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Abstract— We study the problem of nonstochastic bandits
with expert advice, extending the setting from finitely many
experts to any countably infinite set: A learner aims to maximize
the total reward by taking actions sequentially based on bandit
feedback while benchmarking against a set of experts. We
propose a variant of Exp4.P that, for finitely many experts,
enables inference of correct expert rankings while preserving
the order of the regret upper bound. We then incorporate
the variant into a meta-algorithm that works on infinitely
many experts. We prove a high-probability upper bound of
Õ
(
i∗K +

√
KT

)
on the regret, up to polylog factors, where i∗

is the unknown position of the best expert, K is the number
of actions, and T is the time horizon. We also provide an
example of structured experts and discuss how to expedite
learning in such case. Our meta-learning algorithm achieves
optimal regret up to polylog factors when i∗ = Õ

(√
T/K

)
. If

a prior distribution is assumed to exist for i∗, the probability
of optimality increases with T , the rate of which can be fast.

I. INTRODUCTION

Early work on the multi-armed bandit problem commonly
studied settings where the rewards of each arm are stochasti-
cally generated from some unknown distribution [1]–[3]. In
general, such statistical assumptions are difficult to validate
or inapproriate for some applications such as packet trans-
mission in communication networks [4], [5]. The problem of
nonstochastic bandits, first investigated in [4], [5], makes no
statistical assumptions about how the rewards are generated.

A setting of the nonstochastic bandit problem allows for
incorporating expert advice. The learner interacts with an
adversary over a time horizon T as follows. At each time,
the adversary sets the rewards for K actions and keeps them
secret. After getting every expert’s advice on the probability
of choosing each action, the learner combines the advice
and samples an action. Finally, the learner observes only
the reward of the action chosen, and the game repeats. The
learner’s goal is to minimize regret, which is the gap between
the total reward gained and the expected total reward of the
best expert i∗ who is unknown a priori.

The framework described is a general one. First, there is
no assumption about the generation of rewards except that
the adversary is oblivious. In other words, the adversary’s
choices are independent of the learner’s strategy. Equiva-
lently, all rewards can be assigned before the game starts,
and the learner only observes the rewards of chosen actions
sequentially. Second, we do not restrict or assume knowledge
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of how the experts come up with their advice. Third, experts
can give deterministic advice.

The problem of bandits with expert advice is not only
a natural model for numerous real-world applications, such
as selecting and pricing online advertisements [6], but also
important from a theoretical perspective. Contextual bandits
can be framed as a bandits with expert advice problem
by introducing policies that map a context to a probability
distribution over actions [6], [7]. Bandits with expert advice
are also closely related to online model selection where
experts correspond to model classes [8]–[10].

Prior work on nonstochastic bandits with expert ad-
vice typically assumes the number of experts to be fi-
nite [4]–[6], [11], [12]. The exponential-weight algorithm
for exploration and exploitation using expert advice (Exp4),
introduced by [4], [5], has a regret upper bound of
O
(√
KT lnN

)
in expectation, where N is the number of

experts. This upper bound almost matches the lower bound
Ω(
√

(KT lnN)/ lnK) derived by [13] for the expected re-
gret when lnN ≤ T lnK. However, Exp4 does not satisfy a
similar regret guarantee with high probability due to the large
variance of its estimates. Algorithms with high-probability
guarantees are preferred for domains that need reliable meth-
ods, but such algorithms require delicate analysis [11], [12].
The Exp4.P algorithm, a variant of Exp4 proposed by [11],
satisfies a regret upper bound of O

(√
KT ln (N/δ)

)
with

probability at least 1− δ. This bound can be improved by a
constant factor by avoiding explicit exploration [12].

We study the problem of nonstochastic bandits with in-
finitely many experts. Our main question is: Can the learner
perform almost as well as the globally best expert i∗ of a
countably infinite set while only querying a finite number of
experts? This question is motivated by challenges encoun-
tered in practical situations where it is unfeasible to seek
advice from all experts all the time [14]. For search engine
advertising, a company may need to choose among a multi-
tude of schemes some of which also involve hyperparameter
tuning [6]. As another example, there are often a myriad of
features that can be used for online recommendation systems.
Some features tend to be more informative than others,
but their relevance is normally unknown a priori. We can
transform this problem into bandits with expert advice where
each expert corresponds to a model class in a certain feature
space. The number of experts can be extremely large due to
the combinatorial nature. In contrast to the large number of
experts available, it is desirable to query only some of them
each time in consideration of computational constraints.

Our Contributions: For the general case without any
assumption about the experts, we propose an algorithm called
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Best Expert Search (BEES) and provide theoretical guar-
antees on its performance. BEES runs a subroutine called
Exp4.R in epochs, an algorithm that we obtain by modifying
Exp4.P. The “R” denotes a feature of Exp4.R: it enables
inference of correct expert rankings with high probability
in addition to satisfying a regret upper bound of the same
order as that proved for Exp4.P. Our main result establishes
a high-probability upper bound of Õ

(
(i∗)1/αK +

√
αKT

)
on the regret of BEES, hiding only polylog factors, which
adapts to the index of the unknown best expert i∗ and
depends on a positive integer-valued parameter α. The bound
illustrates the trade-off, controlled by α, between exploration
and exploitation for the problem of nonstochastic bandits
with infinitely many experts. On the one hand, it is desirable
to include numerous experts per epoch so as to approach i∗

at a fast rate. On the other hand, querying too many experts
simultaneously necessitates long epochs, which reduces the
rate at which more experts are included. Although tuning
α needs the unknown index i∗, we can simply set α = 1.
Our regret upper bound is optimal up to polylog factors when
i∗ = Õ

(√
T/K

)
. This regime is less restricted than it seems

at first sight. If we assume a prior distribution on i∗, then
i∗ = Õ

(√
T/K

)
holds with a probability that increases with

T , the rate of which can be fast. Inspired by the problem
of finite-time model selection for reinforcement learning
(RL), we also present an example of structured experts,
which simulates the trade-off between approximation and
estimation. We discuss how the expert ranking property of
Exp4.R can be used to expedite learning in such case and
demonstrate the improvement in numerical experiments.

