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On the Equivalence of Contraction and
Koopman Approaches for Nonlinear Stability and

Control
Bowen Yi ID , and Ian R. Manchester ID

Abstract— In this paper we prove new connections be-
tween two frameworks for analysis and control of nonlinear
systems: the Koopman operator framework and contraction
analysis. Each method, in different ways, provides exact
and global analyses of nonlinear systems by way of linear
systems theory. The main results of this paper show equiv-
alence between contraction and Koopman approaches for
a wide class of stability analysis and control design prob-
lems. In particular: stability or stablizability in the Koopman
framework implies the existence of a contraction metric
(resp. control contraction metric) for the nonlinear system.
Further in certain cases the converse holds: contraction
implies the existence of a set of observables with which
stability can be verified via the Koopman framework. We
provide results for the cases of autonomous and time-
varying systems, as well as orbital stability of limit cycles.
Furthermore, the converse claims are based on a novel
relation between the Koopman method and construction of
a Kazantzis-Kravaris-Luenberger observer. We also provide
a byproduct of the main results, that is, a new method
to learn contraction metrics from trajectory data via linear
system identification.

Index Terms— nonlinear system, contraction analysis,
Koopman operator

I. INTRODUCTION

Learning, analysis, and control of nonlinear dynamical
systems are important problems but are significantly more
challenging than their linear counterparts. In recent years two
approaches – based on the Koopman operator and contraction
analysis – have become popular and facilitated significant
progress. Each, in different ways, draws on linear systems
theory to analyze nonlinear systems exactly and globally:
the Koopman approach works by mapping the system state
to high (possibly infinite) dimensional spaces of observables
in which the dynamics are linear, whereas the contraction
framework analyzes the system via an infinite family of local
linearizations. The main purpose of this paper is to make
precise the connection between these two approaches.
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The Koopman operator describes the dynamics over the
space of observables. Even for nonlinear dynamics, the Koop-
man operator itself is always linear, and this fact can be
utilized for many tasks including, e.g., stability analysis,
controller design, and system identification; see [37] for a
recent review.

Unlike linearization via first-order approximation, the Koop-
man method provides a global insight to the system behavior
via spectral analysis of the operator, which is built upon
the pioneering work [17]. Furthermore, for a given system
if we are able to find a finite set of Koopman eigenvalues
and eigenfunctions, then the system can be immersed into
a finite-dimensional linear dynamics. Indeed, the Koopman
method is closely connected to the Hartman-Grobman theorem
in the dynamical systems theory [13] and nonlinear manifold
learning in the machine learning community [26], which,
however, are studied in a local manner. In [36], the Koopman
operator is utilized to provide novel global stability criteria for
both hyperbolic equilibria and limit cycles. It was shown that,
with a distinct-eigenvalue assumption, the proposed criterion
is necessary and sufficient for the asymptotic stability of
an equilibrium. However, for many systems the Koopman
operator can admit repeated eigenvalues and we are still able
to map the dynamics into a linear system globally [20, 22]. Im-
portantly, an attractive feature in Koopman representations is
the possibility of data-driven and model-free analysis [38, 40].
To this end, several techniques have been proposed recently
to approximate the Koopman operator by solving least square
problems, e.g., dynamic mode decomposition (DMD) [45] and
extended (E)DMD [18].

Another way to study nonlinear systems by means of linear
methods is contraction analysis. A contracting system has
the property that all its trajectories converge to each other,
and contraction analysis is based on the study of a nonlinear
system in terms of its differential dynamics, which is a linear
time-varying (LTV) system along solutions, in this way with
linear systems theory being applicable. The key insight is,
roughly speaking, that if all solutions are locally stable then
all solutions are globally stable. The basic ideas can be
traced back to [25], but remarkable utility for problems in
control and observer design was noticed much later [27], while
connections to Lyapunov methods were elaborated in [11].
Contraction is not just a method for system analysis, but also a
powerful constructive tool in many control and learning tasks,
see [32, 47, 49, 57] for recent applications in controller design,
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system identification, online learning and observer design.
In contrast to Koopman operator, which is a single infinite-

dimensional linear operator, contraction is based on analysis
of an infinite family (along all feasible solutions) of finite-
dimensional LTV systems. Due to the similarity – using
linear systems theory to analyze nonlinear systems globally
– between Koopman and contraction methods, one of the
motivations of the paper is to clarify their connections. Despite
existing research on Koopman representations for systems with
an asymptotically stable equilibrium, it is the authors’ opinion
that contraction provides a more natural and fundamental form
of nonlinear stability to link to Koopman representations than
asymptotic stability. The main reason is that, for linear sys-
tems, asymptotic stability is a quite strong property, equivalent
to various types of stability, e.g., exponential, incremental,
and input-to-state stability; contraction shares these strong
properties, whereas asymptotic stability of nonlinear systems is
relatively weak and sometimes fails to inherit these properties
from the lifted linear dynamics in the Koopman framework.

The main contributions of this paper are:

1) Showing the equivalence between contraction and Koop-
man approaches for stability analysis of nonlinear sys-
tems. The stability conditions for autonomous and time-
varying nonlinear systems in the Koopman framework
imply contraction of the systems; and the converse results
also hold true. We give the results for both equilibria and
limit cycles with explicit constructions.

2) Establishing the links between control contraction metric
(CCM) – a concept to characterize universal stabilizabil-
ity of nonlinear systems [32] – and stabilizability of the
lifted linear systems in the Koopman framework.

3) The constructive solutions in our converse results are
obtained from some novel interesting links between
the Koopman operator method and Kazantzis-Kravaris-
Luenberger (KKL) observers [3]. The relevant results are
of interest on their own.

4) An useful byproduct of the proposed equivalence between
Koopman and contraction approaches is that we may
learn contraction metrics for stable nonlinear systems
from pure trajectory data.

Notation. | · | represents the Euclidean norm. All mappings
and functions are assumed smooth. Given a matrix M(x, t)
and a vector field f(x) with proper dimensions, we define
the directional derivative as ∂fM(x, t) :=

∑
i
∂M(x,t)

∂xi
fi(x)

and the operator ∇f := (∂f∂x )
⊤. Given a point y ∈ Rn, we

define a ball Bε(y) := {x ∈ Rn||x − y| < ε}. For square
matrices A and B, the notion A ≺ B (or A ⪯ B) indicates
(A − B) negative definite (or semidefinite). We use Rm×m

≻0

(or Rm×m
⪰0 ) to represent the set of m × m positive definite

(or semidefinite) matrices. A positive definite matrix-valued
function A : Rn → Rm×m

≻0 is called uniformly bounded if
a1I ⪯ A(x) ⪯ a2I, ∀x with some a2 ≥ a1 > 0. We use C to
represent the complex plane, and C>0 (C<0) for the open right
(left) half-plane. For an open set, cl(·) denotes its closure.
When clear from the context, the arguments of mappings and
operators are omitted.

The paper is organized as follows. In Section II we recall

some preliminaries on the Koopman operator and contraction
analysis. Section III starts with the equivalence between two
methods for nonlinear autonomous systems, and the main
results are extended to time-varying systems in Section IV.
Then, it is followed by the relevant results of limit cycles
in Section V. Section VI presents some discussions including
the relation between the CCM and the Koopman conditions
for stabilization problems, as well as the link between the
Koopman method and construction of a KKL observer. Three
examples are given in Section VII to illustrate the main results,
and the paper is wrapped up with some concluding remarks
in Section VIII. A preliminary version of this paper was
presented at the conference [55], containing the main results
of Section III.

II. PRELIMINARIES

We consider both nonlinear autonomous systems of the form

ẋ = f(x) (1)

and more general nonlinear time-varying (NLTV) systems

ẋ = f(x, t), (2)

with state x ∈ Rn and the vector field f ∈ C2. The system
is assumed complete, i.e., having a unique solution X(x, t)
for t ∈ [0,+∞) from the initial condition x at t = 0 for
the autonomous system (1), or a solution X(t;x, s) for the
time-varying system (2). In the latter, X(t;x, s) represents the
solution value at time t from the initial condition x(s) at time
s. In the remainder of the paper, we denote the Jacobian of
the function f as F (x) = ∂f

∂x (x), or F (x, t) = ∂f
∂x (x, t) for

the time-varying case.

A. Contraction Analysis and Control Contraction Metric
Let us recall the definition of contraction [27], which is

given here in its global forms for simplicity.
Definition 1: (contraction) Given a system (2), if there

exists a uniformly bounded metric M(x, t) ∈ Rn×n
≻0 such that

Ṁ +
∂f

∂x
(x, t)⊤M +M

∂f

∂x
(x, t) ⪯ −ρM, ρ > 0, (3)

then we call the system (2) contracting, and M(x, t) is a
contraction metric. If the right-hand side of (3) is replaced
by “≺ 0”, the given system is asymptotically contracting. ◁

Contraction, also known as incremental exponential sta-
bility, utilizes the differential behavior of an infinitesimal
displacement δx along the flow X(x, t) to characterize the
asymptotic behavior among trajectories of the system (1). To
be precise, contraction implies that any two trajectories will
exponentially converge to each other, i.e., ∀(xa, xb) ∈ Rn×Rn

|X(xa, t)−X(xb, t)| ≤ k0|xa − xb|e−ρt,

for some k0 > 0. For the asymptotic case, it becomes

|X(xa, t)−X(xb, t)| ≤ β(|xa − xb|, t),

in which β(·, ·) is a class KL function.
In [32, 33], contraction analysis was extended to the problem

of nonlinear control as a constructive method, a benefit of
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which is its convex representation enabling computational
methods for synthesis. The key there is the control contraction
metric (CCM), which is related to universal stabilizability –
a property characterizing if one can find a feedback law to
track any feasible trajectories asymptotically. We discuss the
problem of stabilization in Section VI-A.

