. This condition
dramatically restricts the applicability of the proposed method.
In addition, we note that even under the cooperative setting,
the solvable multi-agent optimization problems should have
their local objectives jointly convex in the local decisions and
the aggregates. Another future direction would lie in relaxing
this assumption and enable the proposed algorithm to handle
a wider range of problems.
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of one of our previous assumptions. To address this comment,
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to cooperative cases. Extension to the non-cooperative setting
is one of our future directions.

Appendix

A. Proof of Lemma 1

Proof. Under Assumptions 1 and 2, we can equivalently recast
the optimization problems in (4) as a set of inclusions based
on the KKT conditions given by:

𝜕𝑥𝑖 𝐽𝑖 (𝑥𝑖 , 𝜎𝑖) + 𝐴𝑇
𝑖 𝜆𝑖 +

∑︁
𝑗∈N−𝑖

(−𝐴𝑇
𝑖 𝑑 𝑗 ) + 𝑁X𝑖

(𝑥𝑖) 3 0

𝜕𝜎𝑖
𝐽𝑖 (𝑥𝑖 , 𝜎𝑖) + 𝜆𝑖 + 𝑑𝑖 3 0

0 ≤ 𝜆𝑖 ⊥ 𝑐 − (𝐴𝑖𝑥𝑖 + 𝜎𝑖) ≥ 0,

(19)

for each 𝑖 ∈ N . Here, 𝜆𝑖 is the Lagrange multiplier en-
forcing the resource constraints 𝐴𝑖𝑥𝑖 + 𝜎𝑖 ≤ 𝑐; 𝑑𝑖 is the
multiplier enforcing the correct aggregate estimation, i.e.,
𝜎𝑖 =

∑
𝑗∈N−𝑖

𝐴 𝑗𝑥 𝑗 . Notably, besides the explicit local problem
formulation of agent 𝑖 in (4), the decision vector 𝑥𝑖 is also
involved in the constraints 𝜎𝑗 =

∑
𝑝∈N− 𝑗

𝐴𝑝𝑥𝑝 for all 𝑗 ∈ N−𝑖 ,
and that is why we need to incorporate

∑
𝑗∈N−𝑖

(−𝐴𝑇
𝑖
𝑑 𝑗 ) into

the first inclusion of (19).
We assume that for each agent 𝑖 ∈ N , its local optimization

problem (4) admits a minimizer 𝑥∗
𝑖
. Let 𝑥∗ B [𝑥∗

𝑖
]𝑖∈N . Then

for each 𝑖 ∈ N , there exists some 𝜆∗
𝑖
∈ R𝑙 and 𝑑∗ B [𝑑∗

𝑖
]𝑖∈N ∈

R𝑁𝑙 , such that (𝑥∗
𝑖
, 𝜎∗

𝑖
, 𝜆∗

𝑖
, 𝑑∗) is a solution of the KKT

system in (19), with 𝜎∗
𝑖
=
∑

𝑗∈N−𝑖
𝐴 𝑗𝑥

∗
𝑗
. Since the estimation

constraints of {𝜎∗
𝑖
}𝑖∈N are commonly shared by all agents, the

vector 𝑑∗, which is the stack of all local Lagrange multipliers
{𝑑𝑖}𝑖∈N for the estimation constraints, keeps identical among
all agents. Based on the second inclusion of (19), for each
𝑗 ∈ N−𝑖 , the following inclusion holds:

−𝐴𝑇
𝑖 𝑑

∗
𝑗 ∈ 𝐴𝑇

𝑖 𝜕𝜎 𝑗
𝐽 𝑗 (𝑥∗𝑗 , 𝜎∗

𝑗 ) + 𝐴𝑇
𝑖 𝜆

∗
𝑗 . (20)

Substituting each −𝐴𝑇
𝑖
𝑑∗
𝑗

in the first inclusion of (19) with the
R.H.S. of the above inclusion yields:

𝜕𝑥𝑖 𝐽𝑖 (𝑥∗𝑖 , 𝜎∗
𝑖 )+

∑
𝑗∈N−𝑖

𝐴𝑇
𝑖 𝜕𝜎𝑖

𝐽 𝑗 (𝑥∗𝑗 , 𝜎∗
𝑗 )