Related Work: A natural approach is to consider experts
as arms and use methods for infinitely many-armed bandits
such as [15]–[18]. However, such work relies on statisti-
cal assumptions, whereas our setting is nonstochastic. Our
question is also related to bandits with limited advice, first
posed by [14] and subsequently solved by [19], but their
results are restricted to finitely many experts. For the setting
considered in this paper, existing work either achieves a high-
probability regret bound larger than Õ

(√
KT

)
or has worse

computational efficiency. When configured correctly, Exp4
has a regret upper bound of O

(√
KT ln i∗

)
in expectation

[10]. However, the algorithm is computationally unfeasible
as it needs to handle infinitely many experts at every time
step. One method of making Exp4 computationally tractable
is to truncate the sequence of experts to a subset of size
O
(
e
√
KT
)

as any larger set would make the expected re-
gret superlinear in K or T . Running Exp4 with correct
configurations on this subset of experts has a regret upper
bound of O

(
(KT )3/4 + T∆

)
in expectation where ∆ is

the infimum upper bound on the suboptimality gaps of the
experts considered. For stochastic contextual bandits, Exp4.P
can be used as a subroutine to achieve a high-probability
regret bound of Õ

(√
dT lnT

)
with an infinite set of experts

that has a finite Vapnik–Chervonenkis dimension d [11].
Since the regret analysis of Exp4.P relies on the union bound,
the algorithm does not apply to infinitely many experts in
the nonstochastic setting. If we run Exp4.P on a finite subset

of experts of size Θ
(
δ exp

(√
T/(16K)

))
, the regret is then

bounded from above byO
(
K1/4T 3/4+T∆

)
with probability

at least 1 − δ. Running Exp4.P on a subset of T experts
attains a high-probability regret bound of Õ

(√
KT

)
when

i∗ ≤ T . Although the worst-case regret guarantee is the same
order as that provided by our algorithm for sufficiently small
i∗, considering a subset of experts that is fixed in advance
can lead to worse performance in practice than growing
the subset adaptively, as shown in our numerical experi-
ments. Moreover, the truncation method requires knowing
T a priori, which is not necessary for BEES. Since the
computational complexity of Exp4.P is linear in the number
of experts for both space and runtime, running Exp4.P on T
experts becomes computationally intensive for large T .

Outline: Section II formally defines the problem of non-
stochastic bandits with infinitely many experts. In Section III,
we introduce Exp4.R for the setting of finitely many experts
and prove that it enables inference of correct expert rankings
with high probability. Section IV investigates the case of
infinitely many experts and presents a meta-algorithm that
runs Exp4.R as a subroutine. We prove a high-probability
regret upper bound and give an example to illustrate how
to expedite learning when working with structured experts.
Section V presents simulation results that complement our
theoretical findings. Finally, we conclude in Section VI.

II. PROBLEM FORMULATION
Let Z+ be the set of strictly positive integers. For N ∈ Z+,

we define [N ] , {1, 2, . . . , N}. Let T ∈ Z+ be the time
horizon. Let A be a set of actions where |A| = K <∞.

At each time t ∈ [T ], the adversary first sets a reward
vector r(t) ∈ [0, 1]K where ra(t) is the reward of action a.
Each expert i ∈ Z+ then gives their advice ξi(t), which is
a probability vector over A. After querying a finite subset
of the experts’ advice but not the rewards, the learner then
samples an action a(t). Finally, the learner receives the
reward ra(t)(t) and no other information. The game proceeds
to time t+1 and finishes after T time steps. The learner’s goal
is to combine the experts’ advice such that the total reward
is close to a benchmark, which we will define shortly.

Let yi(t) ,
∑
a∈A ξ

i
a(t)ra(t) be the expected reward of

expert i at time t. For any time interval T ⊂ Z+ such that
|T | < ∞, we denote the expected total reward of expert i
during T as Ri(T ) ,

∑
t∈T yi(t). We define the best expert

i∗(I; T ) of a subset I ⊆ Z+ during T as the one with the
lowest index that has the highest total reward in expectation,1

namely, i∗(I; T ) , min {argmaxi∈I Ri(T )}. The learner’s
regret with respect to i∗(I; T ) is

Regret(T ; I) , Ri∗(I;T )(T )−
∑
t∈T

ra(t)(t).

For simplicity of notation, let Regret(T ) , Regret([T ];Z+)
and i∗ , i∗(Z+; [T ]). The learner’s goal is to minimize
Regret(T ), the regret with respect to the globally best expert
i∗ for the time horizon considered.

1If maxi∈I Ri(T ) does not exist, we define i∗(I; T ) = ∞ and
Ri∗(I;T )(T ) = supi∈I Ri(T ).



III. NONSTOCHASTIC BANDITS WITH A FINITE
NUMBER OF EXPERTS

We start with a simplified problem where the number of
experts is finite. Section III-A presents Exp4.R (Algorithm 1)
and provides some intuition for its design. In Section III-B,
we show that Exp4.R not only preserves the regret upper
bound of Exp4.P in terms of order but also enables inference
of correct expert rankings with high probability.

A. The Algorithm

Exp4.R (Algorithm 1) is a slight variant of Exp4.P pro-
posed by [11]. The major distinction is that Exp4.R calculates
a threshold vector ε which enables inference of correct expert
rankings with high probability. Exp4.R takes four inputs,
namely, an error rate δ ∈ (0, 1], a time horizon T ∈ Z+,
the minimum probability ρ ∈ (0, 1/K] of exploration, and a
finite set of experts I ⊂ Z+. Without loss of generality, we
suppose that |I| = N .