B. Koopman Operator Methods

The Koopman operator was originally studied for the au-
tonomous system (1). Denote O as the space of all C2-smooth
output functions φ : Rn → C, usually called observables.

Definition 2: (Koopman operator) The Koopman semi-
group of operators U t : O → O associated to the flow X(x, t)
for the system (1) is defined by

U t[φ] = φ ◦X(x, t), φ ∈ O.

For an observable ϕλ ∈ O \ {0}, the associated Koopman
eigenvalue is defined as the constant λ ∈ C satisfying

U t[ϕλ] = eλtϕλ, (4)

if it exists, and we call ϕλ as a Koopman eigenfunction. ◁
The operator U t[ϕ] has, at a point xA, the value which ϕ

has at the point X(xA, t) into which xA flows after the lapse
of the time t [17]; see Fig. 1. It follows immediately from its
definition that the Koopman operator U t[·] is linear.

Fig. 1: An illustration of the Koopman operator acting on an
observable ϕ.

Assuming smoothness of observables, the condition (4) may
be equivalently formulated as [37]

∂ϕλ
∂x

(x)f(x) = λϕλ. (5)

A main result in [36] is that the Koopman operator can be used
to verify the global asymptotic stability (GAS) of a hyperbolic
equilibrium.

Lemma 1: [36, Proposition 2] Consider the system (1)
having a hyperbolic equilibrium x⋆, with all the eigenval-
ues of F (x⋆) in C<0. If there exists a mapping ϕ(x) :=
[ϕλ1

(x), . . . , ϕλn
(x)]⊤ such that1

1) (distinct eigenvalues) All the Koopman eigenvalues λi
are distinct and ϕλi

∈ C1 with ∇ϕλi
(x⋆) ̸= 0 for i =

1, . . . , n;
2) (stability) λi ∈ C<0 satisfy the PDEs (5), and are the

eigenvalues of F (x⋆).
Then, the equilibrium x⋆ is GAS. ◁

1The following conditions are also necessary for the GAS of x⋆.

The PDEs in the condition 2) immerse the autonomous
system (1) into the linear time-invariant (LTI) dynamics

ż = Λz, z(0) = ϕ(x(0)) (6)

with Λ = diag(λ1, . . . , λn) via the change of coordinate x 7→
z = ϕ(x). By the condition λi ∈ C<0, this linear system is
globally exponentially stable (GES) at the origin.

III. MAIN RESULTS FOR AUTONOMOUS SYSTEMS

In this section, we start with the time-invariant system (1),
showing the equivalence between the Koopman and contrac-
tion approaches.

A. Koopman Implies Contraction for Stability of
Autonomous Systems

In Lemma 1, the second assumption requires distinct eigen-
values, requiring the LTI system (6) diagonalizable, which is
somewhat restrictive2. Before presenting our first result, we
slightly extend Lemma 1 as follows.

Proposition 1: Consider the system (1) with a hyper-
bolic equilibrium x⋆. If there exists a mapping ϕ(x) :=
[ϕ1(x), . . . , ϕN (x)]⊤ with (N − n) ∈ N ∪ {∞} such that
C1 (immersion) For a finite N , Φ(x) := ∂ϕ

∂x (x) is full column
rank; if N is infinite, ϕ(x) is assumed to be rank-n
countably-infinite, i.e., there are ℓ ≥ n elements (denoted
as ϕkj , j = 1, . . . , ℓ) of ϕ such that rank {∇ϕ̃(x)} = n,
with ϕ̃ := col(ϕk1 , . . . , ϕkℓ

).
C2 (stability) There exists exponentially stable A verifying

∂ϕ

∂x
(x)f(x) = Aϕ(x). (7)

Then, the equilibrium x⋆ is GAS.
Proof: We write the dynamics in the z-coordinate as

ż = Az, z(0) = ϕ(x(0)). (8)

From the assumption C2, z → 0 exponentially as t → ∞.
Since x⋆ is an equilibrium, we have f(x⋆) = 0, and invoking
(7) yields ϕ(x⋆) = 0. From the immersion condition C1, if
N ∈ N, then ϕ : Rn → RN is locally injective around x⋆, thus
there is a class K function β such that

|xa − xb| ≤ β(|ϕ(xa)− ϕ(xb)|), ∀(xa, xb) ∈ Bε(x⋆)
2

with ε > 0 sufficiently small. By substituting xb as x⋆ and xa
as X(x, t) with x ∈ Bε(x⋆), we conclude that x⋆ is locally
attractive for the system (1). In terms of hyperbolicity of the
equilibrium x⋆, the Jacobian F (x⋆) is Hurwitz.

Since F (x⋆) is Hurwitz and the condition C1 holds for all
x ∈ Rn, as well as invoking the fact that basin of attraction
is open [44, Proposition 5.44], the preimage ϕ−1(0) only
contains a single isolated equilibrium. Hence, the function ϕ
is injective on the entire basin of attraction of x⋆. Due to the
exponential stability of the z-dynamics, there always exists a
moment t⋆ such that x(t) ∈ Bε(x⋆) for t ≥ t⋆ from any initial
condition. Then, for all x(0) ∈ Rn we have

|x(t)− x⋆| ≤ β(|eAtϕ(x(0))− ϕ(x⋆)|)
≤ β(|eAtϕ(x(0))|), ∀t ≥ t⋆,

2This could be relaxed by considering “generalized eigenfunctions” in [39].
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which can be upper bounded by a KL function of |x(0)−x⋆|
and t, thus obtaining the GAS. If N is infinite, we may use
ϕ̃ to do a similar analysis. □

Note that the mapping ϕ in Proposition 1 is a little different
from Koopman eigenfunctions, since it does not require the
diagonalizability of A. Here we call ϕ the Koopman mapping,
which is usually referred as semiconjugacy in the dynamical
systems literature. The connection between Proposition 1 and
Lemma 1 is established by the PDEs (5) and (7). If the matrix
A is diagonalizable with A = T−1ΛT and N ∈ N, then
Tϕ is a set of Koopman eigenfunctions associated with the
eigenvalues λ1, . . . , λN . Note that the mapping ϕ identified in
C1-C2 is not unique, in contrast to the principal eigenfunctions
used in Lemma 1.

Remark 1: The condition C1 implies the existence of a
local inverse at each point, but not necessarily global, i.e.,
it corresponds to an immersion rather than an embedding.
The gap is that ϕ may be not proper in many cases due to
N ≥ n. In some cases we may want the stronger condition
that ϕ has a left inverse ϕL with ϕL(ϕ(x)) = x. Note that
both trivially hold if ϕ contains the original system states,
i.e., ϕ(x) = col(x, ϕ′(x)) for some ϕ′. The existence of a
Koopman mapping ϕ which satisfies the immersion condition
is closely related to having a rectifiable dynamics [12, 19] such
that it yields a local inverse.

We are now in position to present the first main result of
the paper.

Theorem 1: Assuming that there exists a C2 Koopman
mapping ϕ satisfying C1-C2 and Φ⊤Φ is uniformly bounded,
then the system (1) is contracting with a contraction metric

M(x) = Φ(x)⊤PΦ(x), (9)

where P is the solution to A⊤P + PA = −I .3

Proof: If there exists a Koopman mapping ϕ satisfying
C1-C2, invoking that A is exponentially stable, then there
exists P = P⊤ ≻ 0 satisfying the Lyapunov equation4

A⊤P + PA = −I.

From the assumptions, the mapping ϕ satisfies the PDE (7).
Now, we calculate the partial derivative with respect to x in
each side, and denote Φ(x) := ∂ϕ

∂x (x), yielding

∂fΦ(x) +
∂ϕ

∂x
(x)

∂f

∂x
(x) = AΦ(x)

=⇒ Φ̇(x) + Φ(x)F (x) = AΦ(x).
(10)

From the Lyapunov equation, we have

Φ⊤(A⊤P + PA)Φ = −Φ⊤Φ ≺ 0, (11)

where we have used the full rank assumption of Φ(x) in C1,

3For infinite N , the Lyapunov equation becomes ⟨Az, Pz⟩+ ⟨Pz,Az⟩ =
−⟨z, z⟩, z ∈ D(A) with D(A) the domain of the infinitesimal generator A,
and the inner product ⟨·, ·⟩ defined as (13) for a compact set x ∈ X .

4This is also true for infinite-dimensional systems [9, Thm. 5.1.3], and the
following analysis is done mutatis mutandis but omitted here.

and the fact that Φ(x) is a tall matrix. On the other hand,

Φ⊤(A⊤P + PA)Φ
(10)
= Φ⊤P Φ̇ + Φ̇⊤PΦ+ Φ⊤PΦF + F⊤Φ⊤PΦ
(9)
= Ṁ + F⊤M +MF

(11)
= − Φ⊤Φ.

Applying

Φ⊤Φ ⪰ 1

λmax{P}
Φ⊤PΦ

with the largest eigenvalue λmax{P}, we then have

Ṁ + F⊤M +MF ≺ − 1

λmax{P}
M.

It implies the contraction of the nonlinear system (1). □
Remark 2: The above proof boils down to the application

of contraction of the lifted linear system ż = Az. Though
it is well-known that incremental stability is intrinsic [11],
the special point in the proof relies on the transformation ϕ :
x 7→ z being an immersion rather than a diffeomorphism.
We underline that the immersion is guaranteed by the full
rank condition C1, which prevents ϕ from mapping another
point x′ in a small neighborhood of the equilibrium x⋆ to the
origin z = 0 in the lifted coordinate. Furthermore, the full
rank condition ensures that the contraction metric M in (9) is
positive definite; see Definition 1.

