arXiv:2012.10140v3 [cs.LG] 1 Apr 2021

Voronoi Progressive Widening: Efficient Online Solvers for Continuous
State, Action, and Observation POMDPs

Michael H. Lim, Claire J. Tomlin and Zachary N. Sunberg

Abstract— This paper introduces Voronoi Progressive Widen-
ing (VPW), a generalization of Voronoi optimistic optimization
(VOO) and action progressive widening to partially observable
Markov decision processes (POMDPs). Tree search algorithms
can use VPW to effectively handle continuous or hybrid
action spaces by efficiently balancing local and global action
searching. This paper proposes two VPW-based algorithms and
analyzes them from theoretical and simulation perspectives.
Voronoi Optimistic Weighted Sparse Sampling (VOWSS) is a
theoretical tool that justifies VPW-based online solvers, and it
is the first algorithm with global convergence guarantees for
continuous state, action, and observation POMDPs. Voronoi
Optimistic Monte Carlo Planning with Observation Weight-
ing (VOMCPOW) is a versatile and efficient algorithm that
consistently outperforms state-of-the-art POMDP algorithms in
several simulation experiments.

I. INTRODUCTION

The partially observable Markov decision process
(POMDP) is a flexible mathematical framework for express-
ing stochastic sequential decision problems. POMDPs can
represent a wide range of real world problems such as
autonomous driving [1], [2], cancer screening [3], spoken
dialog systems [4], and aircraft collision avoidance [5]. A
POMDP is an optimization problem in which we aim to
find a policy that maps states to actions which will control
the state to maximize the expected sum of rewards. Finding
an optimal POMDP policy is computationally demanding
because of the uncertainty introduced by imperfect observa-
tions [6]. One of the most popular approaches to deal with
this computational challenge is to use online algorithms that
look for local approximate policies as the agent interacts
with the environment rather than computing a global policy
that maps every possible outcome to an action. Many online
POMDP algorithms are variants of Monte Carlo tree search
(MCTS) [7], [8], [9] or other tree search variants [10], [11].

The research presented here concerns continuous space
POMDPs, defined as POMDPs with continuous state, action
and observation spaces. If tree search is naively applied to
continuous space POMDPs, an immediate problem is that
the branching factor of the tree will be infinite, preventing
evaluation of future consequences of actions deep in the
tree. This problem has been thoroughly studied, and the
most popular solutions are sparse sampling [15], [13], [16]
and progressive widening (PW) [17], [9], which limit the
branching factor by only considering a randomly-selected
subset of the states, actions and observations. For continuous

Michael H. Lim and Claire J. Tomlin are with the Electrical Engineering
and Computer Sciences department, University of California, Berkeley.
Zachary N. Sunberg is with the Aerospace Engineering Sciences department,
University of Colorado Boulder.

Online Tree Search Planner Voronoi Progressive Widening

Fig. 1. Voronoi progressive widening (VPW) guides the selection of actions
to widen the search tree. Circles denote state/belief nodes, squares denote
action nodes.

states and observations, this random sampling is used to
approximate the expectation of the next-step value in Bell-
man’s equation. Since the Monte Carlo integration needed
to approximate these expectations has straightforward and
robust convergence guarantees, sparse sampling and PW are
sufficient.

Continuous action spaces are, however, much more diffi-
cult to accommodate. Instead of simply estimating expecta-
tions, planning in a problem with a continuous action space
requires solving a nonconvex optimization problem at each
node in the tree. PW has been applied to these problems [17],
[9], but, since PW considers a randomly sampled set of ac-
tions, it wastes a large amount of computation on suboptimal
parts of the action space and has only been demonstrated
on small action spaces such as one-dimensional intervals
of real numbers. Voronoi optimistic optimization (VOO)
[12] is an approach for sequential decision problems with
deterministic and fully-observable dynamics that attempts to
focus computation on more promising parts of the action
space by partitioning it into Voronoi cells and sampling from
cells corresponding to previously successful actions.

In this work, we propose Voronoi Progressive Widening
(VPW), a versatile technique to modify tree search algo-
rithms to effectively handle continuous or hybrid action
spaces. VPW generalizes VOO and PW to problems with
both transition and observation uncertainties. Like PW, it
balances exploring previously proposed actions and search-
ing for new action candidates. However, VPW searches for
new candidates in a much more efficient way via VOO,
and balances local and global searching without relying
on any additional prior information or expert knowledge.
Furthermore, VPW does not require significant additional
computation time and can handle both continuous and hybrid

TABLE I

SUMMARY OF CONTINUOUS SPACE MDP AND POMDP SOLVERS STUDIED AND NEWLY PROPOSED IN THIS PAPER.

Solver Problem Continuous Space Source Brief Description

VOOT MDP S,A [12] VOO for deterministic MDPs; optimality guarantees; practical.
POWSS POMDP S§,0 [13] Sparse sampling with observation weights; optimality guarantees.
VOWSS POMDP S,A,0 New Extends POWSS with VPW; optimality guarantees.

POMCPOW POMDP S,A,0 [9] Combines POMCP and DPW; practical.

VOMCPOW POMDP S,A,0 New Extends POMCPOW with VPW; practical.

BOMCP POMDP S,A,0 [14] Extends POMCPOW with Gaussian processes; practical.

VOSS MDP S,A Appendix Extends sparse sampling with VPW; optimality guarantees.

action spaces with relative ease.

There are two main contributions in this work. First, we
prove theoretical guarantees about certain parts of the VPW
approach via Voronoi Optimistic Weighted Sparse Sampling
(VOWSS). VOWSS is special case of VPW applied to
Partially Observable Weighted Sparse Sampling (POWSS)
[13] with fixed number of action samples, which integrates
the two convergence guarantees from VOO and POWSS
into a single guarantee. Specifically, this is the first known
solver to have global convergence guarantees for continuous
space POMDPs. This shows that VOO and action PW were
extended in a way that VPW not only can handle transition
and observation uncertainties, but also combines the two
procedures in a theoretically sound way.

Second, we propose an efficient VPW-based algorithm:
Voronoi Optimistic Monte Carlo Planning with Observation
Weighting (VOMCPOW). VOMCPOW can also be thought
of as a practical extension of VOWSS. The experiments over
different domains show the practical effectiveness of VPW
for handling continuous and hybrid action space problems.
VOMCPOW consistently outperforms state-of-the-art contin-
uous space POMDP solvers based on PW, such as Partially
Observable Monte Carlo Planning with Observation Widen-
ing (POMCPOW) [9] and Bayesian Optimized Monte Carlo
Planning (BOMCP) [14] in several simulation experiments.
Table I summarizes the solvers that are studied in this paper.

The remainder of this paper proceeds as follows: First,
Sections II and III review preliminary definitions and previ-
ous work. Then, Section IV introduces the VPW algorithm,
and describes its strengths as well as how to efficiently imple-
ment it in practice. Section V presents the VOWSS algorithm
and theoretical analysis justifying VPW. Finally, Section VI
empirically shows the optimality of VOWSS action selection
and the efficiency and robustness of VOMCPOW over three
different simulation experiments.

II. PRELIMINARIES

1) POMDP Formulation: A POMDP is defined by a 7-
tuple (S,A,0,7,% R,y): S is the state space, A is the
action space, O is the observation space, 7 is the transition
density 7 (s'|s,a), Z is the observation density 2 (o|a,s’),
R is the reward function, and y € [0,1) is the discount
factor [18], [19]. For POMDPs, since the agent receives only
observations, the agent can infer the state by maintaining
a belief b, at each step ¢ and updating it with new action

and observation pair (a,41,0,+1) via Bayesian filtering [20].
A policy, denoted with 7, maps beliefs b; to actions a;.
The agent seeks an optimal policy, #* that maximizes the
expected cumulative reward.

For simplicity, in the theoretical portion of this paper, we
focus on problems with a finite horizon length D, though the
basic concepts empirically work well in the infinite horizon
case. The state value function V and action value function
Q for a given belief b and policy 7 at step ¢ by Bellman
updates for ¢ € [0,D — 1] are defined as follows:

D—1
V(b)) =E[Z Y~'R(si, w(si))], VE(6) =0, (1)

07 (b,a) = E [R(s,a) + W,y (bao) b] @)

where bao indicates the belief b updated with (a,0). The
optimal value functions at each depth ¢ should satisfy

Vi'(b) = max Qf (b,a),] (b) = argmax 07 (b,a), (3)
acA acA

O; (b,a) =E[R(s,a) + YV (bao)|b] . (4)

2) Generative models: In some cases, it is not necessary
to explicitly evaluate the probability density of the transition
or observation distributions, and merely generating samples
is sufficient. In this work, we use a generative model G that
generates state, reward, and observation samples.

III. ADDITIONAL RELATED WORK

This section expands on the introduction to cover more
previous work in solving continuous action MDPs and
POMDPs with online tree search. Several techniques use
double progressive widening (DPW) [17], originally de-
signed to solve continuous space MDPs. Most notably,
POMCPOW and PFT-DPW [9] extend POMCP and DPW
to handle continuous space POMDPs. However, these algo-
rithms use DPW as it is proposed with the inefficient action
sampling that is not suitable for large problems.

One effective direction to handle continuous action spaces
has been to use continuous bandits to sample new actions.
Particularly, hierarchical optimistic optimization (HOO) and
the corresponding HOOT algorithm [21] began work on
continuous bandit algorithms applied to MCTS. This is
followed by works such as HOLOP [22] that plans with
open-loop trajectories instead of individual actions using
HOO, POLY-HOOT [23] with polynomial guarantees, and
VOO and VOOT [12] that we build on in this work.