Exp4.R first initializes a weight wi(1) = 1 for each expert
i ∈ I. At time t ∈ [T ], normalizing w(t) gives a probability
distribution q(t) over I. After getting advice ξi(t) from each
expert i, Exp4.R constructs a probability distribution p(t)
over A by weighting all advice according to q(t) and mixing
in uniform exploration so that pa(t) ≥ ρ for all a ∈ A.
Specifically, for all a, let

pa(t) = (1−Kρ)
∑
i∈I

qi(t)ξ
i
a(t) + ρ. (1)

Exp4.R subsequently takes action a(t) sampled according
to p(t) and receives the reward ra(t)(t). Time t concludes
with weight updates as specified below. For i ∈ I, Exp4.R
estimates yi(t) by ŷi(t) and calculates an upper bound on
the variance of ŷi(t) conditional on history until time t− 1
as given by

ŷi(t) =
ξia(t)(t)ra(t)(t)

pa(t)(t)
, v̂i(t) =

∑
a∈A

ξia(t)

pa(t)
. (2)

Exp4.R updates each expert’s weight wi(t) using

wi(t+ 1) = wi(t) exp
(ρ

2
[ŷi(t) + βv̂i(t)]

)
, (3)

where β =
√

ln(2N/δ)/(KT ). The game ends in T time
steps and gives two outputs, namely, the final weight vector
w(T + 1) and a threshold vector ε, the ith entry of which is

εi =

[
1 +

1

KT

T∑
t=1

v̂i(t)

]
ln

(
2N

δ

)
.

B. Properties

We establish in Proposition 1 that, with high probability,
Exp4.R not only satisfies a regret upper bound of the same
order as that proved for Exp4.P but also reveals correct
pairwise expert rankings if the corresponding weights are
sufficiently separated. We give some intuition here and
provide proofs in the appendix.

Algorithm 1 Exp4.R
Input: δ ∈ (0, 1], T ∈ Z+, ρ ∈ (0, 1/K], I ⊂ Z+

Output: w(T + 1), ε
β ←

√
ln(2N/δ)/(KT ).

wi(1)← 1 for i ∈ I.
for t = 1, . . . , T do

Get ξi(t) for i ∈ I.
qi(t)← wi(t)/

∑
i′∈I wi′(t) for i ∈ I.

pa(t)← (1−Kρ)
∑
i∈I qi(t)ξ

i
a(t) + ρ for a ∈ A.

Sample action a(t) from p(t).
Take action a(t) and receive reward ra(t)(t).
for i ∈ I do

ŷi(t)←
ξia(t)(t)ra(t)(t)

pa(t)(t)
,

v̂i(t)←
∑
a∈A

ξia(t)

pa(t)
,

wi(t+ 1)← wi(t) exp
(ρ

2
[ŷi(t) + βv̂i(t)]

)
.

end for
end for
for i ∈ I do

εi ←

[
1 +

1

KT

T∑
t=1

v̂i(t)

]
ln

(
2N

δ

)
.

end for

For simplicity of notation, we denote Ri([T ]) ,∑T
t=1 yi(t) as Ri(T ). Updating weights using (3) allows us

to construct a confidence bound for each Ri(T ). For i ∈ I,
let R̂i(T ) ,

∑T
t=1 ŷi(t) and V̂i(T ) ,

∑T
t=1 v̂i(t). For any

δ ∈ (0, 1], let E(δ) be an event defined by

∀i ∈ I, − ln

(
2N

δ

)√
KT

lnN
−
√

lnN

KT
V̂i(T )

≤ Ri(T )− R̂i(T )

≤

√
ln

(
2N

δ

)(
V̂i(T )√
KT

+
√
KT

)
.

Lemma 1 shows that the estimates R̂i(T ) are concen-
trated around the true values Ri(T ). The proof relies on a
Freedman-style inequality for martingales from [11].

Lemma 2 establishes an upper bound on the regret of
Exp4.R. Since Lemma 2 is a slight variant of Theorem 2
in [11], the proof is very similar to the original one and
hence omitted. We note that Theorem 2 in [11] holds for
a smaller regime than stated in the original paper. To be
specific, the condition T = Ω(K lnN) is essential for ρ =√

lnN/(KT ) ≤ 1/K to be true. We make the correction in
Lemma 2.

Lemma 3 validates the correctness of the inferred expert
rankings when the concentration event E(δ) holds. Corol-



lary 1 shows that the uncertainty gap for ranking any pair
of experts is the sum of their thresholds given by Exp4.R.
We can prove Corollary 1 by first taking the contrapositive
of the statement in Lemma 3 and then switching i and i′.

Finally, we combine the lemmas to obtain Proposition 1.
Same as Exp4.P, the computational complexity of Exp4.R is
O (KN) for space and O (KNT ) for runtime.

Assumption 1. The following conditions hold: (i)
max{4K lnN, ln(2N/δ)/[(e − 2)K]} ≤ T , (ii) and there
exists a uniform expert i ∈ I such that ξia(t) = 1/K for all
a ∈ A and t ∈ Z+.

Lemma 1. Under Assumption 1, if we run Exp4.R with ρ =√
lnN/(KT ), then P (E(δ)) ≥ 1− δ for all δ ∈ (0, 1].

Lemma 2. Under Assumption 1, for any δ ∈ (0, 1], if E(δ)
holds, then Exp4.R with ρ =

√
lnN/(KT ) satisfies that

Regret(T ; I) ≤ 7
√
KT ln (2N/δ).

Lemma 3. Under Assumption 1, for any δ ∈ (0, 1], if E(δ)
holds, then Exp4.R with ρ =

√
lnN/(KT ) satisfies that,

for all i, i′ ∈ I, if lnwi(T + 1) − lnwi′(T + 1) > εi, then
Ri(T ) > Ri′(T ).

Corollary 1. Under the conditions of Lemma 3, for all i, i′ ∈
I, if lnwi(T+1)−lnwi′(T+1) > εi, then Ri(T ) > Ri′(T );
if Ri(T ) ≥ Ri′(T ), then lnwi(T+1)−lnwi′(T+1) ≥ −εi′ .

Proposition 1. Under Assumption 1, for any δ ∈ (0, 1],
with probability at least 1 − δ, Exp4.R configured with
ρ =

√
lnN/(KT ) satisfies that

(i) Regret(T ; I) ≤ 7
√
KT ln (2N/δ);

(ii) for all i, i′ ∈ I, if lnwi(T + 1) − lnwi′(T + 1) > εi,
then Ri(T ) > Ri′(T ).

IV. SELECTION AMONG INFINITELY MANY
EXPERTS

In this section, we study the problem of nonstochastic
bandits with a countably infinite set of experts. We make
no assumptions about the experts or how they are indexed.
For this general case, we propose a meta-algorithm called
Best Expert Search (BEES, Algorithm 2) that runs Exp4.R
as a subroutine and provide a high-probability upper bound
on regret. Section IV-A provides an example of structured
experts and discusses how the expert ranking property of
Exp4.R can be used to expedite learning in such case.