Remark 3: It was shown in [35] that the existence of a set
of eigenfunctions ϕλi is related to a “contracting metric”

d(x1, x2) =

(
N∑
i=1

|ϕλi
(x1)− ϕλi

(x2)|p
) 1

p

(12)

with integer p ≥ 1, which follows the set stability framework
to study incremental stability [2]. In the past decade, there has
been more attention on the differential framework to analyze
incremental stability, and our main results follow this line. It
is clear that the obtained M = Φ⊤PΦ is a Riemannian metric
defined on tangent bundle, whereas (12) is defined in state
space. The former enjoys attractive computational convenience
in many settings [32, 34].

Remark 4: The stability criterion in Proposition 1 requires
finding a function ϕ and a matrix A satisfying C1-C2 simul-
taneously, making it non-trivial to verify. In [36], the authors
provide numerical methods for the criterion in Lemma 1 in
terms of Taylor expansion or Bernstein polynomials.

B. A General Converse Result for Autonomous Systems

In this subsection, we study the general converse results for
nonlinear contracting autonomous systems, that is, the stability
of infinitesimal generator of the Koopman operator U t for a
class of observables.

To facilitate the general converse result, we consider in this
section real-valued observables and the L2 space, which is a
Hilbert space with the usual inner product

⟨ϕ1, ϕ2⟩ =
∫
x∈X

ϕ1(x)ϕ2(x)dx, (13)
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on a compact set X ⊂ Rn. We have the following.
Proposition 2: Suppose the system (1) is contracting with

bounded trajectories in a compact set X ⊂ Rn, and consider
the set E of real-valued observables ϕ parameterized as

ϕ(x) = φ(x)− lim
t→∞

φ(X(xa, t)) (14)

with any C2-smooth function φ and any point xa ∈ X . Then
the infinitesimal generator of U t, i.e., AUϕ = limt→0(U

t[ϕ]−
ϕ)/t defines the linear infinite-dimensional system:

∂

∂t
g(x, t) = AUg(x, t), g(x, 0) = ϕ(x) (15)

and there exists a positive operator P verifying its Lyapunov
equation for exponential stability:

⟨AUz, Pz⟩+ ⟨Pz,AUz⟩ = −⟨z, z⟩ (16)

for z ∈ E .
Proof: We first derive the representation (15). For the

system (1), we denote the output of the Koopman operator
as5 g(x, t) := U t[ϕ(x)] for given t ≥ 0, with the initial
condition constraint g(x, 0) = ϕ(x). Invoking the smoothness
assumption and according to [23, Thm. 7.5.1], the infinitesimal
generator is equivalently defined as

∂

∂t
g(x, t) =

∂

∂t
U t[ϕ(x)] =

∂

∂t
ϕ(X(x, t))

= AUg(x, t).

Note that for any fixed t ≥ 0, we have g(x, t) ∈ E .
Next we verify that U t is a strongly-continuous semigroup

on the Hilbert space L2. This is a well-known property of the
Koopman operator and indeed follows directly from [9, Def.
2.1.2] and the continuity of X(x, t) with respect to t.

We then note that any C2 function on a compact set X
is square-integrable, and hence is an element of the Hilbert
space L2. By assumption the system is contracting, and
therefore for any x in the compact set X we have ∥g(x, t)∥ ≤
ke−αt∥g(x, 0)∥ for some k, α > 0, in which ∥ · ∥ is the
function norm induced by the inner product ⟨·, ·⟩ in the L2

space. Therefore ∫ ∞

0

∥U tg(x, 0)∥2dt <∞ (17)

for any g(x, 0) ∈ E . By [9, Lemma 5.1.2] and (17), we obtain
the exponential stability of the operator U t which has the
domain E :

∥U t∥ ≤ k′e−α′t (18)

where ∥U t∥ denotes the operator induced norm on L2, with
some k′, α′ > 0. Therefore we have shown that the Koop-
man operator U t is a strongly-continuous and exponentially-
stable semigroup defined on the observables set E . Following
the same construction in [9, Thm. 4.1.23], the observability
gramian of the system (AU , I) defined for z ∈ E by Pz =∫∞
0
U t∗U tzdt is well-posed due to (17)6, and the operator P

is a feasible solution to the Lyapunov equation (16).7 □

5Here, g(x, t) is thought as a function of isolated coordinates x and t that
evolve independently, see for example [23, Remark 7.5.2].

6Ut∗ represents the adjoint operator of Ut; see [9, Def. A.3.63].
7Different from [9, Thm. 4.1.23], there is no uniqueness guarantee for the

operator P in our case, since we do not study the completeness of E .

In the above we consider the infinite-dimensional case
with AU a stable operator. This general result, however, is
difficult to use in practice. We are more interested in a finite-
dimensional AU . Such a problem will be studied in the next
subsection for autonomous systems.

C. Contraction Implies Koopman for Stability of
Autonomous Systems

In this subsection, we prove the converse of Theorem 1, i.e.,
contraction is also sufficient for C1-C2. As a result, we may
use the convex condition (3) to verify the conditions C1-C2
indirectly, e.g., by means of convex optimization and sum-of-
squares [32, 34]. We have the following.

Theorem 2: Consider the autonomous system (1), which is
contracting with the metric M(x) in a compact set cl(X ).
Then, there always exists a C1 Koopman mapping ϕ satisfying
C1-C2 with N ∈ N.

Proof: For a system forward invariant in a closed set, if
it is autonomous and contracting, we can prove that the system
admits a unique GES equilibrium x⋆, i.e. f(x⋆) = 0, using
the well-known Banach fixed point theorem; see for example
[14]. (It holds true for the case that the set X is exactly Rn,
which is both closed and open.) Since we can always assign
the equilibrium by a linear coordinate change x 7→ (x− x⋆),
without loss of generality, we assume the equilibrium x⋆ at
the origin.

The system dynamics (1) can be written as

ẋ = F⋆x−H(x), F⋆ := F (x⋆)

with the high-order remainder term

H(x) := −f(x) + F⋆x. (19)

From the contraction assumption, we have

∂fM(x) + F (x)⊤M(x) +M(x)F (x) ≤ −γM(x)

with γ > 0 along all feasible solutions, and the metric M(x)
uniformly bounded. After substituting the particular solution
X(x⋆, t) = x⋆, ∀t ≥ 0, we obtain

F⊤
⋆ M(x⋆) +M(x⋆)F⋆ ≤ −γM(x⋆),

in which we have used f(x⋆) = 0, thus Ṁ(X(x⋆, t)) = 0.
The above inequality implies that F⋆ is Hurwitz. Hence, x⋆ is
a hyperbolic equilibrium.

We consider the case N = n, and parameterize ϕ as

ϕ(x) = x+ T (x)

with a smooth function T to be searched for. Substituting (19)
into the PDE (7) and fixing A = F⋆, we have[

I +
∂T

∂x
(x)

]
f(x) = A(x+ T (x))

=⇒ F⋆x−H(x) +
∂T

∂x
(x)f(x) = AT (x) +Ax

A=F⋆=⇒ ∂T

∂x
(x)f(x) = AT (x) +H(x).

(20)

Note that we have already shown A = F⋆ is Hurwitz from the
contraction assumption. It is interesting to observe that the
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last PDE in (20) is identical to the one appearing in the KKL
observer [16]. That is, finding a mapping ϕ verifying C2 is
equivalent to solving the PDE in KKL observers with respect
to the new mapping T .8

The remainder of the proof follows some constructive
solutions to KKL observers [16], in which it is assumed that
the solution X(x, t) does not blow-up in finite backward time.
When this additional assumption does not hold, we may still
continue the analysis by considering the modified dynamics

ẋ = ρ(x)f(x) (21)

with an arbitrary C∞ function ρ : Rn → R satisfying

ρ(x) =

{
1, if x ∈ cl(X )

0, if x /∈ X ′

for some cl(X ) ⊂ X ′ ⊂ Rn. Such a modification makes the
above backward assumption always hold. Note that we may
select the compact set cl(X ) arbitrarily large. Let us denote
the solution of the modified dynamics (21) as X̆(x, t).

As shown in [1], the PDE (20) has a feasible solution

T (X(x, t)) = eF⋆tT (x) +

∫ t

0

eF⋆(t−s)H(X(x, s))ds (22)

if it is well-posed. Since F⋆ is Hurwitz, it has a solution when
t→ +∞, and we select

T (x) =

∫ +∞

0

exp(F⋆s)H(X̆(x,−s))ds. (23)

Therefore, by selecting

ϕ0(x) = x+ T (x)

with the C1 function T defined in (23), we get a feasible
solution in cl(X ) to the PDE (7).

The remainder is to verify the full rank condition C1 by
redesigning the function ϕ0(x). Combining the facts

T (x⋆) = 0, ∇T (x⋆) = 0

and
∂ϕ0

∂x
(x) = In +

∂T

∂x
(x),

we conclude from the continuity that there always exists a
small parameter ε > 0 such that the mapping ϕ0(x) is an
injection in the neighborhood Bε(x⋆) of the equilibrium x⋆.
However, it may be not true for the entire Rn. Motivated by
[22, Thm. 2.3] and [54], we need to modify the mapping
ϕ0(x). Since we may, via the change of coordinate z = ϕ0(x),
transform the dynamics into ż = F⋆z, we now write its flow
as Z(z, t) = eAtz from the initial condition z ∈ Rn, and the
dynamics is complete for t ∈ (−∞,+∞). Note that, for the
above construction, we have Z(z, t) = ϕ0(X(x, t)) for any t
and z = ϕ0(x). We may derive the solution of Z(·) at tx > 0
in the lifted linear z-coordinate as

Z(z, tx) = eAtxz = eAtxϕ0(x). (24)

8We refer the interested reader to Section VI-B for a brief introduction to
KKL observers.

On the other hand, we may calculate its solution using the
flow in the original x-coordinate, and then lifting it to the
z-coordinate, i.e.