Algorithm 1 VOO Algorithms [12]

Algorithm 2 Action Progressive Widening [17]

Global Variables: A,D(-,-),®,X.
Algorithm: VOO(a, Q)
Input: Array of Voronoi centers a = [g;] and their function
values Q = [Q(a;)].
Output: A sample a.
u + Unif]0, 1]
if u < o or |Q| =0 then
a < Unif(A)
else
a < BESTVORONOICELL(a, Q)

6: return a
Algorithm: BESTVORONOICELL(a, Q)
Input: Array of Voronoi centers a = [g;] and their function

values Q = [Q(a;)].
QOutput: A sample a.

noRw

I: a* < argmax, Q

2: while « is not closest do

3 a+ N(a*,%)

4 Check if D(a,a*) < D(a,a;) Va; € a, a; # a*
5

: return a

Another direction is to use Bayesian optimization to effi-
ciently sample new actions. CBTS [24] uses Gaussian pro-
cesses (GP) to tackle the random action sampling problem.
However, CBTS does not use progressive widening approach
and uses a separate GP at each belief node, which limits its
optimization scope and branching capabilities. Most recently,
BOMCEP [14] extends POMCPOW by posing the random
action sampling step of DPW as a Bayesian optimization
problem over all the belief and action nodes. Despite the
effectiveness of BOMCP, GPs are very computationally
expensive to fit especially over the joint belief and action
space, and BOMCP trades off computation time for sample
efficiency compared to POMCPOW.

Other directions include GPS-ABT [25] that uses general-
ized pattern search to find local optima, PA-POMCPOW that
additionally incorporates score functions [26], and VG-UCT
that calculates gradient of the value function [27].

IV. VORONOI PROGRESSIVE WIDENING

In this section, we first introduce VOO and PW to motivate
the formulation of VPW and VOMCPOW.

A. Voronoi Optimistic Optimization

Voronoi optimistic optimization (VOO) [12] is a contin-
uous multi-armed bandit algorithm that adaptively explores
the sampling space by partitioning the space into Voronoi
cells. We define a Voronoi cell by the set of points closest
to the corresponding Voronoi center compared to the other
centers, and the best Voronoi cell is the Voronoi cell with
the center that achieves the highest function value estimate.
In our setting, the sampling space is the action space, the
Voronoi centers are the sampled actions, and the function
values are the Q-value estimates at the actions. Since Voronoi
cells are solely defined by distances to Voronoi centers, VOO

Global Variables: k,, a,,A,c.

Algorithm: PW (7)

Input: Belief/history node £ in the MCTS tree.
Qutput: An action a.

11 if |C(h)| =0 or |C(h)| < k,N(h)% then
2: a < Unif(A)

3: C(h) «+ C(h)u{a}

4: else

50 a<argmax,cc(, Q(h,a) +c lj’vg(]}:ig;)
6: return a

additionally takes in a distance metric D(-,-) as an input, and
scales well to higher dimensions unlike HOO.

In Algorithm 1, we define the adapted functions VOO
and BESTVORONOICELL. VOO searches the action space
either uniformly with probability @ or from the best Voronoi
cell with probability 1 — @. BESTVORONOICELL samples
an action from the best Voronoi cell via rejection sampling.
In practice, VOO sampling is best implemented by using
Gaussian rejection sampling centered around the current
best action [12]. While we reflected this in our algorithm
definition, we note that the theoretical guarantees only hold
for uniform rejection sampling. Furthermore, to improve
computation time for the experiments in Section VI, we
limit the maximum number of rejected samples via methods
described in Appendix B. VOO has previously been extended
to Voronoi Optimistic Optimization Tree (VOOT) [12], but
only for deterministic MDPs.

B. Progressive Widening

Progressive widening (PW) [17] tackles continuous state
and action spaces by gradually expanding the state and action
sample sets. PW limits the number of sampled children to
k-N%, where N corresponds to the number of visits to the
parent node in the search tree, and k, o are the widening pa-
rameters. Algorithm 2 describes action progressive widening.
Here, h is the belief/history node in the MCTS tree, C(h) the
list of children action nodes, N the number of visits, and ¢
the Upper Confidence Bound exploration parameter. In the
action space, PW balances two modes of exploration: (1)
exploring branches with previously proposed actions (line 2),
and (2) searching for new suitable action candidates (line 5).
However, since PW samples new actions uniformly from the
action space, it is rather sample inefficient and does not take
into account any information gained from previous samples.

C. Voronoi Progressive Widening

We now introduce Voronoi Progressive Widening (VPW)
in Algorithm 3, which generalizes VOO and PW. Essentially,
VPW progressively widens with a VOO sample instead of a
uniform sample. With this formulation, PW is simply VPW
with @ = 1, and VOO is VPW with k, - N% = +co,

Compared to PW, VPW only additionally relies on having
a collection of Q-value estimates, which are typically calcu-
lated and stored for MCTS solvers. While this means that we
require the Q-value estimates to be relatively faithful to the

Algorithm 3 Voronoi Progressive Widening

Algorithm 4 Value estimation algorithms for VOWSS

Global Variables: k,, 0, ®,A,c.

Algorithm: VPW (1)

Input: Belief/history node / in the MCTS tree.
Qutput: An action a.

1: if |C(h)| =0 or |C(h)| < k,N(h)% then
2: a <+ VOO(C(h),[0(h,")])

32 C(h)+ C(h)u{a}

4: else

50 a<argmax,cc(, Q(h,a) +c lj’vg(]}:ig;)
6: return a

actual Q-values and also requires an informative rollout pol-
icy that can guide the solver to more optimal actions, this is
not a requirement specific to VPW as a typical MCTS solver
should aim to have both of these components. Furthermore,
since the VOO step does not require a significant additional
time, VPW operates in a similar time scale as PW/DPW
while being able to efficiently sample action candidates that
are closer to the optimal action. The only other requirement
of VPW is the distance metric on the action space, but this is
often simple to define, and in fact lets VPW to tackle hybrid
action spaces such as the one in Section VI-B.

D. VOMCPOW

The VPW technique is versatile as it can be applied to any
MCTS solver for MDPs and POMDPs without requiring any
additional expert or domain knowledge. For instance, one
could consider Sparse-UCT-VPW algorithm for continuous
space MDPs that uses VPW criterion with the Sparse-
UCT algorithm [28] to handle continuous action spaces.
Specifically, we demonstrate the versatility of VPW through
modifying POMCPOW into VOMCPOW (Voronoi Opti-
mistic Monte Carlo Planning with Observation Weighting)
by simply swapping out action PW with VPW. VOMCPOW
consistently outperforms POMCPOW and BOMCP by a
statistically significant margin across all of our experiments.

V. CONVERGENCE ANALYSIS

For convergence analysis, we introduce and Voronoi Opti-
mistic Weighted Sparse Sampling (VOWSS), a VPW-based
continuous space online POMDP solver that guarantees
convergence to an optimal policy. VOWSS justifies the usage
of VPW-based solvers that build upon sparse sampling [15],
particle weighting and VOO, such as VOMCPOW.

A. VOWSS

We define ESTIMATEV and ESTIMATEQ functions in
Algorithm 4. Here, Cy,C, are the state and action widths,
respectively. ESTIMATEV is a subroutine that returns the
value function, V, for an estimated state or belief, by calling
ESTIMATEQ for each action and returning the maximum.
Similarly, ESTIMATEQ performs sampling and recursive
calls to ESTIMATEV to estimate the Q-function at a given
step with a weighted average in the style of POWSS [13].
The sampled states s} are inserted into each next-step belief
particle set bao; with the new weights w; = w;- 2 (0jla,s}),

Global Variables: y,G,Cy,C,,D.
Algorithm: ESTIMATEV (b,d)
Input: Belief particle set b = {(s;,w;)}, depth d.
Output: A scalar V;(b) that is an estimate of V(b).
1: If d > D the max depth, then return O.
2: For i = 1,---,C,, sequentially run VPW(b) to sample
actions a; and estimate the corresponding Q-values with
0 (b,a;) = ESTIMATEQ(, a,d).
3: Return the value function:

0i(b,a).

N
V(b) = max,
Algorithm: ESTIMATEQ(b,a,d)

Input: Belief particle set b = {(s;,w;)}, action a, depth d.
Output: A scalar Q(b,a) that is an estimate of Q%(b,a).

1: For each particle-weight pair (s;,w;) in b, generate
s}, 04,1 from G(s;,a).

2: For each observation o; from previous step, iterate over
i=1,---,Cs toinsert (s;,w;- Z(0j|a,s})) to a new belief
particle set bao;.

3: Return the Q-value estimate:

):f;l wi(ri+7v-ESTIMATEV (bao;,d + 1))

C,
25;1 Wi

Qi(b,a) =

which are the adjusted probability of hypothetically sampling
observation o; from state .

Thus, the VOWSS policy action is obtained by calling
ESTIMATEV (by,0) at the root node and taking the action
that corresponds to the maximizing Q-value. Note that the
particle belief set is initialized by drawing samples from by
and normalizing weights to 1/C;. Like POWSS, VOWSS
is not very computationally efficient as it fully expands the
sparsely sampled tree. Thus, VOWSS mainly demonstrates
theoretical convergence and are only practically applicable
to very small problems. The algorithms in this section are
written in a style closer to a plain English format to enhance
the readability of mathematical machinery used for these
algorithms, since VOWSS is more theoretical in nature.