Algorithm 2 Best Expert Search (BEES)
1: Input: δ ∈ (0, 1], α ∈ Z+, L ∈ Z+, c ∈ Z+, C ∈ Z+

2: for epoch l = 1, . . . , L do
3: Nl ← c2αl, Tl ← C2l.

4: ρl ←
√

lnNl/(KTl).

5: Il ← [Nl].

6: Exp4.R(δ/L, Tl, ρl, Il) .
7: end for

BEES takes five inputs including an error rate δ ∈ (0, 1],
the number of epochs L ∈ Z+, and three constants α, c, C ∈
Z+ that control the exponential growth of the epoch length
and the number of experts queried in each epoch. At a high
level, BEES supplies Exp4.R with an increasing (but still
finite) number of experts over epochs, prioritizing those with
lower indices. This scheme can be considered as putting a
prior on the experts implicitly where the experts that are
believed to perform well are given low indices. The regret
upper bound established in Theorem 1 for BEES adapts
to the unknown difficulty of the problem in the sense that
i∗ being large corresponds to a bad implicit prior. Since
we make no assumptions about the experts, they can be
ordered using domain knowledge before being input into
BEES. Growing the epoch length and the number of experts
at exponential rates allows us to derive a regret upper bound
of the same order as that of Exp4.R when the best expert i∗

has a relatively low index. This idea is similar to, though not
the same as, the doubling trick [20] as the latter only deals
with the epoch length. We need to increase the number of
experts at an appropriate rate relative to the epoch length.

Corollary 2 simplifies the bound in Theorem 1 for specific
parameter values. Corollary 2 shows that BEES, when tuned
right, satisfies Regret(T ) = Õ

(
(i∗)1/αK +

√
αKT

)
with

high probability, where Õ (·) omits only polylog factors. This
upper bound illustrates the trade-off between exploration and
exploitation for the problem of bandits with infinitely many
experts. On the one hand, we want to include numerous
experts in each epoch so as to approach i∗ fast. On the other
hand, querying too many experts simultaneously necessitates
long epochs, which reduces the rate at which more experts
are included. This trade-off is controlled by α ∈ Z+. The
term Õ

(
(i∗)1/αK

)
in the bound is due to not considering

i∗ sooner. The other term Õ
(√

αKT
)

is the regret that
benchmarks against the best expert in each epoch. Another
consideration for not using an arbitrarily large value of α is
that the minimum time horizon required by BEES which is
T = Ω(C(α, c,K, δ)) increases with α. Although tuning α
needs the unknown index i∗ of the best expert, we can simply
set α = 1. BEES has space complexity O (K(1 + T/K)α)
and time complexity Õ

(
K2(1 + T/K)α+1

)
.

The regret bound in Theorem 1 matches the lower bound
Ω̃(
√
KT ) derived by [13] up to polylog factors when i∗ =

Õ
(√

T/K
)
. This regime is less restricted than it seems at

first sight. Assuming a prior distribution on i∗ shows that the
condition on i∗ is satisfied with a probability that increases
with T , the rate of which can be fast. For simplicity, let
α = 1 and c = 1. In order for Regret(T ) = Õ

(√
KT

)
to

hold with high probability, we need i∗ = Õ
(√

T/K
)
. We

denote the complement of this event as B. If we suppose that
F (i) = P (i∗ > i) for i ∈ Z+ and some function F : Z+ →
[0, 1], then P (B) decreases with T . For example, if F (i) ∝
i−s for some s > 0, then P (B) is roughly proportional to
Ks/2T−s/2. If F (i) ∝ e−si for some s > 0, then P (B) is
roughly proportional to e−s

√
T/K .



Although the worst-case regret guarantee of BEES is the
same order as that achieved by running Exp4.P on a subset of
T experts for sufficiently small i∗, BEES can be configured
to expedite learning by exploiting the expert structure if it
is known, which we will discuss in Section IV-A. Section V
will show in numerical experiments that growing a subset of
experts adaptively can improve performance in practice in
comparison with fixing a subset of experts a priori. Moreover,
the truncation method requires knowledge of T , which is
not necessary for BEES as we can use sufficiently small δ
instead of δ/L in the subroutine Exp4.R. Finally, since the
computational complexity of Exp4.P is linear in the number
of experts for both space and runtime, running Exp4.P on T
experts becomes computationally intensive for large T .

Before stating Theorem 1, we provide some intuition for
the proof. Lemma 1 implies that

∑
t∈Tl ŷi(t) ≈ Ri(Tl) for

each expert i and every epoch l with high probability. For
this reason, we can prove an upper bound on the regret
with respect to the best expert in each epoch, namely,∑L
l=1Ri∗l (Tl) −

∑T
t=1 ra(t)(t) = Õ

(√
αKT

)
. We then

derive an upper bound on the gap between the globally best
expert and the best expert in each epoch, which is given by
Ri∗([T ]) −

∑L
l=1Ri∗l (Tl) = Õ

(
(i∗)1/αK

)
. Adding the up-

per bounds, we get Regret(T ) = Õ
(

(i∗)1/αK +
√
αKT

)
.

For simplicity of notation, we suppose that the total num-
ber of epochs is L = log2[1+T/(2C)] so that T =

∑L
l=1 Tl

where Tl = C2l for l ∈ [L]. We use b·c and d·e to denote
the floor and ceiling functions, respectively. For the general
case of T ≥ 2C, let L = blog2[1 + T/(2C)]c, Tl = C2l for
l ∈ [L− 1], and TL = T −

∑L−1
l=1 Tl.

Theorem 1. If a uniform expert is available in each epoch,
then there exist absolute constants α ∈ Z+ and c ∈ Z+ such
that, for some C(α, c,K, δ) ∈ Z+, BEES satisfies that, for
any δ ∈ (0, 1], with probability at least 1− δ, we have

Regret(T ) <20

√
αK(T + 2C) ln

(
cL(2 + T/C)

δ

)
+ 2C

(
i∗

c

) 1
α

.