Z(z, tx) = ϕ0(X(x, tx)). (25)

By combining (24) and (25), we have

ϕ0(x) = e−Atxϕ0(X(x, tx)). (26)

Hence, re-defining the Koopman mapping as

ϕ(x) := e−Atxϕ0(X(x, tx)), (27)

which still satisfies C2 for any tx > 0. Regarding C1, we have

Φ(x) = e−Atx
∂ϕ0

∂x
(X(x, tx))

∂X

∂x
(x, tx).

For a very large tx > 0, X(x, tx) is in a small neighborhood
of the origin, and thus both ∇ϕ0(X(x, tx)) and ∂X

∂x (x, tx) are
full rank. Thus, the Jacobian Φ(x) is full rank globally. □

Remark 5: It is shown in [36] that the assumptions in
Lemma 1 are also necessary for GAS of autonomous systems,
similar to the converse result in Theorem 2. However, the
difference is clear that Lemma 1 requires a distinct-eigenvalue
assumption, making it somewhat restrictive, and instead, we
impose an immersion condition. As a consequence, the PDEs
in Lemma 1 and C2 are slightly different depending on
whether the system matrix A is diagonalizable.

Remark 6: In the above proof, we verify the condition
C2 by studying the flows in both the x- and z-coordinates.
Indeed, we may verify directly the PDE (7) for the re-designed
mapping ϕ in (27). To be precise, we have

∂ϕ

∂x
(x)f(x) = e−Atx

∂ϕ0

∂x
(X(x, tx))

dX

dt
(x, tx)

= e−Atx
∂ϕ0

∂x
(X(x, tx))f(X(x, tx))

= e−AtxAϕ0(X(x, tx))

= Ae−Atxϕ0(X(x, tx))

= Aϕ(x).
Remark 7: In both Theorem 1 and its converse claim –

Theorem 2 – we consider the stronger condition of full rank
of Φ(x) than those used in the previous results, showing the
equivalence of the Koopman approach to contraction analysis,
not just the stability of the origin. This fact will be further
elaborated for time-varying systems.

Remark 8: It should be underscored that there is a gap on
smoothness between Theorem 1 and its converse result. The
standing assumption in Theorem 1 is ϕ ∈ C2; however, in the
converse result in Theorem 2 our construction of ϕ in (27)
is only C1. In [20] it is shown that ϕ ∈ C2 defined on the
entire domain of attraction exists by imposing the stronger
assumption of f ∈ C∞ and the nonresonance of F (x⋆). Note
that the nonresonance condition is also used in [16, Eq. (5)]
to study the solution to the PDE (20) in the context of KKL
observers.

IV. MAIN RESULTS FOR TIME-VARYING SYSTEMS

In this section, we extend the results in Section III from
autonomous systems to NLTV systems.
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A. The Koopman Operator for NLTV systems

The Koopman operator was originally defined for au-
tonomous systems, and its definition was extended to NLTV
systems in [28] and controlled systems with inputs in [42].
Consider O as the space of all C2-smooth observables φ :
Rn × R → C. In consistent with [28], we define the non-
autonomous Koopman operator for the NLTV system (2) with
two parameters (s, t) as

U (t,s)[φ(x, s)] := φ(X(t;x, s), t), (28)

which is able to characterize the time-varying property of
the system; see Fig. 2. In the non-autonomous Koopman
operator, we allow the observables being time-varying, which
is consistent with Definition 2. Note that for such an extension,
the Koopman operator is still linear.

Fig. 2: Non-autonomous Koopman operator acting on a time-
varying observable ϕ(x, t)

In a similar way, we define the Koopman eigenfunctions
ϕλ(x, t) and Koopman eigenvalues λ : R → C by

a(t, s) =

∫ t

s

λ(τ)dτ,

and then
U (t,s)[ϕλ] = ea(t,s)ϕλ, (29)

which, for the autonomous systems, clearly degenerates into
U (t,s)[ϕλ] = eλ(t−s)ϕλ. It is compatible with the autonomous
definition selecting s = 0.

The infinitesimal generator As
U of the non-autonomous

Koopman operator U (t,s)[·] is defined as [28]

As
Uφ(x, t) := lim

t→s

U (t,s)[φ(x, s)]− φ(x, s)

t− s

= lim
t→s

φ(X(t;x, s), t)− φ(x, s)

t− s

=
˙︷ ︷

φ(x, t)
∣∣∣
t=s

,

assuming that the observable φ is smooth. Now considering
the eigenfunction ϕλ(x, t) and invoking (29), we have

˙︷ ︷
ϕλ(x, t) =

∂ϕλ
∂t

+
∂ϕλ
∂x

f(x, t)

= lim
t→s

ea(t,s) − 1

t− s
lim
t→s

ϕλ(t, s)

=
da(s, t)

dt

∣∣∣
s=t

ϕλ(x, t)

= λ(t)ϕλ(x, t).

Equivalently, the Koopman eigenfunction ϕλ ∈ O and the
eigenvalue λ ∈ C satisfies the PDE

∂ϕλ
∂t

+
∂ϕλ
∂x

f(x, t) = λϕλ. (30)

If we are able to find a family of eigenfunctions ϕ(x, t) :=
[ϕλ1 , . . . , ϕλN

]⊤ with N ≥ n, then the given NLTV system
(2) can be immersed into an LTV system9

ż = Λ(t)z

with z = ϕ(x, t) and Λ(t) := diag(λ1(t), . . . , λN (t)).
Following Subsection III-A, we define the (time-varying)

Koopman mapping ϕ to remove the diagonalizable constraint,
which is required to satisfy the PDE

∂ϕ

∂t
(x, t) +

∂ϕ

∂x
(x, t)f(x, t) = A(t)ϕ(x, t) (31)

with a time-varying matrix A(t) Lyapunov stable, i.e., for any
positive definite matrix Q there exists a positive definite matrix
P (t) satisfying [50]

Ṗ (t) +A⊤(t)P (t) + P (t)A(t) +Q = 0. (32)

If P (t) is uniformly bounded, the lifted LTV system

ż = A(t)z, z(0) = ϕ(x(0), 0) (33)

is uniformly exponentially stable (UES).

B. Koopman Implies Contraction for NLTV Systems

In this subsection, we show that a variant of Theorem 1
holds for time-varying systems.

Theorem 3: Consider the NLTV system (2), and assume the
existence of a C2-Koopman mapping ϕ(x, t) ∈ RN satisfying
C1′ (immersion) For N ∈ N,

rank
{
∂ϕ(x, t)

∂x

}
= n, ∀x ∈ Rn, t ∈ R≥0. (34)

C2′ (stability) The existence of a UES and bounded A(t)
verifying the PDE (31).

If [∂ϕ(x,t)∂x ]⊤ ∂ϕ(x,t)
∂x is uniformly bounded, then the system is

contracting.
Proof: We define the partial derivative Φ(x, t) :=

∂ϕ
∂x (x, t). For the PDE (31), by calculating the partial derivative
with respect to x, we obtain

∂2ϕ

∂x∂t
+ ∂fΦ+

∂ϕ

∂x

∂f

∂x
= A

∂ϕ

∂x
.

Since ϕ ∈ C2, we have ∂2ϕ
∂x∂t (x, t) =

∂2ϕ
∂t∂x (x, t) then

∂2ϕ

∂t∂x
+ ∂fΦ+

∂ϕ

∂x

∂f

∂x
= A

∂ϕ

∂x

⇐⇒ ∂Φ

∂t
+ ∂fΦ+ ΦF = AΦ

⇐⇒
˙︷ ︷

Φ(x, t) + Φ(x, t)F (x, t) = A(t)Φ(x, t).

9It should be underlined that, in many cases, we are still able to find
constant Koopman eigenfunctions for some classes of time-varying systems
(2). As a result, the resulting lifted linear systems are time-invariant.
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From the UES of A(t), there exists P (t) ≻ 0 satisfying the
differential Lyapunov inequality [43, Thm. 7.8]

Ṗ (t) +A⊤(t)P (t) + P (t)A(t) ⪯ −kIn (35)

and the uniform boundedness

p1In ⪯ P (t) ⪯ p2In, ∀t ≥ 0

for some k > 0 and p2 > p1 > 0.
Choose the contraction metric

M(x, t) = Φ(x, t)⊤P (t)Φ(x, t),

in which P (t) ≻ 0 is the solution to the differential Lyapunov
inequality (35). Then, it yields

Ṁ + F⊤M +MF

= Φ̇⊤PΦ+ Φ⊤P Φ̇ + Φ⊤ṖΦ+ F⊤Φ⊤PΦ+ Φ⊤PΦF

= Φ⊤(A⊤P + PA+ Ṗ )Φ

⪯ − kIn.

Since both P (t) and Φ⊤Φ are uniformly bounded, the matrix
M(x, t) defined above is qualified as a uniformly bounded
contraction metric. It completes the proof. □

The above result is not surprising, since contraction anal-
ysis was originally tailored for time-varying systems. From
Theorems 1 and 3, the Koopman-based stability analysis may
be roughly viewed as an alternative formulation of contraction
analysis.

C. Contraction Implies Koopman for NLTV Systems
In this subsection, we give two converse results on how to

derive Koopman mappings for a contracting system. We first
consider the case to embed a contracting NLTV system into
an LTV system.

Theorem 4: Consider the NLTV system (2) with an equilib-
rium x⋆ at the origin, and assume that the system is contracting
with a smooth time-varying metric M(x, t) in a compact set
cl(X ). Then, there always exists a Koopman mapping ϕ(x, t)
satisfying C1′ and C2′. Further, the claims still hold true if
the systems state is bounded but removing the assumption of
the existence of an equilibrium x⋆.