+ 𝐴𝑇
𝑖 (

∑
𝑗∈N𝜆

∗
𝑗 ) + 𝑁X𝑖

(𝑥∗𝑖 ) 3 0,

for each 𝑖 ∈ N . Moreover, since 0 ≤ 𝜆∗
𝑖
⊥ 𝑐 − (𝐴𝑖𝑥

∗
𝑖
+𝜎∗

𝑖
) ≥ 0

and 𝜎∗
𝑖
=

∑
𝑗∈N−𝑖

𝐴 𝑗𝑥
∗
𝑗

hold for each 𝑖 ∈ N , the following
results trivially follows:

0 ≤
∑︁
𝑖∈N

𝜆∗𝑖 ⊥ 𝑐 −
∑︁
𝑖∈N

𝐴𝑖𝑥
∗
𝑖 ≥ 0,

which completes the proof that (𝑥∗,∑𝑖∈N 𝜆∗
𝑖
) is a solution of

(2). Conversely, if the KKT system in (2) admits a solution
(𝑥†, 𝜆†), where 𝑥† B [𝑥†

𝑖
]𝑖∈N and 𝜆† ∈ R𝑙 . For each

agent 𝑖 ∈ N , we let 𝜎
†
𝑖
B

∑
𝑗∈N−𝑖

𝐴 𝑗𝑥
†
𝑗
, 𝜆

†
𝑖
B 1

𝑁
𝜆†, and

𝑑
†
𝑖
∈ −𝜕𝜎𝑖

𝐽𝑖 (𝑥†𝑖 , 𝜎
†
𝑖
) − 𝜆

†
𝑖
. It is obvious that (𝑥†

𝑖
, 𝜎

†
𝑖
, 𝜆

†
𝑖
, 𝑑†)

with 𝑑† B [𝑑†
𝑖
]𝑖∈N is a solution of (19). Therefore,

(𝑥†
𝑖
,
∑

𝑗∈N−𝑖
𝐴 𝑗𝑥

†
𝑗
) is a minimizer of the local optimization

problem (4) for each 𝑖 ∈ N . �
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B. Proof of Theorem 1

Proof. Suppose Zer(T ) ≠ ∅ and consider the vector 𝜓∗ =

[𝑥∗;𝜎∗;𝜆∗;𝜔∗] ∈ Zer(T ). Firstly, the rows in (𝑀 ′
𝑦 · 𝜔∗)

corresponding to 𝜇 being zero implies the consensus between
𝑦∗
𝑗𝑖

and 𝑦∗
𝑗

for all ( 𝑗 , 𝑖) ∈ E. Furthermore, based on the
indicator function 𝜄F𝑖 (𝑥∗𝑖 , 𝜎∗

𝑖
, 𝒚∗

𝑖
) and the third row of the

operator T to be zero, i.e., −𝐵𝑇
𝑙
𝐴𝑥∗−𝐵𝑇

𝑙
𝜎∗ = 0, the following

two equations must hold for each agent 𝑖:

(𝑁 − 1)𝐴𝑖𝑥
∗
𝑖 − 𝜎∗

𝑖 = 𝑊𝑖𝑖𝑦
∗
𝑖 +

∑
𝑗∈N+

𝑖
𝑊 𝑗𝑖𝑦

∗
𝑗

𝐴𝑖𝑥
∗
𝑖 + 𝜎∗

𝑖 = 𝐴 𝑗𝑥
∗
𝑗 + 𝜎∗

𝑗 ,∀ 𝑗 ∈ N+
𝑖 .

(21)

Summing over the L.H.S. of the first equation in (21) across
all agents, we have∑︁

𝑗∈N
(𝑁 − 1)𝐴 𝑗𝑥

∗
𝑗 − 𝜎∗

𝑗

=
∑︁
𝑗∈N

(𝑁 − 1)𝐴 𝑗𝑥
∗
𝑗 +

∑︁
𝑗∈N

(
𝐴 𝑗𝑥

∗
𝑗 − 𝐴𝑖𝑥

∗
𝑖 − 𝜎∗

𝑖

)
= 𝑁

∑︁
𝑗∈N

𝐴 𝑗𝑥
∗
𝑗 − 𝑁𝐴𝑖𝑥

∗
𝑖 − 𝑁𝜎∗

𝑖 = 𝑁 (
∑︁
𝑗∈N−𝑖

𝐴 𝑗𝑥
∗
𝑗 − 𝜎∗

𝑖 ),

(22)

where the first equality comes from the second equation in
(21). Similarly, adding up the R.H.S. of the first equation in
(21) yields,∑︁