Corollary 2. Under the conditions of Theorem 1, running
BEES with α ∈ Z+, c ∈ Z+, and C = dαK ln(16c4/δ)e
satisfies that, for any δ ∈ (0, 1], with probability at least
1− δ, Regret(T ) = Õ

(
(i∗)1/αK +

√
αKT

)
.

Proof of Theorem 1. We can show that, for all δ ∈ (0, 1],
α ∈ Z+, and c ∈ Z+, there exists C(α, c,K, δ) ∈ Z+

such that 4K ln
(
c2αl

)
≤ C2l and ln

(
c2αl+1/δ

)
≤ (e −

2)CK2l for all l ∈ Z+. For example, we can set C =
dαK ln(16c4/δ)e. Together with the definitions of Nl and
Tl in Algorithm 2, we have that, for all α ∈ Z+ and
c ∈ Z+, there exists C ∈ Z+ such that 4K lnNl ≤ Tl
and ln(2Nl/δ) ≤ (e − 2)KTl for all l ∈ Z+. We fix such
integers α, c, C ∈ Z+ for the rest of the proof.

For simplicity of notation, we first consider running

Exp4.R(δ, Tl, ρl, Il) in each epoch l for any δ ∈ (0, 1/L]
and then apply a change of variables at the end of the proof.
We suppose that a uniform expert is available in each epoch.
Assumption 1 is then satisfied for all epochs. For now, we
assume that event E(δ) holds for all epochs, the probability
of which will be discussed at the end of the proof. For
simplicity of notation, let i∗l , i∗(Il; Tl) for l ∈ [L].

Let Ul , αl + log2 (2c/δ) for l ∈ [L]. Recall that Tl is
the time interval of epoch l where |Tl| = Tl. By Lemma 2,

L∑
l=1

Ri∗l (Tl)−
T∑
t=1

ra(t)(t) ≤
L∑
l=1

7

√
KTl ln

(
2Nl
δ

)

= 7
√
KC ln 2

L∑
l=1

√
2lUl

≤ 7
√
KCUL ln 2

L∑
l=1

2l/2

< 20
√
KCUL

(
2L/2 − 1

)
.

Since L = log2[1 + T/(2C)], we have
L∑
l=1

Ri∗l (Tl)−
T∑
t=1

ra(t)(t)

< 20
√
KCUL

(√
1 +

T

2C
− 1

)

< 20

√
K

[
αL+ 2 ln

(
2c

δ

)](
C +

T

2

)
.

(4)

We first discuss the case where i∗ /∈ I1. Let L′ be the last
epoch such that i∗ is not considered in Algorithm 2. Since
|Il| = Nl, we have L′ = min

(
L, dα−1 log2(i∗/c)e − 1

)
.

Since i∗ /∈ I1, we get L′ ≥ 1. By the definition of i∗l , we
have Ri∗l (Tl) ≥ Ri∗(Tl) for all l > L′. Thus,

Ri∗([T ])−
L∑
l=1

Ri∗l (Tl) ≤
L′∑
l=1

(
Ri∗(Tl)−Ri∗l (Tl)

)
≤

L′∑
l=1

Tl

< C2L
′+1

< 2C

(
i∗

c

) 1
α

.

(5)

We now consider the case where i∗ ∈ I1. It follows from
Algorithm 2 that i∗ ∈ Il for all l. Thus, the definition of
i∗l implies that Ri∗l (Tl) ≥ Ri∗(Tl) for all l. We define D ,
Ri∗([T ]) −

∑L
l=1Ri∗l (Tl). We then have D ≤ 0. However,

the definition of i∗ implies that D ≥ 0. Therefore, D = 0
and (5) is satisfied.



Adding (4) and (5) gives

Regret(T ) <20

√
K

[
αL+ 2 ln

(
2c

δ

)](
C +

T

2

)
+ 2C

(
i∗

c

) 1
α

.

(6)

Using Lemma 1 and the union bound over all L epochs,
we conclude that (6) holds with probability at least 1− Lδ.
A change of variables gives that, for any δ ∈ (0, 1], with
probability at least 1− δ, we have

Regret(T ) <20

√
K

[
αL+ 2 ln

(
2cL

δ

)](
C +

T

2

)
+ 2C

(
i∗

c

) 1
α

<20

√
αK(T + 2C) ln

(
cL(2 + T/C)

δ

)
+ 2C

(
i∗

c

) 1
α

.

A. Structured Experts

In this section, we present an example of structured experts
that is inspired by the problem of finite-time model selection
for RL and discuss how the expert ranking property of
Exp4.R can be used to expedite learning in such case.

As RL becomes increasingly integrated into autonomous
systems such as agile robots [21], self-driving vehicles [22],
customized fertilizer formulation [23], and personalized med-
ication dosing [24], it is crucial that the techniques are
robust [25]. An aspect of robustness is the capability to
detect and adjust for model errors. For RL, this entails both
model selection and parameter estimation. How to achieve
both objectives simultaneously while maintaining provably
good performance is an active area of research [26], [27].
The crux of the problem of online model selection for
RL is to balance approximation and estimation errors in
a time-dependent manner. As an example, we suppose that
there is an infinite sequence of nested model classes. This
structure arises naturally when an RL algorithm incorporates
increasingly many features over time. Some new features
may also just become obtainable while an RL algorithm is
running. In fact, it is unknown a priori for many applications
what is a minimal feature space that contains an optimal
policy. Given an infinite sequence of model classes, the
best class to use depends on the horizon or, equivalently,
the amount of trajectory data that will become available.
Although a larger model class has a smaller approximation
error, it tends to have a higher estimation error for a fixed
finite horizon. Moreover, if several classes have the same
approximation power, the simplest one is typically preferred
in consideration of time and space complexity.

Inspired by the problem of finite-time model selection for
RL, we propose to consider experts structured in a way that

Fig. 1. An illustration of Assumption 2.

simulates the trade-off between approximation and estima-
tion. In particular, we suppose that the experts are ranked
in ascending order of complexity. We propose a variant of
BEES which also operates in L = O (lnT ) epochs with Tl
being the time interval of epoch l. Assumption 2 stipulates
that the total reward is weakly unimodal in expectation with
respect to the expert index during any epoch. In addition,
the index of the globally best expert is nondecreasing as the
epoch increases. See Fig. 1 for an illustration. Section V will
demonstrate in numerical experiments that a noisy unimodal
structure can be sufficient in practice.