It is worth noting that with our recursive formulation,
VOOT [12] can be recast as a Q-function estimation algo-
rithm that simply returns the one sample Q-function estimate.
Particularly, this means that ESTIMATEQ for VOOT would
look identical to VOWSS’s ESTIMATEQ function except with
Cy set to 1 as VOOT assumes no transition and observation
uncertainties, with no action width decay. Consequently,
VOOT is notably faster than VOWSS and thus practical
for deterministic MDP problems, since it only needs to
sample the deterministic next step state once. Nevertheless,
due to the hierarchical structure of VOOT, the actual VOO
algorithm as well as the theoretical guarantees of VOOT
should remain identical when recast into this recursive form.
We also discuss the stochastic MDP case in Appendix C.

B. Convergence Guarantees

We obtain global convergence to the optimal value func-
tions for continuous space POMDPs by combining VOO that
globally optimizes over the entire action space and POWSS
that estimates value functions with arbitrary precision. To our
knowledge, VOWSS is the first continuous space POMDP
algorithm to have global convergence guarantees without
relying on any discretization schemes for any of the spaces.
In the subsequent sections, we prove that VOWSS policy can
be made to perform arbitrarily close to the optimal policy by
increasing both the state and action widths. Our results are
derived with k,-N% = +o (VPW = VOO), and uniform
rejection sampling for BESTVORONOICELL.

The convergence proof of VOWSS relies on the proofs for
the ancestor algorithms: POWSS and VOO. Since the proof
of VOWSS requires the union of all the regularity conditions
for POWSS and VOO, which deal with local smoothness of
rewards and observation density requirements, we will not
repeat them here and detail them in Appendix A.2. One of
the conditions requires that the reward function R be bounded
and measurable, ||R||» < Rmax, and consequently the value
is bounded by Vipax = Rmax/(1 —7) for y < 1.

Theorem 1 (VOWSS Inequality): Suppose we choose the
action sampling width C, and state sampling width C; such
that under the union of regularity conditions specified by [13]
and [12], the intermediate POWSS bounds and VOO bounds
in Lemma 1 are satisfied at every depth of the tree. Then,
the following bounds for the VOWSS estimator Vyows s.a(b)
hold for all d € [0,D — 1] in expectation:

Vi (b) — Wwowss.a(B)| < e, + ac, - (5

Here, nc, and o, are non-negative bounds that tend to
0 as we increase C, and Cj, respectively. We show a brief
outline of the proof of Theorem 1. In order to prove Theorem
1, we first need to prove the intermediate bounds.

Lemma 1 (VOWSS Intermediate Inequality): Suppose
with our notation, the POWSS estimators at all depths d are
within € of their mean values with probability 1 — p, and
the VOO agents have regret bounds of %¢,. The following
inequalities hold for all d € [0,D — 1] in expectation:

Vi (b) = V5 (b)] < e, (d), ©6)
05 (b) — VWwowss.a(B)] < ac, (d). (7)

In Lemma 1, we aim to bound the inequality in (5)
by applying triangle inequality to the two split terms: the
VOO-like regret bound with 7n¢,(d) and the POWSS-like
concentration bound with o¢,(d). The exact definitions of
these intermediate bound terms are defined and explained
further in Appendix A.2. We define each value function used
in Lemma 1 as the following:

Vi (b) = max R(b,a) +YE[VF, (bao)|b],

~Cy o ~Cy
V(b)) = aeg})a())((A)R(bﬁ) +YE[V £, (bao)|b], (8)
C., A —_—
. _ Cs w(ri 4+ vV bao:
Vyowss.a(b) = max Ly wilrity CVOWSS’dH(a01)) .
aeVOO(A) Ziél Wi

Here, V(b) is the optimal value function as per the conven-
tional definition, and Vvowss,d(B) is the VOWSS estimator
for the optimal value function. In addition, we introduce the
theoretical intermediate term \A/dc “(b) that bridges the gap
between the regret bound and the concentration bound by
only performing the VOO step and not the sparse sampling
step. Using this intermediate term, we can further subdivide
the intermediate inequalities to obtain the appropriate regret
and concentration bounds using results from [12] and [13],
respectively. Proving Lemma 1 proves Theorem 1.

VI. EXPERIMENTS

The numerical experiments in this section confirm the
theoretical results of Section V-B, as well as showcase the
effectiveness of VPW. We demonstrate the performances of
our algorithms in three different control experiments: Linear-
Quadratic-Gaussian (LQG) control, Van Der Pol Tag, and
modified lunar lander problems. When running experiments
for POMCPOW, VOMCPOW, and BOMCP, we use the
rollout policy heuristic to estimate the value function as well
as take the first action to be the rollout policy action at each
newly generated belief node. To determine the hyperparam-
eters of the solvers, we used cross-entropy method (CEM)
[29] to maximize the mean expected reward of a hyperpa-
rameter set when the optimal hyperparameters are not already
available from previous experiments. The VOMCPOW and
BOMCP hyperparameters were trained by first initializing
them with POMCPOW hyperparameters and then using CEM
again including all the additional hyperparameters specific
to the solvers. The only hyperparameter that was manually
chosen is the Gaussian covariance matrix for VOO rejection
sampling. The code for the experiments is built on the
POMDPs.jl framework [30]. The exact hyperparameters used
for each experiment are given in Appendix B.

A. Linear-Quadratic-Gaussian Control

We first test our algorithms on a simple 2D-action space
LQG control system. Here, we choose a relatively simple
problem setup such that we can easily understand and
visualize the results while allowing VOWSS to still plan
within a reasonable time. Here, VOWSS uses VPW like
VOO by setting k, - N% = o0, but with Gaussian rejection
sampling. The dynamics and observation models are

Xeal =X+ U+ Vs Ve =X +Wes Ve, Wy i"i'j'N(Oaczl)- 9

The initial state xo is distributed as N([—10,10],62I), and

o = 0.1 for all xg,v;,w;. We aim to minimize the cost

function J(xp), while planning for two steps (N = 2):
N—1

J(x0) = Efxclxy + Z (P xi +ul w)]. (10)

t=0

The analytical answer can be obtained by solving the LQG

backup equation, which is identical to the LQR solution,

MS = —Kopio=—0.6-%y = [6.07 —6.0]. (11

Since the problem has an analytical solution, we can
directly compare the actions each solver chooses to the

MCTS Policy Actions for LQG
VOMCPOW-Exact | POMCPOW-Exact BOMCP-Exact

=5.0

-5.5 ,

- ‘e i

6.0 ~ f«"; LW *] ‘ﬁo :

-6.5
o -7.01 [Mean dist. to LQG: 0.24€ [Mean dist. to LQG: 0.277 [Mean dist. to LQG: 0.401
g VOMCPOW-Riccati | POMCPOW-Riccat | BOMCP-Riccati
= 5.0y
=2
o 55
o b T - %
T -6.0 . o
> g £ 8 4
c 6.5
o
8 -7.01 [Mean dist. 1o LQG: 0.33C | [Mean dist 10 LQG: 0.41Z | ["Mean dist. to LQG: 0.52
< VOWSS 5.0 55 6.0 6.5 7.05.0 55 6.0 6.5 7.0

=5.0

-5.5 : Solution

S

-6.0) 3 ;2;.:32:5 e ExactLQR (LQG

65 st s Riccati LQR

-7.00 [Mean dist. o LQG: 0.41¢

5.0 55 6.0 65 7.0)
Action x—coordinate

Fig. 2. Scatter plots of the first actions chosen by policies from different
solvers and rollouts for the two step LQG problem. The exact LQR solution,
which is the same as the LQG solution, is shown as a red dot at [6.0, —6.0],
and the Riccati solution as a blue dot at approximately [6.18,—6.18].

analytical solution, for VOWSS, POMCPOW, VOMCPOW
and BOMCP. For the solvers that require a rollout policy,
we test both the finite horizon LQR solution (referred to as
“exact policy”) and the steady-state solution to the discrete
time algebraic Riccati equation (referred to as “Riccati
policy”) [31] as the rollout policies to observe effects on
each solver. For this particular scenario, the Riccati solution
is uy =~ —0.618- %, and ug; ~ [6.18,—6.18], slightly different
from the exact policy.

When choosing hyperparameters through CEM, we use the
Riccati policy as the rollout policy. The number of queries for
POMCPOW and VOMCPOW are set to 1000 and BOMCP
to 100, which correspond to approximately 0.1 seconds of
planning time. For VOWSS, the state width is set to 10 and
action width to 200. Furthermore, we introduce the action
width decay term 7, such that the number of VPW iterations
for a given height is 7}, times the VPW iterations for the
previous height, similar to the way VOOT is modified for
long horizons [12]. The action width decay is manually set
to ¥, = 0.4 after a careful inspection to balance performance
and run time, which means that the action width for first step
is 200, and the action width for second step is 80. While
this results in number of evaluations on the order of 10°, we
include the performance of VOWSS as a reference.