𝑖∈N

(
𝑊𝑖𝑖𝑦

∗
𝑖 +

∑︁
𝑗∈N+

𝑖

𝑊 𝑗𝑖𝑦
∗
𝑗

)
= (1𝑇𝑁 ⊗ 𝐼𝑙) (𝑊𝑇 ⊗ 𝐼𝑙)𝑦∗

= ((𝑊 · 1𝑁 )𝑇 ⊗ 𝐼𝑙)𝑦∗ = 0𝑙 ,
(23)

where 𝑦∗ = [𝑦∗1; · · · ; 𝑦∗
𝑁
]. As a result, for all 𝑖 ∈ N , 𝜎∗

𝑖
=∑

𝑗∈N−𝑖
𝐴 𝑗𝑥

∗
𝑗
. With these results, if we check the rows in T

w.r.t. 𝑥𝑖 , 𝜎𝑖 , and 𝒚𝑖 , we can obtain the following inclusions:
𝜕𝑥𝑖 𝐽𝑖 (𝑥∗𝑖 , 𝜎∗

𝑖
) + 𝑁X𝑖

(𝑥∗
𝑖
)

𝜕𝜎𝑖
𝐽𝑖 (𝑥∗𝑖 , 𝜎∗

𝑖
)

0
0

 +


(𝑁 − 1)𝐴𝑇
𝑖

−𝐼
−𝑊̃𝑖𝑖 ⊗ 𝐼𝑙

−[𝑊̃ 𝑗𝑖] 𝑗∈N+
𝑖
⊗ 𝐼𝑙

𝑑1𝑖

+


𝐴𝑇
𝑖

𝐼

0
0

 𝑑2𝑖 +


𝐴𝑇
𝑖

𝐼

0
0

 𝜆
∗
𝑖𝐵 +


0
0

−∑
𝑘∈N−

𝑖
𝜇∗
𝑖𝑘

[𝜇∗
𝑗𝑖
] 𝑗∈N+

𝑖

 3 0,

(24)

where 𝑑1𝑖 ∈ R𝑙 and 𝑑2𝑖 ∈ R𝑙+ are the implicitly calculated
Lagrange multipliers of the second and first constraints in
(5), and 𝜆∗

𝑖𝐵
B (𝐵𝑖 · ⊗ 𝐼𝑙)𝜆∗ =

∑
𝑗∈N+

𝑖
𝜆∗
𝑗𝑖
− ∑

𝑗∈N−
𝑖
𝜆∗
𝑖 𝑗

is the
explicitly calculated Lagrange multiplier. If we check the third
and last rows of (24), we can derive that for all 𝑖 ∈ N and for
all 𝑘 ∈ N−

𝑖
,

(𝑊𝑖𝑖 ⊗ 𝐼𝑙)𝑑𝑖 = −∑𝑘∈N−
𝑖
𝜇∗𝑖𝑘 , (𝑊𝑖𝑘 ⊗ 𝐼𝑙)𝑑𝑘 = 𝜇∗𝑖𝑘 . (25)

Thus, (𝑊𝑖 · ⊗ 𝐼𝑙)𝒅 = 0, where 𝒅 = [𝑑11; · · · ; 𝑑1𝑁 ]. Moreover,
the preceding equality holds for all 𝑖 ∈ N , and we end up
with (𝑊 ⊗ 𝐼𝑙)𝒅 = 0. Given that the null space of (𝑊 ⊗ 𝐼𝑙) is
the consensus subspace, we finally get 𝑑11 = · · · = 𝑑1𝑁 = 𝑑1.
It follows from the second row of the inclusion in (24) that
𝑑2 𝑗 + 𝜆∗

𝑗𝐵
+ 𝜕𝜎 𝑗

𝐽 𝑗 (𝑥∗𝑗 , 𝜎∗
𝑗
) 3 𝑑1 holds for every 𝑗 ∈ N . By

substituting (𝑁−1)𝑑1 in the first row of (24) with
∑

𝑗∈N−𝑖
𝑑2 𝑗+

𝜆∗
𝑗𝐵

+ 𝜕𝜎 𝑗
𝐽 𝑗 (𝑥∗𝑗 , 𝜎∗

𝑗
) , we have the following relation:

𝜕𝑥𝑖 𝐽𝑖 (𝑥∗𝑖 , 𝜎∗
𝑖 ) + 𝐴𝑇

𝑖

∑︁
𝑗∈N−𝑖

𝜕𝜎 𝑗
𝐽 𝑗 (𝑥∗𝑗 , 𝜎∗

𝑗 ) + 𝑁X (𝑥∗𝑖 )

+ 𝐴𝑇
𝑖 (

∑︁
𝑗∈N

𝜆∗𝑗𝐵) + 𝐴𝑇
𝑖 (

∑︁
𝑗∈N

𝑑2 𝑗 ) 3 0.
(26)

Note that
∑

𝑗∈N 𝜆∗
𝑗𝐵

= 1𝑇𝑁 (𝐵𝑙𝜆
∗) = 0 by the property

of the incident matrix 𝐵𝑙 , and 𝜕𝑥𝑖 𝐽 (𝑥∗) = 𝜕𝑥𝑖 𝐽𝑖 (𝑥∗𝑖 , 𝜎∗
𝑖
) +

𝐴𝑇
𝑖

∑
𝑗∈N−𝑖

𝜕𝜎 𝑗
𝐽 𝑗 (𝑥∗𝑗 , 𝜎∗

𝑗
). Let 𝑑2 B

∑
𝑗∈N 𝑑2 𝑗 . Consequently,

for each agent 𝑖 ∈ N , we have

𝜕𝑥𝑖 𝐽 (𝑥∗) + 𝐴𝑇
𝑖 𝑑2 + 𝑁X (𝑥∗𝑖 ) 3 0, (27)

which corresponds to the first KKT condition in (2).
Since for each agent 𝑖, 𝑑2𝑖 is the Lagrange multiplier of the

constraints in Q𝑖 , it satisfies the following inclusions:

0 ≤ 𝑑2𝑖 ⊥ 𝐴𝑖𝑥
∗
𝑖 + 𝜎∗

𝑖 − 𝑐 ≤ 0. (28)

Notice that the R.H.S. of the above relations keep the same
for all agents. Adding the L.H.S over all agents yields:

0 ≤ 𝑑2 ⊥ ∑
𝑗∈N𝐴 𝑗𝑥

∗
𝑗 − 𝑐 ≤ 0,∀𝑖 ∈ N , (29)

which corresponds to the second KKT condition in (2).
Therefore, for any zeros 𝜓∗ ∈ Zer(T ), 𝑥∗ is the minimizer
of the original problem (1).

Conversely, suppose there exists at least one solution of the
problem (4) and denote this solution and its corresponding
Lagrange multiplier as (𝑥†, 𝜌†). Then, we can manually set
𝜎
†
𝑖
=
∑

𝑗∈N−𝑖
𝐴 𝑗𝑥

†
𝑗
. For each agent 𝑖, we have:

0 ∈ 𝜕𝑥𝑖 𝐽 (𝑥†) + 𝐴𝑇
𝑖 𝜌

† + 𝑁X𝑖
(𝑥†

𝑖
)

0 ≤ 𝜌† ⊥ 𝐴𝑖𝑥
†
𝑖
+ 𝜎

†
𝑖
− 𝑐 ≤ 0,

(30)

where 𝜕𝑥𝑖 𝐽 (𝑥†) = 𝜕𝑥𝑖 𝐽𝑖 (𝑥
†
𝑖
, 𝜎

†
𝑖
) + 𝐴𝑇

𝑖

∑
𝑗∈N−𝑖

𝜕𝜎 𝑗
𝐽 𝑗 (𝑥†𝑗 , 𝜎

†
𝑗
).