Proof: From the contraction of the system (2), we know
the UES of the LTV system

δẋ =
∂f

∂x
(X(t;x, s), t)δx, t ≥ s

with the infinitesimal displacement δx ∈ TRn, any s ≥ 0 and

Ṁ +
∂f

∂x

⊤
M +M

∂f

∂x
⪯ −ρM, ρ > 0.

As a particular solution from the equilibrium x⋆, we conclude
the UES of

A(t) :=
∂f

∂x
(x⋆, t),

i.e., satisfying the differential Lyapunov inequality (35) with

P (t) =M(X(t;x⋆, 0), t) =M(x⋆, t).

Now let us parameterize the Koopman mapping as

ϕ(x, t) = x+ T (x, t),

with a C1-mapping T : Rn → R≥0 to search, and define

H(x, t) = −f(x, t) +A(t).

Then, the PDE (31) in the non-autonomous Koopman
approach becomes

∂T

∂x
(x, t) +

∂T

∂x
(x, t)f(x, t) = A(t)T (x, t) +H(x, t), (36)

with a stable A(t) from s to t. We denote the associated state
transition matrix of A(t) as Ω(t, s), and we have

z(t) = Ω(t, s)z(s)

for the LTV system (33). It is a function of A(t), but most
time it is impossible to write its explicit formula, and we may
numerically obtain from

Φ̇A(t) = A(t)ΦA(t), ΦA(0) = In

with Ω(t, s) = ΦA(t)ΦA(s)
−1.

The next step is to show the mapping

T 0(x, t) =

∫ t

0

Ω(t, s)H(X(s;x, t), s)ds (37)

is a feasible solution to the PDE (36) for x ∈ X .10 To this end,
motivated by [4], we note that for any x ∈ Rn, t ∈ [0,+∞)
and any τ , we have

X(s;X(t+ τ, x, t), t+ τ) = X(s;x, t),

and then

T 0(X(t+ τ ;x, t), t+ τ)

=

∫ t+τ

0

Ω(t+ τ, s)H(X(s;x, t), s)ds

=

∫ t+τ

0

Ω(t+ τ, t)Ω(t, s)H(X(s;x, t), s)ds

= Ω(t+ τ, t)

∫ t+τ

0

Ω(t, s)H(X(s;x, t), s)ds

= Ω(t+ τ, t)T 0(x, t)

+ Ω(t+ τ, t)

∫ t+τ

t

Ω(t, s)H(X(s;x, t), s)ds.

(38)

Invoking the C1-smoothness, we have

lim
τ→0

T 0(X(t+ τ ;x, t), t+ τ)

τ
=
∂T 0

∂t
(x, t)+

∂T 0

∂x
(x, t)f(x, t)

and

lim
τ→0

Ω(t+ τ, t)T 0(x, t)

τ
=

dΩ

dt
(t, s)

∣∣∣
s=t

T 0(x, t) = A(t)T 0(x, t)

lim
τ→0

1

τ
Ω(t+ τ, t)

∫ t+τ

t
Ω(t, s)H(X(s;x, t), s)ds = H(x, t).

Combining (38), we verify that T 0(x, t) defined by (37) is a
feasible solution to the PDE (36), and then

ϕ0(x, t) = x+ T 0(x, t)

is a C1-solution to (31) in X .

10Here, we assume that for the NLTV system (2) there is no backward
finite-time escaping. Otherwise, we may adopt the modification in (21).
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The next step is to verify the rank condition (34). We have

∂ϕ0

∂x
(x, t) = In +

∂T 0

∂x
(x, t),

with

H(x⋆, t) = −f(x⋆, t) +Ax⋆ = 0,
∂H

∂x
(x⋆, t) = 0, (39)

and then T (x⋆, t) = 0 and ∇T (x⋆, t) = 0. It implies the
existence of a small parameter ε > 0 such that the mapping
ϕ0(x, t) is an injection (for any fixed t) in Bε(x⋆). Similarly
to the proof of Theorem 2, we consider the flow in the z-
coordinate as

z(tx) = Ω(tx, t)z(t) = Ω(tx, t)ϕ
0(X(t;x, s), t),

as well as the flow in the x-coordinate

z(tx) = ϕ0(X(tx;x, s), tx).

Hence, choosing s = t and using X(t;x, s)|s=t = x and
Ω(tx, t)Ω(t, tx) = I , we modify the transformation as

ϕ(x, t) = Ω(t, tx)ϕ
0(X(tx;x, t), tx),

which satisfies both the PDE (31) and the immersion condition
(34) with sufficiently large tx > 0.

In the above proof, we have assumed the existence of
an equilibrium x⋆. Now, let us consider the case without
equilibria. From the assumption of contraction, we know that
all trajectories will converge to each other ultimately. Selecting
a particular solution xr(t), we have

|x(t)− xr(t)| ≤ k0|x(0)− xr(0)|e−ρt, x(0) ∈ Rn (40)

with some k0, ρ > 0. We define an error state χ := x − xr,
the dynamics of which is given by

χ̇ = fχ(χ, t) (41)

with
fχ(χ, t) = f(χ+ xr(t), t)− f(xr(t), t).

Clearly, this system is GES at the origin due to (40). Then, we
may apply the result with an equilibrium to the dynamics (41).
The associated Koopman transformation is given by ϕ(x −
xr(t), t), where ϕ(·, t) follows the construction above. □

Sometimes there is an interesting special case to identify
constant Koopman eigenvalues, or equivalently to lift the
nonlinear model into an LTI system. It is always possible to do
that, but imposing the immersion condition C1 requires that
the Jacobian of the vector field should not change significantly
over time. We have the following.

Proposition 3: Consider the NLTV system (2) with an
equilibrium x⋆ at the origin, and assuming the system is
contracting with a metric M(x) in the set cl(X ). There always
exists a Koopman mapping ϕ(x, t) satisfying C1′ but with a
constant Hurwitz matrix A ∈ Rn×n. Further, if∣∣∣∣∂f∂x (0, 0)− ∂f

∂x
(0, t)

∣∣∣∣ ≤ k, ∀t ≥ 0, (42)

for some small k > 0, then the condition C2′ also holds.
Proof: From the contraction assumption, we have

Ṁ(x) + F⊤(x, t)M(x) +M(x)F (x, t) ≤ −γM(x)

for some γ > 0, with F (x, t) = ∂f(x,t)
∂x . Since x⋆ = 0 is an

equilibrium, we have Ṁ(X(x⋆, t)) = 0, thus

F⊤(x⋆, t)M(x⋆) +M(x⋆)F (x⋆, t) ≤ −γM(x⋆).

It implies that the Jacobian F (x⋆, t) is Hurwitz at any fixed
time. Now we select the Hurwitz matrix A := F (x⋆, 0), which
may work in our analysis due to the assumption (42). Now we
consider N = n and parameterize ϕ as

ϕ(x, t) = x+ T (x, t) (43)

and define H(x, t) := −f(x, t) +Ax.
The existence of a Koopman mapping ϕ is now equivalent to

the existence of the solution to the PDE (31) which satisfies the
immersion condition. With the above parameterization (43),
the equation (31) becomes

∂T

∂t
(x, t) +

∂T

∂x
(x, t)f(x, t) = AT (x, t) +H(x, t). (44)

It is interesting to figure out that the PDE (44) is exactly the
same one in the KKL observer for non-autonomous systems
[3, 4]. Mimicking the operation done in (21), we may modify
the NLTV system as ẋ = ρ(x)f(x, t) with its solution denoted
as X̆(s;x, t). That is, X̆(s;x, t) represents the solution value
at time s from the initial condition x(t) at time t for the
modified dynamics. Then, the PDE (31) has a feasible solution

T 0(x, t) =

∫ t

0

eA(t−s)H(X̆(s;x, t), s)ds, (45)

which is well-posed from the backward complete property.
Therefore, ϕ0(x, t) = x + T 0(x, t) is a feasible solution to
(31) in cl(X ).

The remainder of the proof is to verify (34) under the
additional assumption (42). The Jacobian of ϕ0(x, t) is

∂ϕ0

∂x
(x, t) = In +

∂T 0

∂x
(x, t).

Noting that

H(x⋆, t) = −f(x⋆, t) +Ax⋆ = 0,
∂H

∂x
(x⋆, 0) = 0 (46)

it yields that ϕ0(x, t) is an immersion in Bε(x⋆) for small
ε > 0, if k > 0 is sufficiently small. Following the similar
proof of Theorem 2, we redesign the mapping ϕ0(x, t) as

ϕ(x, t) = e−A(tx−t)ϕ0(X(tx;x, t), tx)

by choosing a sufficiently large tx > 0. Hence, we have
verified the immersion condition. □

Remark 9: The additional assumption (42) is relatively
mild. A particular case is the system dynamics being in the
form of ẋ = f1(x)+ f2(t), which satisfies (42) automatically.
In Proposition 3 and Theorem 4, we lift the contracting NLTV
system (2) into an LTI and an LTV system, respectively. In
the latter, we remove the Jacobian requirement (42) of the
vector field f(x, t). The key underlying reason relies on that
in the latter we have ∂H

∂x (x⋆, t) = 0, ∀t, but for the former we
only have ∂H

∂x (x⋆, 0) = 0 only at the initial moment without
uniformity with respect to time.
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V. EXTENSION TO LIMIT CYCLES

In this section, we show the equivalence between the
transverse contraction and Koopman approaches in orbital sta-
bility analysis. Indeed, periodic behavior plays important roles
in many engineering and biological applications [31, 46, 56].
Given an autonomous system (1), a (non-trivial) periodic
solution X is one for which there exists T > 0 such that

X(t) = X(t+ T ), t ≥ 0,

and the orbit is the set

γ := {x ∈ Rn|x = X(t), 0 ≤ t ≤ T}.