We first show the scatter plots of the actions chosen by
each solver in Figure 2. Each scatter plot shows the result of
1000 simulations. While POMCPOW and BOMCP find solu-
tions biased towards the rollout actions, we see that the effect
is much less pronounced in VOMCPOW. Specifically, when
the rollout policy is set to Riccati policy, both POMCPOW
and BOMCP heavily resort to picking the Riccati solution as

VOWSS Policy Error for LQG

1.573 1.012 0.811 0.754
(£ 0.025) (+0.017) (x0.014) (x0.012)
1.527 0.900 0.664 0.588
- (£ 0.025) (+0.015) (+0.012) (£0.010) |Dist. from LQG
k=) 1.50
2 1.455 0.803 0.586 0.530 1.25
% (£ 0.023) (+0.015) (x0.011) (+ 0.009) 1.00
n 0.75
1.372 0.775 0.553 0.485 0.50
(£ 0.023) (+0.014) (+0.010) (+0.009)
10 1.312 0.708 0.499 0.435
(£0.023) (+0.013) (x0.009) (+0.008)
50 100 150 200
Action Width
Fig. 3. Tabular summary of the first actions chosen by VOWSS policy,

where we show the mean Euclidean distance from the LQG solution, and
the corresponding standard error in parentheses.

shown by the large point mass corresponding to the Riccati
solution in the scatter plots. Even though VOMCPOW still
produces a sizable mass of points on and surrounding the
Riccati solution, it otherwise picks solutions that are close
to the LQG solution. VOMCPOW scatter plots show that
the bias and the variance of the optimal action estimates are
noticeably smaller than those of POMCPOW and BOMCP.
Although VOWSS cannot be directly compared to the other
solvers since the number of iterations is not on the same order
and it doesn’t rely on a rollout policy, the overall shape of
the scatter plot looks similar to those of VOMCPOW.

In addition, we study the effects of varying the state
and action widths for VOWSS. Figure 3 shows the mean
Euclidean distance to the LQG solution for different com-
binations of state and action widths. Each cell in the table
shows the result of 1000 simulations, and the other hyper-
parameters are left intact. As we increase either the state
or action width, the mean distance and the standard error
decrease. This indicates that VOWSS chooses better actions
by increasing the state and action widths, which confirms our
theoretical results: larger state widths should increase value
estimation accuracy and larger action widths should improve
action optimization.

B. Van Der Pol Tag

Next, we test POMCPOW and VOMCPOW on the Van
Der Pol Tag (VDP Tag) problem introduced by [9], which
is the only problem in their work with continuous state,
observation and (hybrid) action spaces. In VDP Tag, an agent
navigates through 2D box to tag a target with randomized
initial state that follows a dynamics model defined by the
Van Der Pol differential equation. The agent moves at a fixed
speed, but can choose the direction of travel and can decide
to make an accurate observation of where the target is at a
higher cost than making the default noisy observation. While
the target can freely move within the 2D box, the agent is
blocked when it comes into contact with a barrier.

Van Der Pol Tag Results

35
Solver 33.2+0.9-..
— POMCPOW o awemen »
30| |-- g
VOMCPOW, P o:.16
o 25
]
=
0]
@ 20
15
10,
0.01 0.10 1.00
Planning Time (sec) — Log Scale
Fig. 4. Mean rewards for POMCPOW and VOMCPOW for VDP Tag.

Ribbons indicate one standard error.

We show the mean reward for 1000 simulations for each
solver and each planning time plotted in log scale of seconds
in Figure 4. We observe that VOMCPOW outperforms POM-
CPOW at every planning time by a statistically significant
margin. It is also worth noting that VOMCPOW takes almost
an order of magnitude less planning time to reach the
mean reward of 25 compared to POMCPOW. While VDP
Tag is a continuous space POMDP, the rewards are still
discrete in both state and action spaces, which suggests that
even with discrete jumps in the reward function, VPW can
still optimize to find better actions. In addition, while it is
possible to adapt BOMCP to solve VDP Tag, it requires
nontrivial modifications to the action space due to the action
space being hybrid (A = [0,27) x {0,1}) and the angle space
being a modular space. This further illustrates the ease of
implementing VPW since we only need to supply VPW with
a distance metric on the action space, which makes VPW
suitable for hybrid action spaces as well.

C. Lunar Lander

Lastly, we test POMCPOW, VOMCPOW and BOMCP
on the modified lunar lander problem proposed in [14],
where the main objective is to guide a vehicle to land in
a target zone safely. In this version of lunar lander, the
vehicle state is defined as (x,y,0,%,y, ®), and we only obtain
noisy observations of the angular rate, horizontal speed, and
above-ground level. The action space is defined by the tuple
(T,Fy,0) where T is the main vertical thrust, F; the corrective
horizontal thrust, and § the offset. The default rollout policy
is proportional control based on the observation.

Once again, we show the mean reward for 1000 simula-
tions for each solver and each planning time plotted in log
scale of seconds in Figure 5. VOMCPOW outperforms both
POMCPOW and BOMCEP by a statistically significant margin
once the planning time exceeds 0.1 seconds. Below 0.1
seconds, the performances of POMCPOW and VOMCPOW
are similar due to the problem having a long horizon, in
which the effects of VPW will not be as apparent since best

Lunar Lander Results

63.7+1.6
56.3+1.9. i
60 B e
-
= 40
S y
K 552+ 1.9
//
/
201 /I Solver
% — POMCPOW,
/ -- VOMCPOW,
K -. BOMCP
O " I, | |
0.01 0.10 1.00
Planning Time (sec) — Log Scale
Fig. 5. Mean rewards for POMCPOW, VOMCPOW and BOMCP for the

modified lunar lander problem. Ribbons indicate one standard error.

Voronoi cell actions will not be sampled very often.

We note that the performance of POMCPOW here seem-
ingly differs from the results in [14], which might be due to
a several factors. The lander problem has a high variance in
the returns, since failure to land results in a steep penalty of
-1000. This failure mode does not happen very often even
within 1000 iterations, so the number of failures significantly
impacts the mean rewards. Furthermore, we are comparing
the algorithms based on planning time rather than number
of queries. POMCPOW queries much faster than BOMCP,
and average planning time may not sufficiently capture the
relationship between total planning time and number of
queries for a progressively built tree. It is also possible that
authors of [14] did not set POMCPOW first action to be the
rollout action.

VII. CONCLUSION

In this paper, we have introduced Voronoi Progressive
Widening (VPW), a versatile technique to effectively handle
continuous or hybrid action spaces in MDPs and POMDPs.
Consequently, we proposed two VPW-based tree search
algorithms to demonstrate convergence guarantees and ef-
ficiency, justifying the theoretical soundness, versatility and
practicality of VPW for many continuous or hybrid action
space POMDPs.

This study has yielded a several key insights, which
suggest some promising future directions to explore. While
each of the VPW-based algorithms either enjoy theoretical
guarantees or computational efficiency, the gap between the-
oretical soundness and practicality still remains. In particular,
the state and action selection heuristics as it is utilized in
POMCPOW still need to be integrated into the theoretical
algorithms like POWSS to bridge the gap between theory
and practice. On the other hand, we believe that the VPW
technique itself should also have some theoretical guarantees
similar to the DPW technique [17].

Additionally, since the convergence guarantees of VOO
hold as long as the reward function is locally smooth around

at least one global optimum [12], more extensive study could
be done for effectiveness of VPW on MDPs and POMDPs
with discrete reward structures. Similar to how the Rényi
divergence requirement for POWSS [13] could be a difficulty
indicator for likelihood-weighted sparse tree solvers, the
proof techniques utilized for VOO and DPW could offer
insights on what continuous or hybrid action space problems
are harder to solve than others.

ACKNOWLEDGEMENTS

This material is based upon work supported by a DARPA
Assured Autonomy Grant, the SRC CONIX program, NSF
CPS Frontiers, the ONR Embedded Humans MURI, and the
National Science Foundation Graduate Research Fellowship
Program under Grant No. DGE 1752814. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of any aforementioned organizations. The
authors also thank John Mern for sharing the source code
for BOMCP and the lunar lander environment, and providing
valuable insights as well as technical support for running and
verifying these scripts.

REFERENCES

[1] H. Bai, S. Cai, N. Ye, D. Hsu, and W. S. Lee, “Intention-aware
online POMDP planning for autonomous driving in a crowd,” in IEEE
International Conference on Robotics and Automation. Seattle, WA,
USA: IEEE, 2015, pp. 454-460.

[2] Z. N. Sunberg, C. J. Ho, and M. J. Kochenderfer, “The value of
inferring the internal state of traffic participants for autonomous
freeway driving,” in American Control Conference. Seattle, WA,
USA: IEEE, 2017, pp. 3004-3010.

[3] T. Ayer, O. Alagoz, and N. K. Stout, “A POMDP approach to
personalize mammography screening decisions,” Operations Research,
vol. 60, no. 5, pp. 1019-1034, 2012.

[4] S. Young, M. Gasi¢, B. Thomson, and J. D. Williams, “POMDP-based
statistical spoken dialog systems: A review,” IEEE, vol. 101, no. 5,
pp. 1160-1179, 2013.

[51 J. E. Holland, M. J. Kochenderfer, and W. A. Olson, “Optimizing
the next generation collision avoidance system for safe, suitable, and
acceptable operational performance,” Air Traffic Control Quarterly,
vol. 21, no. 3, pp. 275-297, 2013.

[6] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of Markov
decision processes,” Mathematics of Operations Research, vol. 12,
no. 3, pp. 441450, 1987.

[7]1 C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of monte carlo tree search methods,” IEEE Transactions on
Computational Intelligence and Al in Games, vol. 4, no. 1, pp. 1-43,
2012.

[8] D. Silver and J. Veness, “Monte-Carlo planning in large POMDPs,”
in Advances in Neural Information Processing Systems. Curran
Associates, Inc., 2010, pp. 2164-2172.

[9] Z. Sunberg and M. J. Kochenderfer, “Online algorithms for POMDPs

with continuous state, action, and observation spaces,” in International

Conference on Automated Planning and Scheduling. Delft, Nether-

lands: AAAI Press, 2018.