We need to prove that there exist {𝑦†
𝑖
}𝑖∈N , 𝑦†𝑖 ∈ R𝑙 , such that

(𝑁 −1)𝐴𝑖𝑥
†
𝑖
−

∑︁
𝑗∈N−𝑖

𝐴 𝑗𝑥
†
𝑗
= 𝑊𝑖𝑖𝑦

†
𝑖
+
∑︁
𝑗∈N+

𝑖

𝑊 𝑗𝑖𝑦
†
𝑗
,∀𝑖 ∈ N . (31)

After reformulating the above equations and concatenating
them by row, we obtain:

𝑁 [𝐴𝑖𝑥
†
𝑖
]𝑖∈N − 1𝑁 ⊗ (∑ 𝑗∈N𝐴 𝑗𝑥

†
𝑗
) = (𝑊𝑇 ⊗ 𝐼𝑙) [𝑦†𝑖 ]𝑖∈N . (32)

Notice that

(1𝑇𝑁 ⊗ 𝐼𝑙) · (𝑁 [𝐴𝑖𝑥
†
𝑖
]𝑖∈N − 1𝑁 ⊗ (∑ 𝑗∈N𝐴 𝑗𝑥

†
𝑗
))

= 𝑁
∑

𝑗∈N𝐴 𝑗𝑥
†
𝑗
− 𝑁 ⊗ (∑ 𝑗∈N𝐴 𝑗𝑥

†
𝑗
) = 0,

(33)

which implies

𝑁 [𝐴𝑖𝑥
†
𝑖
]𝑖∈N − 1𝑁 ⊗ (∑ 𝑗∈N𝐴 𝑗𝑥

†
𝑗
) ∈ N (1𝑇𝑁 ⊗ 𝐼𝑙). (34)

Since the communication graph G is connected and the null
space of 𝑊 is the range space of 1𝑁 , i.e., N(𝑊⊗ 𝐼𝑙) = R(1𝑁 ⊗
𝐼𝑙). As a result, R(𝑊𝑇 ⊗ 𝐼𝑙)⊥ = N(1𝑇𝑁 ⊗ 𝐼𝑙)⊥, and thus R(𝑊𝑇 ⊗
𝐼𝑙) = N(1𝑇𝑁 ⊗ 𝐼𝑙). Notice that (𝑊𝑇 ⊗ 𝐼𝑙) · [𝑦1; · · · ; 𝑦𝑁 ] spans
the range space of (𝑊𝑇 ⊗ 𝐼𝑙). There always exists a vector
[𝑦†1; · · · ; 𝑦†

𝑁
], such that the equation (32) holds.
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After substituting 𝑥∗
𝑖
, 𝜎∗

𝑖
, and 𝜆∗

𝑖
in (24) with 𝑥

†
𝑖
, 𝜎†

𝑖
, and

𝜆
†
𝑖
, it suffices to prove that there exist 𝑑1𝑖 , 𝑑2𝑖 , and 𝜆† (𝑖 ∈ N ),

such that (i) the inclusions in (24) hold, (ii) 𝑑2𝑖 satisfies 0 ≤
𝑑2𝑖 ⊥

∑
𝑗∈N 𝐴 𝑗𝑥

†
𝑗
− 𝑐 ≤ 0. We can let 𝑑2𝑖 =

1
𝑁
𝜌†, 𝑑1𝑖 = 𝑑1

and for all 𝑖 ∈ N and choose proper 𝜆†, such that

[𝜕𝜎𝑖
𝐽𝑖 (𝑥†𝑖 , 𝜎

†
𝑖
)]𝑖∈N + 1𝑁 ⊗ (−𝑑1 +

1
𝑁
𝜌†) + 𝐵𝑙𝜆

† 3 0. (35)

The existences of 𝑑1 and 𝜆† can be guaranteed by the fact
that (1𝑁 ⊗ (−𝑑1) + 𝐵𝑙𝜆

†) spans the whole R𝑁𝑙 . Since (𝑥†, 𝜌†)
satisfies the first condition in (30), it can be verified that with
the chosen 𝑑1, 1

𝑁
𝜌† and 𝜆†, the following relation holds for

each agent 𝑖:

𝜕𝑥𝑖 𝐽𝑖 (𝑥†
𝑖
, 𝜎†

𝑖
) +𝐴𝑇

𝑖 ((𝑁−1)𝑑1+
1
𝑁
𝜌†+𝜆†

𝑖𝐵) +𝑁X𝑖
(𝑥†

𝑖
) 3 0. (36)

Accordingly, 𝜇† can be obtained by the forth row of (24). As
a result, [𝑥†;𝜎†;𝜆†;𝜔†] ∈ Zer(T ). �
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