Assumption 2. For any epoch l ∈ [L], if i ≤ i∗(Z+; Tl),
then Ri−1(Tl) ≤ Ri(Tl). Otherwise, Ri(Tl) ≥ Ri+1(Tl).
Moreover, i∗(Z+; Tl) ≤ i∗(Z+; Tl′) if l < l′.

The proposed time-dependent unimodal structure is fun-
damentally related to oracle inequalities in empirical risk
minimization [28]. Although the experts’ performance may
fluctuate around the proposed structure in practice, solutions
to the stylized setting are of theoretical interest. Unimodal
bandits have been previously studied for the stochastic setting
where the expected reward is a unimodal function of par-
tially ordered arms [29]–[32]. Extensions to non-stationary
environments have been proposed for low-frequency abrupt
changes [30] and smooth changes [31] in expected rewards.
Our setting is a nonstochastic bandit problem with no as-
sumptions on the frequency or the magnitude of changes in
the unimodal structure.

Under Assumption 2, the outputs of Exp4.R give a thresh-
old rule that allows us to find a lower bound for i∗, which
can accelerate the rate of approaching i∗. We modify BEES
to incorporate lower bound estimation (BEES.LB, Algo-
rithm 3). BEES.LB runs Exp4.R and Probabilistic Thresh-
olding Search (PTS, Algorithm 4) as subroutines. In each
epoch, BEES.LB eliminates experts identified as suboptimal.
Lemma 4 shows that the estimated lower bound is correct if
the concentration event E(δ) holds. Theorem 2 establishes
a high-probability regret upper bound for BEES.LB. The
proof is similar to that of Theorem 1, hence provided in
the appendix. PTS has space complexity O (N) and time
complexity O

(
N2
)
. PTS can be efficiently implemented

by first sorting the input w. BEES.LB takes the same
space O (K(1 + T/K)α) as BEES. The time complexity of



BEES.LB is Õ
(
K2(1 + T/K)α+1 + (1 + T/K)2α

)
, which

reduces to the runtime of BEES for sufficiently small α.

Algorithm 3 BEES with Lower Bound (BEES.LB)
1: Input: δ ∈ (0, 1], α ∈ Z+, L ∈ Z+, c ∈ Z+, C ∈ Z+

2: i1 ← 1.

3: for epoch l = 1, . . . , L do
4: Nl ← c2αl, Tl ← C2l.

5: ρl ←
√

lnNl/(KTl).

6: Il ← {il, il + 1, . . . , il +Nl − 1}.
7: wl, εl ← Exp4.R(δ/L, Tl, ρl, Il) .
8: il+1 ← PTS

(
wl, εl, il

)
.

9: end for

Algorithm 4 Probabilistic Thresholding Search (PTS)
Input: w ∈ (0,∞)N , ε ∈ (0,∞)N , i ∈ Z+

Output: inew

j ← 1.

for j = 1, . . . , N − 1 do
for j′ = j + 1, . . . , N do

if lnwj′ − lnwj > εj′ then
j ← j + 1.

end if
end for

end for
inew ← i+ j − 1.

Lemma 4. Under Assumption 2 and the conditions of
Lemma 3, if event E(δ) holds for all epochs, then il ≤ i∗

for all l.

Theorem 2. Under Assumption 2, if a uniform expert is
available in each epoch, then there exist absolute constants
α ∈ Z+ and c ∈ Z+ such that, for some C(α, c,K, δ) ∈ Z+,
BEES.LB satisfies that, for any δ ∈ (0, 1], with probability
at least 1− δ, we have

Regret(T ) <20

√
αK(T + 2C) ln

(
cL(2 + T/C)

δ

)
+ 2C

(
i∗

c

) 1
α

.

The upper bound in Theorem 2 is the same as that for
the general case of unstructured experts because the lower
bound from PTS can stay at 1 in the worst case. A trivial
example is that all experts are the same. For cases where
the experts’ performance differs by sufficient margins, the
actual improvement of BEES.LB over BEES should become
obvious as we will demonstrate in Section V.

If the globally best expert i∗ is fixed over time, then we can
modify BEES.LB to additionally estimate an upper bound on

i∗, initialized to ∞. The modified search subroutine can be
considered as a probabilistic counterpart of search algorithms
such as the golden-section search [33]. The major difference
is that the search subroutine applies to problems where the
function cannot be evaluated directly. We can show that the
confidence interval for i∗ contracts over epochs. While the
epoch length always grows exponentially, the set of experts
considered in each epoch is data-dependent. If no upper
bound on i∗ has been identified, then the number of experts
considered will increase by a factor of 2α in the next epoch.
Otherwise, only the experts in the non-expanding confidence
interval will be considered from now on.

V. EXPERIMENTS

We conduct numerical simulations to demonstrate the
performance improvement of BEES.LB in comparison with
BEES and Exp4.P when experts are structured. We consider
K = 10 actions the rewards of which are binary and non-
stochastic. The sequence of experts has a weakly unimodal
structure that is corrupted with random noise. The first expert
is uniform and the best expert has index i∗ = 9. At each
time, every expert’s advice is distorted with an additive
K-vector that consists of independent zero-mean Gaussian
noises with standard deviation 0.01, which may alter the
unimodal structure of the experts. For BEES and BEES.LB,
we set α = c = 1 and C as defined in Corollary 2. We
implement the version of BEES and BEES.LB that does
not know the number of epochs L or the time horizon T
a priori by using δ instead of δ/L in the subroutine Exp4.R.
In contrast, we configure the benchmark algorithm Exp4.P
with the correct T . Exp4.P is run on the first T experts in
the sequence. All algorithms use an error rate δ = 0.05.

Fig. 2 shows that BEES.LB indeed has a lower regret than
BEES because of the expedited learning enabled by Exp4.R.
For large T , Exp4.P is surpassed by BEES.LB as querying
too many experts can increase the chance of getting bad
advice. Fig. 2 demonstrates the advantage of our algorithm
in having improved performance by being able to exploit
structural information and query experts adaptively.