N. Ye, A. Somani, D. Hsu, and W. S. Lee, “DESPOT: Online POMDP

planning with regularization,” Journal of Artificial Intelligence Re-

search, vol. 58, pp. 231-266, 2017.

H. Kurniawati and V. Yadav, “An online POMDP solver for uncertainty

planning in dynamic environment,” in Robotics Research. Springer,

2016, pp. 611-629.

B. Kim, K. Lee, S. Lim, L. Kaelbling, and T. Lozano-Perez, “Monte

carlo tree search in continuous spaces using voronoi optimistic op-

timization with regret bounds,” in AAAI Conference on Artificial

Intelligence, vol. 34. AAAI Press, 2020, pp. 9916-9924.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

M. H. Lim, C. Tomlin, and Z. N. Sunberg, “Sparse tree search
optimality guarantees in pomdps with continuous observation spaces,”
in International Joint Conference on Artificial Intelligence, 1JCAI-20.
International Joint Conferences on Artificial Intelligence, Inc., 7 2020,
pp. 4135-4142.

J. Mern, A. Yildiz, Z. Sunberg, T. Mukerji, and M. J. Kochenderfer,
“Bayesian optimized Monte Carlo planning,” in AAAI Conference on
Artificial Intelligence. AAAI Press, 2021.

M. Kearns, Y. Mansour, and A. Y. Ng, “A sparse sampling algorithm
for near-optimal planning in large Markov decision processes,” Ma-
chine Learning, vol. 49, no. 2, pp. 193-208, 2002.

N. P. Garg, D. Hsu, and W. S. Lee, “DESPOT-a: Online POMDP
planning with large state and observation spaces,” in RSS, 2019.

A. Couétoux, J.-B. Hoock, N. Sokolovska, O. Teytaud, and N. Bon-
nard, “Continuous upper confidence trees,” in Learning and Intelligent
Optimization. Rome, Italy: Springer, 2011.

M. J. Kochenderfer, Decision Making Under Uncertainty: Theory and
Application. Massachusetts: MIT Press, 2015.

D. Bertsekas, Dynamic Programming and Optimal Control.
sachusetts: Athena Scientific, 2005.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial Intelli-
gence, vol. 101, no. 1, pp. 99 — 134, 1998.

C. Mansley, A. Weinstein, and M. L. Littman, “Sample-based planning
for continuous action markov decision processes,” in International
Conference on Automated Planning and Scheduling. AAAI Press,
2011, p. 335-338.

A. Weinstein and M. L. Littman, “Bandit-based planning and learning
in continuous-action markov decision processes,” in International
Conference on Automated Planning and Scheduling. ~AAAI Press,
2012, p. 306-314.

W. Mao, K. Zhang, Q. Xie, and T. Basar, “Poly-hoot: Monte-carlo
planning in continuous space mdps with non-asymptotic analysis,” in
Advances in Neural Information Processing Systems, vol. 33. Curran
Associates, Inc., 2020.

P. Morere, R. Marchant, and F. Ramos, “Bayesian optimisation for
solving continuous state-action-observation pomdps,” in Advances in
Neural Information Processing Systems, vol. 30. Curran Associates,
Inc., 2016.

K. M. Seiler, H. Kurniawati, and S. P. N. Singh, “An online and
approximate solver for pomdps with continuous action space,” in IEEE
International Conference on Robotics and Automation. 1EEE, 2015,
pp. 2290-2297.

J. Mern, A. Yildiz, L. Bush, T. Mukerji, and M. J. Kochender-
fer, “Improved POMDP tree search planning with prioritized action
branching,” in AAAI Conference on Artificial Intelligence. ~ AAAI
Press, 2021.

J. Lee, W. Jeon, G.-H. Kim, and K.-E. Kim, “Monte-carlo tree search
in continuous action spaces with value gradients,” in AAAI Conference
on Artificial Intelligence, vol. 34. AAAI Press, 2020, pp. 4561-4568.
R. Bjarnason, A. Fern, and P. Tadepalli, “Lower bounding Klondike
solitaire with Monte-Carlo planning,” in International Conference on
Automated Planning and Scheduling. Thessaloniki, Greece: AAAI
Press, 2009.

S. Mannor, R. Rubinstein, and Y. Gat, “The cross entropy method for
fast policy search,” in International Conference on Machine Learning.
AAALI Press, 2003, p. 512-519.

M. Egorov, Z. N. Sunberg, E. Balaban, T. A. Wheeler, J. K. Gupta, and
M. J. Kochenderfer, “POMDPs.jl: A framework for sequential decision
making under uncertainty,” Journal of Machine Learning Research,
vol. 18, no. 26, pp. 1-5, 2017.

G. Chow, Analysis and Control of Dynamic Economic Systems.
York: John Wiley & Sons, 1975.

Mas-

New

APPENDIX

Contents
A Mathematical Proofs L e 1
Al Analogous Notations and Concepts to Previous Works 1
A2 VOWSS Conditions o o o it e e e 2
A3 Proof of VOWSS Inequality e 3
B Experiment Hyperparameters e e 8
C Voronoi Optimistic Sparse Sampling (VOSS) for Stochastic MDPs 9

A. Mathematical Proofs

1) Analogous Notations and Concepts to Previous Works: In our work, we build upon a lot of previous works on sparse
sampling, POWSS, and VOO, while adapting notations and concepts to be consistent within our own work. Table I explicitly
connects the notations we use in our analyses that are slightly different from the notations used by [15], [12], [13].

TABLE I
SUMMARY OF CORRESPONDING NOTATIONS AND QUANTITIES.

Proof Notation Original Notation Previous Works Short Description
General
Cy n VOO [12] Number of action samples
C C Sparse Sampling [15] Number of state samples
POWSS [13] Number of state/observation samples
D H VOO [12] Horizon of the problem
Sparse Sampling [15]
d h VOO [12] Given depth of the tree
d h,n Sparse Sampling [15] Given depth of the tree/estimator
VOWSS
Zc, Py VOO [12, Theorem 1] VOO agent regret bound
€ %/ POWSS [13, Theorem 2] POWSS concentration bound
p 14 POWSS [13, Theorem 2] POWSS bound tail probability
VOSS
Zc, K7 VOO [12, Theorem 1] VOO agent regret bound
€ A Sparse Sampling [15, Lemma 3] Chernoff concentration bound
e A€/ Vinax Sparse Sampling [15, Lemma 3] Chernoff bound tail probability

Similarly, Table II connects the concepts we use to the analogous concepts used by [15], [12], [13].

TABLE II
SUMMARY OF ANALOGOUS CONCEPTS.

Proof Notation Original Notation Previous Works Short Description
VOWSS
Ne, (d) n(h) VOO [12, Theorem 2] Value function regret bound
oc,(d) oy POWSS [13, Lemma 2] POWSS recursive bound
VOSS
Nc,(d) n(h) VOO [12, Theorem 2] Value function regret bound

oc,(d) oy Sparse Sampling [15, Lemma 4] Sparse sampling recursive bound

2) VOWSS Conditions: Before we prove the VOWSS inequality theorem, we present the necessary conditions for this
analysis. The conditions required for the proof is the union of regularity conditions required for POWSS and VOO. The
POWSS conditions are the following, with appropriate adaptations to our formalism:

(i) (Continuous spaces) S,A, O are continuous spaces.

(i) (Bounded Rényi divergence) For any observation sequence {0,};, the densities Z,.7,by are chosen such that the
Rényi divergence of the target distribution 9?¢ and sampling distribution 2¢ is bounded above by d™** < oo a.s. for
alld=0,---,D—1:

doo(2| 27) = ess SUP,. gaW gy ga (X) < deg™

(iii) (Bounded reward function) The reward function R is Borel and bounded by a finite constant ||R||e < Rpax < +o° a.s.,
and Vi = If"j“ < oo,

(iv) (Generative model) We can sample from the generating function G and evaluate the observation probability density
Z.

(v) (Finite horizon) The POMDP terminates after D < oo steps.

In our context, the target distribution ¢ corresponds to the conditional observation density of the state trajectory, 29 the
marginal state trajectory density, and w ga /¢ the importance weights:

LT)b

= (i) = (1) (Fiaby (1)

{ ”}I({s }) deJFI(QFlJ:d)(%:d)bOdsO:d

24 = 2({su}) = (T)by, @
2

Wyd/gd({sn}i): (l'd))

Jsa1 ("‘@f]{d)(%:d)bods():d '

Essentially, condition (ii) means that the conditional observation density cannot be much larger than the marginal density for
any given state trajectory. With the above conditions, the state sampling width C; is chosen such that the following holds:

p= 3Cu(3ca 'Cs)D 6Xp(*Cs't§mX), “)
€ e(1—7y) 1

S C,) = —) 5

P = T VoD ™ (&)= 3y e~ ©

This ensures the POWSS type bound |Q%(b,a) — Q%(b,a)| < & holds with probability at least 1 — p for each b,a at depth d.

The VOO conditions are the following, with appropriate adaptations to our formalism. Note that with our notation, VOO
aims to optimize a function Q(a) over some space A:

(i) (Translation-invariant semi-metric) D : A x A — R is such that Vx,y,z € A, D(x,y) = D(y,x), D(x,y) =0 iff x =y, and
D(x+z,y+z) =D(x,y).

(ii) (Local smoothness of Q) There exists at least one global optimum a* € A of Q such that Va € A,Q(a*) — Q(a) <
L-D(a,a*) for some L > 0.

(iii) (Shrinkage ratio of the Voronoi cells) Consider any point @’ inside the Voronoi cell C generated by the point ag, and
denote dy = D(d’,ap). If we randomly sample a point a; from C, we have E[min(dy,D(d’,a1))] < Ady for A € (0,1).