Analogous to the results for equilibria, in [36, Proposition
3] the authors propose a Koopman operator-based stability
criterion for limit cycles. Let us recall the results in [36], and
we modify as follows. Without loss of generality, we assume
the system invariant in the set X .

Lemma 2: Consider the system (1) with a hyperbolic limit
cycle γ ⊂ Rn. If there exists a Koopman mapping ϕ(x) :=
[ϕλ1

(x), . . . , ϕλn−1
(x)]⊤ ∈ On−1 satisfying

T1 (immersion) Φ(x) = ∂ϕ
∂x (x) is full row rank uniformly in

the set γ ⊂ X ∈ Rn, and ϕ(x)|x∈γ = 0;
T2 (stability) The existence of a Hurwitz matrix A ∈

R(n−1)×(n−1) verifying the PDE (7).
Then, the system is orbitally asymptotically stable in X with
respect to the limit cycle γ. □

Due to the topological constraint, the set X cannot be the
entire space of Rn. The best result we may get in the Euclidean
space is that the basin of attraction is almost global, except a
zero Lebesgue measure set.

Meanwhile, [34, Thm. 3] provides a transverse contraction
criterion for existence and stability of a limit cycle. See
Appendix for the definition of transverse contraction.

Lemma 3: [34] Consider the system (1). If there exists a
uniformly bounded metric M(x) ∈ Rn×n

≻0 such that

Ṁ +
∂f(x)

∂x

⊤
M +M

∂f(x)

∂x
− ρ(x)f(x)f(x)⊤ ≺ 0 (47)

for some scalar function lower bounded ρ(x) > 0, then the
system is orbitally asymptotically stable.

The interested reader may refer to [34] for its convex
representation. A benefit of Lemma 3, compared to Lemma
2, is that it does not require the prior knowledge of the orbit
γ to verify orbital stability of a given nonlinear system. In
[57], it was also suggested to use the bounded semi-definite
Riemannian metric M(x) ∈ Rn×n

⪰0 to verify the transverse
contraction with the inequality

Ṁ(x) + M(x)
∂f(x)

∂x
+
∂f(x)

∂x

⊤
M(x) ≺ −kM(x), k > 0.

(48)
Since M can be parameterized as M(x) = Ψ(x)P (x)Ψ⊤(x)
with P (x) ∈ Rr×r

≻0 and Ψ ∈ Rn×r, if ∇Ψi = (∇Ψi)
⊤ for all

i = 1, . . . , r, then the attractive orbit can be obtained as

γ = {x ∈ Rn | ψ(x) = 0},

with

ψ(x) :=

∫ 1

0

(Ψ(sx))⊤xds

if ψ(x)|γ = 0 with r = n− 1.

A. Koopman Implies Transverse Contraction
We are now ready to show that the Koopman approach for

limit cycles implies transverse contraction, i.e., verifying both
(48) and the conditions in Lemma 3.

Theorem 5: Consider the system (1) satisfying the assump-
tions in Lemma 2. Then, the system is transversely asymptot-
ically contracting with respect to ϕ, i.e., there exist
(1) a metric M(x) ⪰ 0 satisfying (48) globally;
(2) a metric M(x) ≻ 0 satisfying (47) locally.

Proof: If there exists a Koopman mapping ϕ satisfying
the conditions T1-T2, we can find a matrix P ∈ Rr×r

≻0 with
r := n− 1 satisfying the Lyapunov inequality

PA+A⊤P ⪯ −kP, k > 0.

Then, we construct the semi-definite Riemannian metric as
M(x) = ∂ϕ(x)

∂x

⊤
P ∂ϕ(x)

∂x . Following the similar procedure as in
the proof of Theorem 1, we have

Ṁ + MF + F⊤M ⪯ −kM,

thus verifying the first sufficient condition in (48).
We briefly summarize the construction of the transverse

contraction metric to guarantee the conditions in Lemma 3
locally. Since Φ(x) = ∂ϕ

∂x (x) is full rank, invoking Wazewski
theorem [3, Ch. 9.3], we know that the Jacobian completion
of ∇ϕ is solvable, i.e., there exists a C∞ mapping Θ : Rn →
R1×n such that

det(N(x)) ̸= 0, N(x) := col(Φ(x),Θ(x)) (49)

in any contractible sets.11 Then, we may select the positive
definite metric M(x) as

M(x) = N(x)⊤
[
P 0
0 1

]
N(x) = Φ(x)⊤PΦ(x)+Θ(x)⊤Θ(x),

in which P is the solution to the Lyapunov equation PA +
A⊤P + I = 0. According to the results in [34, Thm. 4], it
completes the proof. □

B. Transverse Contraction Implies the Koopman
Condition

Now let us show the converse result, i.e., transverse con-
traction implies the Koopman conditions for limit cycles. We
make the following assumption.

Assumption 1: Consider a limit cycle γ ∈ X ⊂ Rn with the
transverse coordinate ξ ∈ Rn−1 and the tangential coordinate
θ ∈ S defined by [

ξ
θ

]
= ϕ1(x) :=

[
ϕξ(x)
ϕθ(x)

]
,

satisfying
ϕξ(x)

∣∣∣
x∈γ

= 0.

11If Θ(x) is additionally integrable, i.e. ∂θ
∂x

= Θ, then ϕ(x) and θ(x)
represent the transverse and tangential coordinates (i.e. isochrons, or angular
variable), respectively, for orbital stability analysis.
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Additionally, ∇ϕ1(x) is full rank for x ∈ X .
Theorem 6: Consider the system (1), which admits a (non-

trivial) limit cycle γ satisfying Assumption 1. If there ex-
ists a uniformly bounded matrix P (x) ∈ R(n−1)×(n−1)

≻0

such that the semi-definite Riemannian metric M(x) =
∇ϕξ(x)P (x)(∇ϕξ(x))⊤ satisfying (48), then there is a Koop-
man mapping ϕ : Rn → Rn−1 satisfying T1 and T2.

Proof: From the existence of a limit cycle, there are a
family of particular solutions x⋆(t) invariant on γ, i.e.

x⋆(t) = x⋆(t+ T ) ∈ γ, ∀t ≥ 0

for some T > 0. According to [57, Proposition 11], we obtain

lim
t→∞

∥ϕξ(X(x, t))∥γ = 0, ∀x ∈ X

with ∥x∥γ := infy∈γ |x− y| and the ξ-system dynamics

ξ̇ =
∂ϕξ
∂x

f(x)
∣∣∣
x=ϕ−1

1 (ξ,θ)
(50)

is contracting in terms of the assumption (48) and has an
equilibrium at the origin, where ϕ−1

1 is the inverse mapping
of ϕ1. According to Theorem 4, there exists a transformation
ϕ2 : Rn−1 × R → Rn−1 lifting (50) into12

ζ̇ = A(θ)ζ, (51)

where A is a stable (time-varying) matrix.
Note that θ is defined on S (via normalization), as well as

θ̇|γ ̸= 0, and thus A(θ) is a periodic, stable matrix. According
to Floquet theorem, there is a periodic matrix Q(θ) such that
the transformed coordinate z = Q(θ)ζ has an LTI dynamics

ż = AQz

with AQ ∈ R(n−1)×(n−1) Hurwitz.
As a result, the Koopman mapping is given by the composite

function
ϕ(x) := Q(ϕθ(x)) · ϕ2 ◦ ϕξ(x),

completing the proof. □
In the above result, we assume that we already know the

transformation to get transverse and tangential coordinates.
Indeed, the existence of such a transformation in its domain of
attraction was shown in [7]. The converse result in Theorem
6 resembles the necessary part of [36, Proposition 3].

VI. DISCUSSIONS

A. Extension to Stabilization Problems
We have showed the equivalence between the Koopman and

contraction approaches when analyzing stability of equilibria,
trajectories, and limit cycles. On the other hand, it is of prac-
tical interest to study if such equivalence holds in constructive
problems.

Let us consider the controlled system model

ẋ = f(x, u), (52)

with the control input u ∈ Rm.

12The angular variable θ plays the role of time t in Theorem 4. Indeed, we
may find a reversible function between (ξ, θ) and (ξ, t); see for example the
proof of [22, Thm. 2.6].

Definition 3: (control contraction metric) Consider the con-
trolled system (52) with Jacobians F (x, u) := ∂f(x,u)

∂x and
G(x, u) := ∂f(x,u)

∂u . If we can find a uniformly bounded metric
M(x) and a function K(x) satisfying

Ṁ +MF + F⊤M +MGK + (GK)⊤M ≺ 0, (53)

then we call M(x) a (strong) control contraction metric.
For affine-in-input systems, the CCM may be written in a

more compact way independent of K(x). The interested reader
may refer to [32] for additional details.

Similar to the autonomous case, for the controlled system
(52) we may define the Koopman mapping ϕ satisfying

∂ϕ

∂x
(x)f(x, u) = Aϕ(x) +Bu, ∀u ∈ Rm, (54)

with matrix B ∈ Rn×m, which transforms the dynamics into

ż = Az +Bu, z(0) = ϕ(x(0)). (55)

We have the following.
Proposition 4: Consider the controlled system (52), which

has a Koopman mapping ϕ satisfying C1 and the PDE (54).
If the lifted LTI system (55) is stabilizable, then the given
controlled system admits a CCM.

Proof: The stabilizability of the LTI system (55) is
equivalent to the existence of a matrix P = P⊤ ≻ 0 and
a feedback gain matrix K̄ such that

P (A+BK̄) + (A+BK̄)⊤P ≺ 0. (56)

Now we define the feedback controller u = K̄ϕ(x), and
substitute into the PDE (54), obtaining

Φ(x)f(x, K̄ϕ(x)) = (A+BK̄)ϕ(x).

Calculate its partial derivative with respect to x, yielding

Φ̇(x) + Φ(x)[F +GK̄Φ(x)] = (A+BK̄)Φ.