Fig. 2. Comparison of BEES, BEES.LB, and Exp4.P in terms of regret
as the time horizon varies. BEES.LB surpasses BEES and Exp4.P as the
time horizon increases. Lines and shades are the averages and the standard
deviations of 10 runs, respectively.



VI. DISCUSSION

In this paper, we have proposed an algorithm for the
problem of nonstochastic bandits with infinitely many ex-
perts under the constraint of having access to only a finite
subset of experts. We have established a high-probability
upper bound on the regret of our meta-algorithm BEES,
which matches the lower bound up to polylog factors if
the globally best expert has a relatively low index. If we
assume that there exists a prior distribution on the best expert,
then the probability that our regret upper bound is tight will
increase with the time horizon, the rate of which can be
fast. The expert ranking property of the subroutine Exp4.R
enables learning acceleration if the structure of the experts is
known. We have illustrated this point with an example that
is inspired by the problem of finite-time model selection for
RL. One interesting direction for future work is to obtain
instance-dependent upper bounds in terms of the experts’
suboptimality gaps. Such instance-dependent bounds can be
used to prove the learning acceleration enabled by Exp4.R.
It is also worthwhile to design efficient implementation for
specific applications.
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APPENDIX

Let Et [·] denote the conditional expectation given history
until time t − 1. We can show that ŷi(t) is a conditionally
unbiased estimator for yi(t). In other words, Et [ŷi(t)] =
yi(t) for all i and t. Lemma 5 shows that v̂i(t) is an upper
bound on the conditional variance of ŷi(t). Lemma 6 is a
Freedman-style inequality for martingales from [11]. The
proof of Lemma 1 relies on Lemmas 5 and 6.

Lemma 5 (From proof of Lemma 3 in [11]). For all t ∈ Z+

and i ∈ I, we have Et
[
(yi(t)− ŷi(t))2

]
≤ v̂i(t).

Lemma 6 ( [11], Theorem 1). Let X1, . . . , XT be a sequence
of real-valued random variables. For any real-valued random
variable Y , we define Et [Y ] , E [Y | X1, . . . , Xt−1]. We
assume that, Xt ≤ B and Et [Xt] = 0 for all t. We define
the random variables

S ,
T∑
t=1

Xt, V ,
T∑
t=1

Et
[
X2
t

]
.

For any fixed estimate V ′ > 0 of V , and for any δ ∈ (0, 1],
with probability at least 1− δ, we have

S ≤

{√
(e− 2) ln

(
1
δ

) (
V√
V ′

+
√
V ′
)
, if V ′ ≥ B2 ln(1/δ)

e−2 ,

B ln(1/δ) + (e− 2)VB , otherwise.

Proof of Lemma 1. We now fix any i ∈ I and t ∈ Z+.
By definition, we have yi(t) ∈ [0, 1]. Using (1) and the
assumption that ρ ∈ [0, 1/K], we get pa(t) ≥ ρ for all
a ∈ A. Thus, (2) implies that ŷi(t) ∈ [0, 1/ρ] almost surely.

Let Xt = yi(t)− ŷi(t). We then have −1/ρ ≤ Xt ≤ 1
almost surely. We can show that Et [ŷi(t)] = yi(t) and
hence Et [Xt] = 0. We recall that Ri(T ) =

∑T
t=1 yi(t).

Applying Lemma 6 to (Xt)t and (−Xt)t respectively and
then taking a union bound, we conclude that, for any δ ∈
(0, 1], with probability at least 1 − δ/N , the inequality
−B1 ≤ Ri(T )− R̂i(T ) ≤ B2 holds, where

B1,


√

(e− 2) ln
(
2N
δ

) (
V√
V ′

+
√
V ′
)
, if V ′ ≥ ln(2N/δ)

(e−2)ρ2 ,
ln(2N/δ)

ρ + (e− 2)ρV, otherwise,

B2,

{√
(e− 2) ln

(
2N
δ

) (
V√
V ′

+
√
V ′
)
, if V ′ ≥ ln(2N/δ)

(e−2) ,

ln(2N/δ) + (e− 2)V, otherwise,

V ,
T∑
t=1

Et
[
X2
t

]
.

We now fix an arbitrary δ ∈ (0, 1]. Assumption 1 implies
that ln(2N/δ) ≤ (e− 2)KT . Taking ρ =

√
lnN/(KT ) and

V ′ = KT , we have

ln(2N/δ)

e− 2
≤ V ′ < ln(2N/δ)

(e− 2)ρ2
.

Lemma 5 implies that V ≤ V̂i(T ). Therefore, with probabil-
ity at least 1− δ/N , we have

− ln

(
2N

δ

)√
KT

lnN
−
√

lnN

KT
V̂i(T )

≤ Ri(T )− R̂i(T )

≤

√
ln

(
2N

δ

)(
V̂i(T )√
KT

+
√
KT

)
.

Applying the union bound over i ∈ I, we conclude that
P (E(δ)) ≥ 1− δ.

Proof of Lemma 3. We fix an arbitrary δ ∈ (0, 1] and sup-
pose that event E(δ) holds. We recall that

εi ,

[
1 +

V̂i(T )

KT

]
ln

(
2N

δ

)
.

We assume that lnwi(T + 1)− lnwi′(T + 1) > εi for some
i, i′ ∈ I. By (3) and the initialization condition wi(1) = 1,
we have

lnwi(T + 1) =

T∑
t=1

ln

(
wi(t+ 1)

wi(t)

)

=
ρ

2

(
R̂i(T ) +

√
ln(2N/δ)

KT
V̂i(T )

)
.

Thus,

R̂i(T ) =
2

ρ
lnwi(T + 1)−

√
ln(2N/δ)

KT
V̂i(T ). (7)

Equation (7) also holds for i′. Thus,



R̂i(T )− R̂i′(T )

=
2

ρ
ln

(
wi(T + 1)

wi′(T + 1)

)
−
√

ln(2N/δ)

KT

(
V̂i(T )− V̂i′(T )

)
>

2εi
ρ
−
√

ln(2N/δ)

KT

(
V̂i(T )− V̂i′(T )

)
= 2 ln

(
2N

δ

)√
KT

lnN
+

√
ln(2N/δ)

KT
V̂i′(T )

+ V̂i(T )

√
ln(2N/δ)

KT

[
2

√
ln(2N/δ)

lnN
− 1

]

> 2 ln

(
2N

δ

)√
KT

lnN

+

√
ln(2N/δ)

KT

(
V̂i(T ) + V̂i′(T )

)
.