(iv) (Well-shaped Voronoi cells) There exists 11 > 0 such that for any Voronoi cell generated by a with expected diameter
dyp contains a ball of radius ndy centered at a.

(v) (Local symmetry near optimum) The set of global optima A, consists of finite number of disjoint and connected
components {A,@}f‘:l,k < 0. For each component, there exists an open ball By, (ail)) for some a@ € Ag) such that
D(a,ay)) < D(a’,a&l)) implies Q(a) > Q(d') for any a,a’ € By, (afp).

Here, we define fiz(r) = n(B,(-))/1(A), with u the Borel measure on A, S,y the largest distance between two points in
A, and Vpin = min;cp V;. Then, the action sampling width C, is chosen such that the following holds:

1At {log(nca(d)—ynca(dﬂ)

C,> max
‘= 2L 8 nax Cnax

> - mi '
(Ve 10 (Vorin) + 1 — ip (1 - 2 Vinin)) d= > mln(Gl,vav,w,k) (6)

Here, Cmax,Gj,0:Kyv 0 are problem specific quantities/functions that are explicitly defined in [12]. Satisfying these
constraints for a decreasing sequence {nc,(d)} will allow us to use the VOO type bound V;(b) —V*(b) < nc,(d) that
holds in expectation.

3) Proof of VOWSS Inequality:

Theorem 1 (VOWSS Inequality): Suppose we choose the action sampling width C, and state sampling width Cs such that
under the union of regularity conditions specified by [13] and [12], the intermediate POWSS bounds and VOO bounds in
Lemma 1 are satisfied at every depth of the tree. Then, the following bounds for the VOWSS estimator Vvowss,d (1_7) hold
for all d € [0,D — 1] in expectation:

[V (b) — Wowss.a(b)| < ne, + ac,. (7)
In order to prove Theorem 1, we first prove an intermediate lemma which will allow us to obtain the bound through triangle
inequality. We introduce and prove the following lemma first. All of the following calculations are done in expectation. We
also denote b for a particle representation of belief 5 that POWSS and VOWSS take as an argument.
Lemma 1 (VOWSS Intermediate Inequality): Suppose with our notation, the POWSS estimators at all depths d are within
€ of their mean values with probability 1 — p, and the VOO agents have regret bounds of %c,. The following inequalities
hold for all d € [0,D — 1] in expectation:

*(b> - Va’ca (b)’ <7, (d)7 (8)
‘Vdca(b) - Vvowssd(l_?)’ < o, (d). ©)

Nc,(d) and og,(d) are sequences that satisfy the following properties:

Ne,(d) = v-nc,(d+1) + Zc,, nc,(D) =0, (10)
e, = ,_max T, (d) < oo, 11
Otcs(d) (1+’Y)(8+2p dex)""}/((d—|-1)+2p Vmax) (12)
aCs(D_l):£+2p'vmax; (13)
ac, Ed:OI,n.-?,)I()—laC“(d) < oo (14

Proof: This proof proceeds through induction by assuming that the bounds hold for all depths from d+1 to D— 1, and
then proving they also hold for depth d (induction hypothesis is omitted as the bounds trivially hold as per the definitions
of VOOT and POWSS). We divide the main inequality into VOO bound and POWSS bound by introducing an intermediate
term V< (b):

d

Vi (0) = Ivowss.a(b)| < |Vii () = V5(b) |+ |05 () — Pvowss.a(P) (1s)
VOO bound POWSS bound

Essentially, we have two main layers of inequality, caused by the stochastic nature of VOO action selection, and the
uncertainties in state transition and observation. We will first analyze the VOO bound, then the POWSS bound.

a) Step 1: VOO Bound: The VOO bound can once again be further decomposed into the following terms as [12] do
in their work:

Vi (b) = Ve(b)| < Vi ()~ Vab)| + |Vulb) ~ V5 (0)| (16)
_ —

VOO Recursive bound VOO Regret bound

Here, the intermediate random variables are defined in the following manner:

Vi(b) = ma;;QZ(b @) = max {R(b,a) + YE[V},, (bao)|b] } 17)
ac
Va(b) = max 0u(b.a) = max{ (b,a) + YE[V2, (bao)| } (18)
Vea(p) = b,a) = R(b E bao)|b 1
)= max Oalba) aevz“&’;ca){ (b,a) + YELV?, (bao) b] | (19)

As a notation, a € VOO(A,C,) indicates that the actions a are chosen sequentially through the VOO algorithm over the
action space A for C, iterations of VOO. Here, we compare the two quantities with a reference action a* = argmax Q}(b,a),
which results in a looser bound but allows us to directly compare the quantities inside the max operations. We closely follow

the calculations from the proof of Lemma 5 in [12]:

Vi (6) - Ba(0)] = fmax (R(6.0) + YEIV. (o)1}~ max {R0.0) + YIS, (o]} 0)
VOO Recursive bound
< |R(b.a*) + YEIV; 1 (ba*o)[b] — R(b.a*) + YEIV S, (ba o)} (a" = argmax 0)(b.a))
<9yE {|Vj+1(bao — 9% (bao) |’ } 21)
<y-ne(d+1) (22)
V4(b) — V/Ca (b)’ < %e,. (23)
VOO Regret bound

In the VOO Regret bound, the difference cannot be less than zero since the global maximum is at least as big as the VOO
maximum, so the absolute value disappears and we get the regret of VOO. Thus, with our choice of C, that is designed to
satisfy the recurrence relation:

Vi) =V (b)] < Vi (b) = Valb)| + |Vab) ~ V5 () 24)
—_ —
VOO Recursive bound VOO Regret bound
<v-nc,(d+1)+%c, <nc,(d). (25)

b) Step 2: POWSS Bound: The POWSS bound can also be further decomposed into the following terms:

VdC“ (b) — Wowss.a(b) ’ < ‘V,f“ (b) — Wowss.a(b) ’ + |Wowss,a(b) — Wowss.a(b) |. (26)
POWSS Concentration bound POWSS Recursive bound

Here, the extra intermediate random variable and the VOWSS estimator are defined in the following manner:

C ~C
- ~ S owgi(rgi +YV4 (bao;
Wowssa(b)= max — Ovowssa(b,a) = max Licivail d’cv Wa (bac)) ; 27)
acVOO(AC,) aeVOO(AC,) Y& wa,
C A —_—
A - A - i i i 12 b i
Dvowssa(B)= max Ovowssa(h.a)= max Z,=1w¢1,z(m,z+g vowss d+1(bao;)) - 28)
' acVoO(AC,) ' acVOO(AC,) Y& wa,

We compare the two quantities by picking a reference action to directly compare the quantities inside the max operations.
For the concentration bound term:

Ve (b) — VVOWSS,d(b)’ <

POWSS Concentration bound

R E[VCa 2
wymas {R(a)+ VI (bao) 5] (29)

B max Z, 1 Wd, l(rdé +7 d.ﬁ1 (baoi)) ‘ (30)
acVOO(A,Cy) Z[.:1 W i
. Y wai(rai+yVse (bao;)) . A
R(b,a*) +YE[V ¢, (ba*o)|b] - ==1— (Y an(baol)| argmaxy o Qa (b, a))
1 Wd.,i

As a small note, picking the maximizing action with respect to O, does not guarantee that we have bounded the term in this
case. We also need to consider the case of picking the maximizing action with respect to Qvowss,d, since Ovowss.q could
achieve larger values than O, due to sparse sampling of states. However, our overall result does not change, since choosing
the other maximizing action will only result in a change in sign within the absolute value, which we can still bound with
the recursive bound. Thus, in the following calculations whenever we pick the reference action for difference in quantities
that do not have strict magnitude hierarchy, we do not consider this possibility as the terms can still be bounded with their
respective recursive bounds by choosing an appropriate reference action.
Decomposing the quantity into the reward difference and the next-step value difference:

C. Cs (7Ca *

7 Ca y Yl Wd,iTd,i Yo wa Vi, (ba*o;)

v (b%vvowss,d(b)\ < |R(b,a") — =5 4y B[V (bato)|b) — =2 : 31)
Zizl Wd. i Zi:1 Wd. i

POWSS Concentration bound
Reward difference Value difference

For the reward difference, we can crudely upper bound it by the POWSS Q-value estimate concentration bound in Theorem 2
of [13], since this is effectively the same structure as the leaf node estimate. In the POWSS concentration bound in Theorem
2, the difference has an upper bound of A /(1 — %), which we will define as €, and we denote the corresponding probability
0 as p. This bounds the quantity by (€4 2p - Vmnax) using the expectation version of the POWSS concentration bound.

C
Zi:S] Wa.itd,i
C,
2121 Wi

Reward difference

R(b,a*)f < €+2p-Vinax- (32)

We could instead use Lemma 1 of [13], the leaf node estimate concentration bound, but we use the more general Theorem
2. This allows us to consistently use the same theorem throughout this analysis and effectively combine terms. Similarly,
while the worst case bound is 2R, since we are taking the difference of two reward functions, we crudely upper bound
that with 2V« for algebraic convenience of combining it with the value difference term.