By selecting the metric

M(x) := Φ(x)⊤PΦ(x)

and the mapping K(x) := K̄Φ(x), we have

Φ⊤[P (A+BK̄) + (A+BK̄)⊤P ]Φ

= Ṁ +MF + F⊤M +MGK + (GK)⊤M

≺ 0,

which exactly coincides with the strong CCM in (53). □
Remark 10: Although Koopman and CCM methods for

control design are equivalent in certain cases, they differ in
their implementation and each have their advantages. In par-
ticular, CCM methods admit a convex search for the metric and
the differential controller K, however there is no guarantee that
the obtained K(x) is integrable and some online computation
may be required to realize a specific controller [24, 53]. On the
other hand, the joint search for observables ϕ and controller
in the Koopman framework is non-convex, but if successful
there always admits an explicit controller u = Kϕ(x).

Remark 11: In general, the lifted z-dynamics may contain
a state-dependent input matrix rather than constant B [12, 15].
Here, we use the constant input matrix assumption to simplify
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the presentation, as is popular in data-driven Koopman-based
methods for control, e.g. [42], [37, Ch. 5]. A straightforward
extension is the case with state-dependent B(x), and in many
cases we may parameterize u = α(x, v) and regard v as
the new input in order to get the form ż = Az + Bv. On
the other hand, noting that the input u can be arbitrary, the
PDE (54) imposes implicitly the affine-in-control assumption
of f(x, u), making it relatively restrictive. It is also promising
to be extended to more general cases.

Remark 12: It is interesting to study the converse claim for
stabilization problems. For an affine-in-control system ẋ =
f(x) + gu, if there exists a feedback law u = k(x) + v(t)
making the closed-loop system contracting, then following the
main results of the paper, there is a mapping ϕ(x) which lifts
the closed-loop into a stable linear system, and also lifts the
open loop into a stabilizable dynamics. Unfortunately, it is
not a bona fide converse, since a CCM controller may be not
integrable to a function k(x) with K(x) = ∂k

∂x (x).

B. Relations to KKL Observers

The KKL observer, also known as nonlinear Luenberger
observer, is a state estimation approach for general nonlinear
systems [16], which consists in mapping the given nonlinear
dynamics

ẋ = f(x, t), y = h(x, t)

to a linear system
ż = Az +Dy

with A Hurwitz, in which the output y is viewed as an
available signal. This step relies on solving the PDE

∂T

∂t
+
∂T

∂x
(x)f(x, t) = AT (x, t) +Dh(x, t). (57)

It is a quite general framework since it allows a nonlin-
ear output injection h(x, t) to appear in the transformed z-
coordinate. The associated PDE (57) is always solvable under
some mild technical assumptions, and when applying KKL
observer, the main task is to guarantee the coordinate change
x 7→ z = T (x, t) injective, thus admitting an inverse map-
ping. It has been shown that, the general notion – backward
distinguishability – is sufficient to guarantee the injectivity
[1, 3]. Some remarks about the relation between the Koopman
method and KKL observers are in order.

1) In the proof of the converse results in Sections IV, we
parameterize the coordinate change ϕ : (x, t) 7→ z into
two parts, i.e., ϕ(x, t) = x+ T (x, t), and then we obtain
(20) for autonomous systems and (44) for time-varying
systems. It exactly coincides with the PDE involved in
KKL observers for the auxiliary system

ẋ = f(x, t), y = H(x, t). (58)

with H(·) the high-order remainder terms defined in
Section IV. Using the constructive solution in KKL
observers, we get a feasible solution to the PDE in the
Koopman methods for nonlinear contracting systems.

2) The main difference, between the Koopman method and
KKL observers, relies on how to guarantee the injectivity.

For the latter, we need to show the injectivity of T (x, t)
by exploiting the backward distinguishability of the given
system. However, for the Koopman method, we need to
show the injectivity of ϕ(x, t) = x+ T (x, t) rather than
T (x, t) itself. Our key idea is to utilize its “identity part”.

3) In KKL observers, it is suggested to use excessive co-
ordinates, generally more than (2n + 1)-dimensional13,
in order to get the injectivity of the mapping T defined
in (45). On the other hand, excessive coordinates are
widely adopted for the Koopman operator in the learning
literature. It is claimed in [18, Thm. 3] that by choosing
sufficiently rich orthonormal bases, the solution of a
least square approximates the Koopman operator with
guaranteed accuracy.

Remark 13: (Extensions to control design) An interesting
open problem is the converse claim of Proposition 4, which
is related to the dual problem of KKL observer. A straightfor-
ward idea is to immerse the controlled system (52) into

ż = Az + h(x, u), z = T (x)

for some function h(x, u) to be determined, with A stable. In
this step, we have the same PDE as the one in KKL observers.
Then, the stabilization task generally contains two tasks:

- finding a function α(x) to solve the algebraic equation
h(x, α(x)) = 0;

- the function h(x, t) should guarantee that the system ẋ =
f(x, u), y = h(x, u) is backward distinguishable.

Then, the feedback law u = α(x) stabilizes the system at
some equilibrium.

VII. EXAMPLES

A. A 2-Dimensional System

Consider the nonlinear autonomous system [6]

ẋ =

[
−x1

−x2 + x21

]
(59)

with x ∈ R2. The differential dynamics of (59) is given by
δẋ = F (x)δx, with the Jacobian

F (x) =

[
−1 0
2x1 −1

]
.

By selecting the metric M(x) = diag(1 + 4x21, 1), we may
verify that the given system is contracting due to

Ṁ(x)+M(x)F (x)+F (x)⊤M(x) =

[
−2− 16x21 2x1

2x1 −2

]
≺ 0.

This example will be used to verify the converse result in
Section III-C. The system has an equilibrium at the origin,
i.e. x⋆ = 0, and then following the proof of Theorem 2 we
have F⋆ = F (x⋆) = diag(−1,−1). A feasible transformation
is ϕ(x) = x+T (x), with T (x) the solution of (23). The flow
X(x, t) of the given nonlinear system (59) can be obtained as

X(x, t) =

[
e−tx1

e−tx21 + e−tx2 − e−2tx21

]
,

13For elements selected in C, the dimension is not less than n+ 1.
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and the high-order remainder term is H(x) = col(0,−x21). We
consider the modified system (21) in the the open set X :=
{0 < x1 < 1}, and the backward flow of X̆1 is given by

X̆1(x, t) =

{
e−tx1, lnx1 ≤ t ≤ 0

1, t < lnx1.

Then, it yields

T (x) =

∫ +∞

0

exp(F⋆s)H(X̆(x,−s))ds

=

∫ 0

−∞

[
es

es

] [
0

−X̆1(x, s)
2

]
ds

= −
∫ 0

ln x1

[
0

es(e−sx1)
2

]
ds−

∫ ln x1

−∞

[
0

es12

]
ds

=

[
0

−2x1 + x21

]
thus

ϕ(x) =

[
x1

−2x1 + x21 + x2

]
.

It is straightforward to verify C1 and C2, i.e., ∂ϕ
∂x (x) is full

rank, and

˙︷ ︷
ϕ(x) =

[
−x1

2x1 − x21 − x2

]
= F⋆ϕ(x).

We underline here that these conditions hold globally in R2. It
is interesting to compare the above result with the one in [6], in
which the given system is immersed into a three-dimensional
LTI system by introducing excessive coordinates.

B. Limit Cycle in Induction Motor

In this section, we use the model of an induction motor to
illustrate the result in Section V-A, i.e., the Koopman condition
implies transverse contraction for limit cycles. The normalized
model in the fixed frame is given by [41]

ψ̇r = −Rϕr + ωJψr +Ru

ω̇ = u⊤Jψr − τL, J :=

[
0 −1
1 0

]
,

(60)

with the flux ψr ∈ R2, angular speed ω ∈ R, the load torque
τL ∈ R, the resistance R > 0, and the stator current u ∈ R2

as input. A basic control problem is to regulate the norm |ψr|
and the speed ω to some constants β⋆ and ω⋆, respectively. To
address this, the classical field-oriented control (FOC), which
was introduced in the drives community in 1972 [5], is now
the de facto standard in all high-performance applications of
electric drives. With zero load τL, the FOC takes the form

u =
[
β⋆I2 −

k

β⋆
(ω − ω⋆)J

] ψr

|ψr|
, k > 0. (61)

We assume that – with loss of generality – all constant
parameters and gains being one to simplify the presentation. In
[56, Proposition 4] it shows that the FOC (61) achieves almost
global orbital stabilization. The following gives an alternative
proof from the perspective of Koopman operator.

Proposition 5: The induction motor model (60) in closed
loop with (61) satisfies the assumptions in Lemma 2, and thus
has an attractive limit cycle.

Proof: For consistency of notations, we define the state
x = [ψ⊤

r , ω]
⊤ ∈ R3 with xp = [x1, x2]

⊤. Then, the closed
loop is given by

ẋ =

1− |xp| −x3|xp| x2

|xp|
∗ 1− |xp| − x1

|xp|
∗ ∗ −|xp|

∇H (62)

with “*” presenting some skew-symmetric elements, and the
Hamiltonian H(x) = 1

2 |xp|
2 + 1

2 (x3 − 1)2. Now, let us verify
the assumptions for the closed loop (62). It is straightforward
to verify that the Jordan curve γ = {x ∈ R3 : |xp| = 1, x3 =
1} is forward invariant, and there is no equilibrium on the set.
Let us select the Koopman eigenfunctions as

ϕ1(x) = 1− 1

|xp|
, ϕ2(x) =

x3 − 1

|xp|
.