(8)

Event E(δ) implies that

Ri(T )− R̂i(T ) + R̂i′(T )−Ri′(T )

≥ − ln

(
2N

δ

)√
KT

lnN
−
√

lnN

KT
V̂i(T )

−

√
ln

(
2N

δ

)(
V̂i′(T )√
KT

+
√
KT

)
.

(9)

Adding (8) and (9) and then simplifying the algebra give

Ri(T )−Ri′(T ) > 0.

Proof of Proposition 1. Proposition 1 follows directly from
Lemmas 1–3.

Proof of Lemma 4. Under the assumption that event E(δ)
holds for all epochs, we prove the statement by induction on
l. The base case holds trivially as i1 = 1. For the inductive
step, we assume that iι ≤ i∗ for all ι ≤ l. If il+1 = il, then
i∗ ≥ il+1 by the induction hypothesis. If there exists some
j ≥ 1 such that il+1 = il + j, then Algorithm 4 implies
that lnwj′ − lnwj > εj′ for some j′ > j in epoch l. Using
Assumption 2 and Lemma 3, we get i∗ ≥ il + j = il+1.

Proof of Theorem 2. We can show that, for all δ ∈ (0, 1],
α ∈ Z+, and c ∈ Z+, there exists C(α, c,K, δ) ∈ Z+

such that 4K ln
(
c2αl

)
≤ C2l and ln

(
c2αl+1/δ

)
≤ (e −

2)CK2l for all l ∈ Z+. For example, we can set C =
dαK ln(16c4/δ)e. Together with the definitions of Nl and
Tl in Algorithm 3, we have that, for all α ∈ Z+ and
c ∈ Z+, there exists C ∈ Z+ such that 4K lnNl ≤ Tl
and ln(2Nl/δ) ≤ (e − 2)KTl for all l ∈ Z+. We fix such
integers α, c, C ∈ Z+ for the rest of the proof.

For simplicity of notation, we first consider running
Exp4.R(δ, Tl, ρl, Il) in each epoch l of Algorithm 3 for any
δ ∈ (0, 1/L] and then apply a change of variables at the end
of the proof. We suppose that a uniform expert is available
in each epoch. Assumption 1 is then satisfied for all epochs.

For now, we assume that event E(δ) holds for all epochs, the
probability of which will be discussed at the end of the proof.
For simplicity of notation, let i∗l , i∗(Il; Tl) for l ∈ [L].

Let Ul , αl + log2 (2c/δ) for l ∈ [L]. Recall that Tl is
the time interval of epoch l where |Tl| = Tl. By Lemma 2,

L∑
l=1

Ri∗l (Tl)−
T∑
t=1

ra(t)(t) ≤
L∑
l=1

7

√
KTl ln

(
2Nl
δ

)

=

L∑
l=1

7

√
KC2l ln

(
c2αl+1

δ

)

= 7
√
KC ln 2

L∑
l=1

√
2lUl

≤ 7
√
KCUL ln 2

L∑
l=1

2l/2

< 20
√
KCUL

(
2L/2 − 1

)
.

Since L = log2[1 + T/(2C)], we have
L∑
l=1

Ri∗l (Tl)−
T∑
t=1

ra(t)(t)

< 20
√
KCUL

(√
1 +

T

2C
− 1

)

< 20

√
K

[
αL+ 2 ln

(
2c

δ

)](
C +

T

2

)
.

(10)

We first discuss the case where i∗ /∈ I1. Let L′′ be the
last epoch such that i∗ is not considered in Algorithm 3.
In other words, L′′ , max { l ∈ [L] | i∗ /∈ Il }. Lemma 4
implies that i∗ ∈ Il for all l > L′′. By the definition of i∗l ,
we have Ri∗l (Tl) ≥ Ri∗(Tl) for all l > L′′. Thus,

Ri∗([T ])−
L∑
l=1

Ri∗l (Tl) ≤
L′′∑
l=1

(
Ri∗(Tl)−Ri∗l (Tl)

)
≤

L′′∑
l=1

Tl

< C2L
′′+1.

We now provide an upper bound on L′′. By Algorithms 3
and 4, we have |Il| = Nl and 1 ≤ il ≤ il+1 for all l. Let
L′ be the last epoch such that i∗ is not considered in the
worst case where il = 1 for all l. In other words, L′ ,
min

(
L, dα−1 log2(i∗/c)e − 1

)
. Under the assumption that

i∗ /∈ I1, we get L′ ≥ 1. By the definitions of L′ and L′′, we
have L′′ ≤ L′ and hence

Ri∗([T ])−
L∑
l=1

Ri∗l (Tl) < C2L
′+1 < 2C

(
i∗

c

) 1
α

. (11)

We now consider the case where i∗ ∈ I1. It follows from
Lemma 4 that i∗ ∈ Il for all l. Thus, the definition of i∗l
implies that Ri∗l (Tl) ≥ Ri∗(Tl) for all l. We define D ,
Ri∗([T ]) −

∑L
l=1Ri∗l (Tl). We then have D ≤ 0. However,



the definition of i∗ implies that D ≥ 0. Therefore, D = 0
and (11) is satisfied.

Adding (10) and (11) gives

Regret(T ) <20

√
K

[
αL+ 2 ln

(
2c

δ

)](
C +

T

2

)
+ 2C

(
i∗

c

) 1
α

.

(12)

Using Lemma 1 and the union bound over all L epochs, we
conclude that (12) holds with probability at least 1 − Lδ.
A change of variables gives that, for any δ ∈ (0, 1], with
probability at least 1− δ, we have

Regret(T ) <20

√
K

[
αL+ 2 ln

(
2cL

δ

)](
C +

T

2

)
+ 2C

(
i∗

c

) 1
α

<20

√
αK(T + 2C) ln

(
cL(2 + T/C)

δ

)
+ 2C

(
i∗

c

) 1
α

.
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