):Cslwd,VdH(ba 0;)

Cs
Zi:] Wa i

Value difference

E[VS, (ba*0)|b] — < €+2p-Vinax. (33)

On the other hand, for the value difference, the POWSS concentration bound also turns out to be an upper bound, but with
more sophisticated calculations. During this part of the proof, we will refer heavily back to the continued proof of Lemma
2 in the Appendix C of [13] and give a general overview of how the steps apply here.

c) Step 2-i: Value Difference: While Lemma 2 in [13] is calculated with respect to the theoretically optimal value
function V,; , the calculation steps themselves and the theorems and lemmas used there can apply exactly the same way
for VdC 1. We will briefly illustrate how the steps are parallel to the proof of Lemma 2 in the Appendix C of [13].

The value difference corresponds to the difference between the expected value of V Ca) and the self-normalized importance

sampling estimator of the expected value. This value difference specifically corresponds to the first two error terms in the
continued proof of Lemma 2 in the Appendix C of [13]. The decomposition looks like the following:

Cs

wa iV, (ba*o;

E[VSe, (ba*o)|b] — Lioi o Vit (ba o) (34)
Zl 1 Wd.,i
C, Z,lewdzvdc+1(5dhb a*) Z,(jélwdz(vdcil(sd,ivbva*) Vd+1(ba 0i))
[Vd+1 (ba 0)‘[7] - Cs + Cs : (35)
Yl Wi LitiWai
Importance sampling error MC next-step integral approximation error
The next-step marginal integral \A’dcil(sdﬂ-,b,a*) is defined as

Vg+1(sdzab a // VdCf;l ba*0)Z (ola”,sa+1)7 (sa+1lsa,i,a")dsar1do. (36)

With this analogous definition, the self-normalized estimator identities in [13] can be exactly applied to this setting once
again, now instead for the function VdC" because the algebraic steps taken in the proof should hold for our V function
estimator as well. Intuitively, the next-step marginal integral is defined to be the marginal random variable for V. instead
of the optimal V function as it is done in the works of [13].

First, following [13], we define the following notation for products of transition and observation densities:

) d
Ta =17 (snilsn-1.,an), (37)

3
Il
—_

IIT
:&

o@o(on,j‘amsn,i)- (38)

3
Il
—_

Specifically, i denotes the index of the state sample, and j denotes the index of the observation sample. Absence of any of
the indices i or j means that the state trajectory {s,} or the observation history {0,} appear as regular variables, mostly for
the purposes of integration.

d) Step 2-ii: Importance Sampling Error: For the importance sampling error, note that for a belief b at depth d,

E[V<:, (ba*o)|b] = ///Vdcil (ba*0)(Z1) (a1)b dsgsasrdo (39)

:/SVd"H Saisbra)b-dsy (40)

_ de ‘A](djil(Sd.,l'7b7a*)(‘%:d)(‘%:d)b0d50:d (41)
‘]:S‘d(%:d)(z:d)bods&d '

Consequently, the weighted average of the next-step marginal integral Vgil(sd_j,b,a*) is a self-normalized importance
sampling estimator of Vdcjh (ba*o) given b, and we can apply the augmented self-normalized estimator concentration bound
in the same way as [13] to get the concentration bound of A4 /3.

e) Step 2-iii: Monte Carlo Next-Step Integral Approximation Error: For the MC next-step integral approximation error,
generating estimates of VdC 1 (ba*o;) for a given (sq;,b,a") also results in an unbiased Monte Carlo estimator of the next-step
marginal integral, and the following difference is mean zero conditioned on (sq;,b,a*):

Agi1(Sab,a") = VG (sa,b,a") = V5o (ba*o;). (42)

Thus, the same calculation steps hold. Note that in the works of [13], the MC next-step integral approximation error is
further crudely bound by yl when the actual bounds also hold for k, for the convenience of being able to combine the
Y multiplied terms in the main proof of Lemma 2. Thus, we can bound the MC next-step integral approximation error with
the stricter bound %l.

In our work, we used the variable € to denote the POWSS concentration bound, which corresponds to e =A /(1 —7y) > A.
Since the sum of importance sampling error and MC next-step integral approximation error are bounded by (1/3+2/3)A =A,
this can also further be crudely bounded by the POWSS concentration inequality with the upper bound &.

We have now obtained bounds for the value difference term using the expectation version of the POWSS concentration

inequality where the extreme probability event is once again bounded with the term 2p - Vix:

ZiC; Wi Ve (ba*o;
[V, (ba*o)|p] - === Va1 (ba”or) < e+2p Vinax. (43)
Zl 1 Wd.,i
Finally, we can bound the POWSS Concentration bound term:
‘VdCd (b) - VVOWSS,d(b)‘ < (8 +2p- Vmax) + ’}/(8 +2p- Vmax) = (1 + 7)(8 +2p- Vmax)- (44)

POWSS Concentration bound

For the POWSS Recursive bound term, we simply apply the inductive hypothesis for step d + 1:

C ~C,
. . - =S owai(rai +yV:e (bao;
Wowss.a(b) — Vwowssa(b)| <| max Licy il dé Wit (baoi) (45)
i i a€VOO(A,Cq) Y Wai
POWSS Recursive bound
O max Zicil wa i(rai +YWowss.a+1(bao;)) ‘ (46)
acVOO(A,Cy) Y& wai
o8 Ca (15 o T
=S owge i (Ve (bdo;) — V-) bdo; -
< }’ZH ailVaia(Cl? vowssd+1(640:) (@ = argmaxy o Qvowss.a(b,a))
Z, 1 Wd.,i
Y wa d+1(b610) Wowss,a+1(bdo;)
<y 5 (47)
i=1 Wd,i
<7vy-ac(d+1). (48)
Putting the POWSS components together, we prove the POWSS bound by induction:
Ve (b) — Wowss.a(b ‘ ‘VC VVOWSS,d(b)‘ + [Wowss.a(h) — Wowss.a(b)| (49)

POWSS Concentration bound POWSS Recursive bound
S(1+Y)(£+2P'Vmax)+7'acx(d+1):O‘Cx(d)-. (50)

Proof for Theorem 1. Finally, we prove the main theorem by combining the two terms:

Vi (b) = Wowss.a(b)| <

Vi (b) = 05%(b)| +[05 (b) — Pvowss.a(b)| < e, (d) + 0, (d) < 1, +oc,. M (51)

VOO bound POWSS bound

Here, the nc,(d) corresponds to the VOO bound in [12]. Thus, we can always find a corresponding C, for an arbitrary
decreasing sequence of 1¢,(d) which satisfies the properties in our lemma, and this sequence can be made closer to 0 for
each depth by choosing bigger C, values.

On the other hand, o, (d) is comprised of POWSS bound components in [13], which decreases in both p and € with
more samples Cs. Thus, it can also be made to decrease to 0 as we increase C;.

B. Experiment Hyperparameters

Hyperparameters were taken from the references if they were given, and otherwise the set of hyperparmaters for a
system was obtained by first training POMCPOW, and then training VOMCPOW and BOMCP centered around POMCPOW
hyperparameters as initial estimates. This usually augmented the performances of VOMCPOW and BOMCP compared to
directly borrowing the POMCPOW hyperparameters. For BOMCP, buffer and k were fixed at 100 and 5, respectively, as it
was done in the original paper by [14]. Table III shows the final hyperparameters used in the experiments. Specifically for
the lunar lander problem, we have chosen the dynamics time step dt = 0.4, which gave us the most consistent performance
of BOMCP with 100 queries over 1000 iterations that is in line with the results of [14].

We give a brief intuitive explanation for each of the parameters utilized. c is the critical factor or the Upper Confidence
Bound exploration parameter, which governs how much we should explore among the action samples we have collected.
Since VPW needs to balance local and global search, on top of estimating relatively faithful Q-values, it usually worked
better to set the ¢ on the equal magnitude/lower than the ¢ value for POMCPOW, usually around 10-100. &, is the constant
factor of the action widening parameter, which sets the overall width of the action widening. o, is the exponential factor
of the action widening parameter, which determines how adaptive we want to progressively widen the action width. k,, &,
are the state/observation widening parameters, which function similarly to the action widening parameters. @ is the VOO
exploration probability, which governs how much we should explore in the action space. Since in global search, we need to
see enough samples to explore the action space sufficiently, it usually worked better to set @ to be relatively high around
0.7-0.9. Lastly, ¥ is the Gaussian covariance matrix for VOO rejection sampling.

The only hyperparameter that was manually picked is the Gaussian covariance matrix for VOO rejection sampling. When
picking this covariance matrix, we usually found that it was most effective to use a diagonal matrix with entries that are
around 10 to 20 times less than the maximum action space bounds for each dimension. In theory, the diagonal covariance
matrix can also be fitted via CEM, but we chose to handpick these values after some inspection in order to reduce the
number of hyperparameters that needed to be fit.

To limit the number of rejection sampling iterations, we set the maximum number of rejection sampling iterations to 20
and automatically choose the closest action we have sampled when we reach 20 iterations. We also manually set automatic
sample acceptance regions that was usually on the order of a tenth of the sampling radius, which we found was not strictly
necessary in conjunction with the sampling iteration limit.

The open source code is available at github.com/michael-1im/VOOTreeSearch. jl.