The Jacobian ∂ϕ
∂x (x) is full rank almost globally, except the

zero-Lebesgue measurable set Ωs := {x ∈ R3 : x1 = x2 = 0},
verifying the condition T1. On the other hand, we have

˙︷ ︷
ϕ(x) = − ϕ(x),

thus verifying T2, i.e., the PDE (7) with the Hurwitz matrix
A = −I2. Invoking Lemma 2, we complete the proof. □

According to Theorem 5, there exists a transverse contrac-
tion metric M(x) satisfying the inequality (47). To see this, we
may select the matrix-valued function Θ(x) =

[
−x2 x1 0

]
to guarantee the full-rank condition (49) almost globally
except the singular set Ωs. By selecting P = I2 we have
PA+A⊤P ≺ 0, and as a result the matrix

M(x) =
[
∂ϕ
∂x (x)

]
P
[
∂ϕ
∂x (x)

]⊤
+Θ(x)⊤Θ(x)

is positive definite except Ωs. In Fig. 3, we draw the largest

 

Fig. 3: The largest real parts of the eigenvalues of Ṁ +
∂f
∂x

⊤
M +M ∂f

∂x − ρff⊤ via fixing x3 = 1

real parts of the eigenvalues of Ṁ + ∂f
∂x

⊤
M +M ∂f

∂x − ρff⊤

with ρ = 50, and note that for the purpose of visualization we
fix x3 at its steady-state value x3 = 1. Clearly, M(x) verifies
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the transverse contraction condition (47) in the neighborhood
of the limit cycle.

Remark 14: In the above analysis, we use explicitly the
equation of the limit cycle γ to illustrate the theoretical results
in Section V-A. However, it is unnecessary to write down the
analytic form of γ via transverse contraction to find a limit
cycle and prove its stability [34]. This is particularly important
for showing robustness of a limit cycle, since typically a limit
cycle location will change as parameters change.

C. Learning Contraction Metrics from Data
It is widely recognized that the Koopman operator pro-

vides a powerful tool to learn dynamical models of nonlinear
systems from data [18, 28, 30, 37]. Based on the equivalence
between contraction and Koopman approaches studied in the
paper, it can provide a novel approach to learn contraction
metrics for stable nonlinear systems from pure trajectory data.
Learning contraction metrics has recently been explored in the
context of robust motion planning and control, e.g. [8, 48, 51],
and our results dramatically simplify this problem to one of
linear system identification.

Problem. (Data-driven contraction metrics learning) Con-
sider a contracting system (1) and assume that only a set of
state trajectory data {x̃(k)}Tk=0 and the derivatives { ˙̃x(k)}Tk=0

are available14, and the vector field f(x) is unknown. Our
task is to estimate the contraction metric M(x) using the
information of data only.

According to Theorem 2, if the system is contracting we
may always find a Koopman mapping ϕ to get a lifted
LTI system (8) with A Hurwitz, and ϕ is left invertible. A
contraction metric of the given system is M = ∇ϕP (∇ϕ)⊤
with P ≻ 0 the solution of the Lyapunov equation. Based on
this intuitive idea, data-driven contraction metrics learning is
translated to the problem of estimating the Koopman mapping
ϕ and the stable matrix A from data.

First, selecting the basis function w(x) ∈ RN , with N ∈ N,
and here N > n is usually selected sufficiently large in order
to get high accuracy. Then, we are able to parameterize the
Koopman mapping as

ϕ(x) = θ⊤w(x), θ ∈ RN×n. (63)

Now the PDE (7) becomes

θ⊤
˙︷ ︷

w(x) = Aθ⊤w(x) (64)

with ẇ(x) = W (x)ẋ and W (x) := ∂w
∂x (x). Our target, then,

becomes searching for θ and A in the optimization problem

min
θ,A

nk∑
k=1

∣∣θ⊤Y1(k)−Aθ⊤Y2(k)
∣∣2

s.t. rank θ = n

(65)

with the measurable vectors Y1(k) := W (x̃(k)) ˙̃x(k) and
Y2(k) := w(x̃(k)).

We consider the following assumption. If we select suf-
ficient numbers of independent basis functions (N ≫ n),

14Sometimes the time derivative of systems state is not available from
sensors. We may apply stable filters to obtain new regressors.

all the elements of W (x)f(x) can be approximately linearly
represented by the bases w(x), i.e. [W (x)f(x)]i = ρ⊤i w(x)+
O(·), ∀i for some vectors ρi, with some (tiny) high-order term
O(·). Since θ is full rank, we can always find another matrix
θ⊥ ∈ RN×(N−n) such that [θ, θ⊥] is full rank. Hence,[
θ⊤

θ⊤⊥

] ˙︷ ︷
w(x) =

[
Aθ⊤

θ⊤⊥
[
ρ1 · · · ρN−n

]⊤]w(x) +O(·), (66)

and then we have
˙︷ ︷

w(x) = Ãw(x)+O(·), Ã :=
[
θ⊤

θ⊤⊥

]−1
[

Aθ⊤

θ⊤⊥
[
ρ1 · · · ρN−n

]⊤
]
.

Now we may estimate the matrix Ã using the bases w(x)
as observables to identify the dynamical model. This is the
underlying reason why, in many works, only (sufficiently high-
dimensional) lifted system matrix Ã is learned – rather than
estimating the Koopman mapping ϕ and matrix A simultane-
ously – but it still provides satisfactory identification results.
Then we may use the least square solution to estimate Ã as
Â = Ỹ1Ỹ

⊤
2 (Ỹ2Ỹ

⊤
2 )−1 with Ỹ1 :=

[
Y1(1) · · · Y2(k)

]
and

Ỹ2 :=
[
Y2(1) · · · Y2(k)

]
. After solving Q̂Â + Â⊤Q̂ =

−IN , we learn a contraction metric M = ∂w
∂x

⊤
Q̂∂w

∂x .
Numerical example. Let us consider the system in Section

VII-A. But, now we only have the dataset {x̃(k), ˙̃x(k)}Tk=0

rather than the model itself. The basis function is selected as
polynomials w(x) = col(x1, x2, x1x2, x21, x

2
2). The trajectory

data are collected under the sampling time 0.2s from the
initial condition [−2 1]⊤. Following the above, the estimated
contraction metric M(x) ∈ R2×2 is obtained as

M(x) =W (x)⊤


0.45 0.23 0.03 −0.04 0.04
∗ 0.44 −0.01 −0.13 −0.04
∗ ∗ 0.23 0.1 0.12
∗ ∗ ∗ 0.29 0.07
∗ ∗ ∗ ∗ 0.23

W (x).

We give in Fig. 4 the largest real part of the eigenvalues of
Ṁ +MF + F⊤M , which is negative definite – showing that
the Riemmanian metric is geodesically decreasing – and the
smallest real part of the eigenvalue of M , which is positive
definite. Hence, the obtained estimation of M is qualified as a
contraction metric. It should be kept in mind that, for a given
contracting system, the contraction metric is not unique.

Remark 15: We use this example to show an interesting
byproduct of the main results in the paper, i.e., the Koopman
approach provides an efficient methodology to learn contrac-
tion metrics from trajectory data. Some remarks are in order.

• By using sufficiently high-dimensional basis observables,
we try to learn the matrix Ã in the w-coordinate, which
admits a modelling error from the high-order approxima-
tion term. If we come back to (65) and search for A and
ϕ, it is promising to improve accuracy. It, however, is a
non-convex optimization problem.

• The above procedure is sensitive to the quantity and
coverage of data, with the obtained contraction metric
local to the trajectory data. A possible approach is to
impose stability constraint of the matrix A during identifi-
cation, e.g. via the methods of [21, 29, 52] towards robust
learning algorithms. Recently, we have extended these
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(a) The largest (real parts of) eigenvalue of
(∂fM +MF + F⊤M)

 
(b) The smallest (real parts of) eigenvalue of
M

Fig. 4: Learned contraction metric from trajectory data

equivalence results from continuous-time to discrete-time
models in [10], leading to a nonlinear system identifi-
cation approach with the model stability constraint. We
refer the reader to see more practical examples therein.

VIII. CONCLUDING REMARKS

In this paper, we study the connections among the Koopman
method, contraction analysis and KKL observers. First, we
show that the conditions in the Koopman method implies
contraction of a given autonomous or time-varying system
by substitution of differential equations. Later, the converse
results for both equilibria and limit cycles are proven under
mild technical assumptions, the success of which relies on the
interesting observation that the Koopman method enjoys the
same PDE as the one in KKL observers. We also studied the
nonlinear controlled systems, showing that stabilizability of
the lifted linear systems implies the existence of a CCM of
the original nonlinear system. In terms of the above results, it
is reasonable to expect a further integration of these methods
as a systematic constructive tool in the near future.

APPENDIX

A. Definition of Transverse Contraction
The concept of transverse contraction was proposed in [34]

for analysis of limit cycles. In [57], it was generalized to deal
with observer design.

Definition 4: The forward complete system (1) is said to
be transversely contracting with rate λ > 0 (or transversely
asymptotically contracting) with respect to ψ : Rn → Rn (1 ≤
r ≤ n), if for any pair (xa, xb) ∈ Rn × Rn, we have

|ψ(X(xa, t))− ψ(X(xb, t))| ≤ e−λtb(xa, xb)

form some function b ≥ 0 with b(x, x) = 0 or

|ψ(X(xa, t))− ψ(X(xb, t))| ≤ κ(|xa − xb|, t)

for transverse asymptotic contraction, with κ of class KL.
The key difference between transverse contraction and

horizontal contraction [11] is that the they are defined on
state-space and tangent space, respectively. When adopting
transverse contraction to the stability analysis of limit cycles

[34], it becomes the existence of a Finsler-Lyapunov function
V (x, δx) satisfying

∂V (x, δx)

∂x
f(x) +

∂V (x, δx)

∂δx

∂f(x)

∂x
δx ⪯ −λV (x, δx),

for all non-zero δx such that ∂V
∂δxf(x) = 0.
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