TABLE III
SUMMARY OF HYPERPARAMETERS USED IN EXPERIMENTS FOR POMCPOW, VOMCPOW, BOMCP, AND VOWSS.

c ke s ko 0, C; C, ® Y= diag(c?) I A 1
LQG (Depth 3)
POMCPOW 650 300 % 300 }}
VOMCPOW 60.0 250 <= 250 s 0.8 [0.5, 0.5
BOMCP 1350 300 ; 200 g log(15) 0.4
VOWSS 10 200 0.8 [0.5, 0.5] 0.4
VDP Tag (Depth 10)
POMCPOW 1100 300 4 5.0 @
VOMCPOW 850 300 35 25 1 0.7 [0.1]
Lunar Lander (Depth 250)
POMCPOW 100 30 L 20 &
VOMCPOW 300 40 L 15 % 0.9 [0.2, 0.5, 0.05]
BOMCP 100 30 § 20 g5 log(15) 0.5

C. Voronoi Optimistic Sparse Sampling (VOSS) for Stochastic MDPs

Voronoi Optimistic Sparse Sampling (VOSS) is an application of VPW to the sparse sampling algorithm [15] to tackle the
stochastic MDP case. Like VOWSS, it can be defined by an ESTIMATEQ function that estimates the Q-value with next-step
state samples. Since VOSS does not have observation uncertainty, it only needs to take the arithmetic average instead of
the observation likelihood weighted average. The ESTIMATEQ function that takes in a state s instead of a belief particle
set b is outlined in Algorithm 5. Note that this is analogous definition to the Q-function estimation algorithm in [15]. The
ESTIMATEV function should function similarly, except working with s instead of b.

Algorithm 5 Value estimation algorithm for VOSS
Algorithm: ESTIMATEQ(s,a,d)

Input: State s, action a, depth d.

Output: A scalar Q%(s,a) that is an estimate of Q%(s,a).

1: Fori=1,---,Cs, generate s},r = G(s,a).
2: Return the Q-value estimate:

R 1o
05(s,a) = r+re Y ESTIMATEV (s},d +1).

Si=1

The conditions required for the proof is the union of regularity conditions required for sparse sampling and VOO. The
sparse sampling conditions are the subset of POWSS conditions. Namely, we only require the conditions (i), (iii), (iv), only
for the state and action spaces. Since in this proof we simply use the Chernoff bound for the sparse sampling type bound,
we just need to make sure that p > exp(—£2Cs/(2Vinax)?) holds when picking Ci.

Theorem 2 (VOSS Inequality): Suppose we choose the action sampling width C, and state sampling width Cs such that
under the union of regularity conditions specified by [15] and [12], the intermediate sparse sampling bounds and VOO
bounds in Lemma 2 are satisfied at every depth of the tree. Then, the following bounds for the VOSS estimator Vvossd(s)
hold for all d € [0,D — 1] in expectation:

V7 (s) = Woss.a(s)| < ne, + ac,. (52)
Similar to proving Theorem 1, to prove Theorem 2, we first prove an intermediate lemma which will allow us to obtain
the bound through triangle inequality. The proof is easier than that of Theorem 1, since we do not explicitly need to deal
with the observation uncertainty. We introduce and prove the following lemma first. All of the following calculations are
done in expectation.
Lemma 2 (VOSS Intermediate Inequality): Suppose with our notation, the sparse sampling estimators at all depths d are
within € of their mean values with probability 1 — p, and the VOO agents have regret bounds of Z%c,. The following
inequalities hold for all d € [0,D — 1] in expectation:

Vi(s) = V5(s)| < e, (@), (53)
’Vdc“(s) - VVOSS,d(S)‘ < o, (d). (54)
Nc,(d) and og,(d) are sequences that satisfy the following properties:
N, (d) = v-ne,(d+1) +Zc,, e, (D) =0, (55)
Ne, = d=(§?€l§)—l Ne, (d) < oo, (56)
ac,(d) = y(ac,(d+1)+€+2p - Vimax), 0c,(D—1) = €+2p- Vinax, (57)
(XCV = dfgnaXD I(XCX (d) < +°o (58)

Proof: This proof proceeds through induction by assuming that the bounds hold for all depths from d+1 to D—1, and
then proving they also hold for depth d (induction hypothesis is omitted as the bounds trivially hold as per the definitions
of VOOT and sparse sampling). We divide the main inequality into VOO bound and sparse sampling bound (SS bound) by
introducing an intermediate term VdC“ (s):

Vi (s) —Vvoss,d(s)f < ‘VJ(S) —Vfa(s)‘+‘Vfa(s)—vvos&d(s) . (59)
VOO bound SS bound

We now have two main layers of inequality, caused by the stochastic nature of VOO action selection and the uncertainty in
state transition. We will first analyze the VOO bound, then the SS bound.

a) Step 1: VOO Bound: The VOO bound can be further decomposed into the following terms as [12] do in their work:

Vi(s) = V)| £ Vi) = Vals)] +|Vals) = 75(s)|. (60)
———— N

VOO Recursive bound VOO Regret bound

This step is very close to our previous procedure in VOWSS. Here, the intermediate random variables are defined in the
following manner:

Vi (s) = max 05 (s,a) = max{R(s,a) + YEyr(s.0) V11 ()]}, (61)
S .
Va(s) = max Qy(s,a) = max {R(& @)+ VEy 15[V (5)] } : (62)
7 C, A 5 C, !
@ = = R E.) ¢ .
0iG) = max o Qalsa)= _ max = {R(s.a)+Be ol ()]} (©3)

Repeating the procedures in Lemma 1, we closely follow the calculations from Lemma 5 in [12]:

Vi (5) = uts)] = ma (R(.0) + B Vi)1}~ ma G50+ VB 052,51} (64
N———
VOO Recursive bound
< [R5, + VB Wia ()] = R(s,0) = VEypoa 055,)] (@ = argmax 05 (5,a))
<YEyr(sary Vit (8) = Pty () (65)
<7y-nc,(d+1) (66)
Vals) = V5 (5)| < e, G
VOO Regret bound
Thus, with our choice of C, that is designed to satisfy the recurrence relation, we obtain the bound:
Vi(s) = V5 ()] < Vi (s) = Vals)] +|Vals) = V5 (s) (68)
———— —_—
VOO Recursive bound VOO Regret bound
<vy-nc,(d+1)+%c, <nc,(d). (69)

b) Step 2: Sparse Sampling Bound: Similar to Lemma 1, the SS bound can also be further decomposed into the
following terms:

Vie(s) _VVOSS,LI(S)’ <

VdC” (s) — VVOSS,d(S)‘ +|Woss.a(s) — Woss.a(s)] - (70)

SS Concentration bound SS Recursive bound

Here, the extra intermediate random variable and the VOSS estimator are defined in the following manner:

. - 1 Cs ~C

W §)= max ,a) = max R(s,a)+y—= Y V7o (s) ¢, 71
voss.d(s) aevoo(A,c,,)QVOSS’d(s a) aEVOO(AACa){ (s,a) Ye l; d+1(%)} (711)
N N 1 Cs A ,

V = max ,a) = max R(s,a) +y7=) W) r- 72
v0ss.d(S) aevoo(A,cg)QVOSS’d(S a) v (s,a) YCS l; VOss,d+1(5;) (72)

We now apply the sparse sampling bound as well as the recursive bound in order to bound the SS bound components. In our
case, since our intermediate sparse sampling term Vyoss 4(s) is merely swapping out the expectation of Vdc 1, with a sample
average under the appropriate sampling density, this turns out to be simply the Chernoff bound. We transform the sparse
sampling concentration bound to an expected value bound by using the fact that the difference of V functions/estimators is
bounded above by 2V, setting the concentration bound to be € as per the Lemma statement and assigning the worst case
result with probability p. Once again, we compare the two quantities by picking a reference action to directly compare the

quantities inside the max operations:

Vf“(S)—Vvoss,d(S)‘ <| max {R(s,a) +YEg ra Vet ()]} — max {Rsa T ZVdeil i (73)

aeVOO(A,Cy) aeVOO(A,Cq)
SS Concentration bound
1 & . R
< Y|Byra D)] - o Vi 5D (a" = argmaxy oo Qu(s,a))
Si=1
<Y ((1=p)e+2p-Vimax) < Y- (€+2P Vinax)- (74)

For the SS Recursive bound, we proceed with the similar recursive calculation as SS Recursive bound term done in
Lemma 1 by using the inductive hypothesis for step d + 1:

- A 1 Cx ~C
W -V s)| < max R(s,a)+y=Y V7o (s 75
(Woss.a(s) —Woss.a(s)] < aEVOO(A,C,,){ (s,a) st,-; d+1(51)} (75)
SS Recursive bound
1 &
— max R +7y7—) W 76
cVOLA.Co) (s,a) stlZ{ VOSS.d+1(57) ‘ (76)

C, / (7 / ~ A
Vdil —Woss.a+1(8;) (@ = argmaxy,pp Ovoss.d(s;a))

SJ/-aq(d+)- (77)

Putting the sparse sampling components together by applying the recursive definition of o, (d), we obtain the recurring
concentration inequality by induction:

Ve (s) — Woss.als ‘ ‘V —Woss.a(s ‘+‘VVOSSd() Wossa(s)| (78)

SS Concentration bound SS Recursive bound

<Y (e4+2p Vinax) +7- O, (d+1) = ¢ (d). B (79)

Proof for Theorem 2. Finally, we prove the main theorem by combining the two terms:

V7 (s) —Vvoss,d(s)‘ < |Vi(s) —VdC“(S)"F ‘VdC’l(S) _VVOSS,d(S)’ <1c,(d)+ac,(d) <nc, +ac,- B (80)
VOO bound SS bound

Here, the 1¢,(d) corresponds to the VOO bound in [12]. Thus, we can always find a corresponding C, for an arbitrary
decreasing sequence of 1¢,(d) which satisfies the properties in our lemma, and this sequence can be made closer to O for
each depth by choosing bigger C, values.

On the other hand, ac,(d) corresponds to the sparse sampling bound/Chernoff bound which decreases in both p and €
with more samples C;. Thus, it can also be made to decrease to 0 as we increase C;.

