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Abstract— In continuous-time system identification, the inter-
sample behavior of the input signal is known to play a crucial
role in the performance of estimation methods. One common
input behavior assumption is that the spectrum of the input
is band-limited. The sinc interpolation property of these input
signals yields equivalent discrete-time representations that are
non-causal. This observation, often overlooked in the literature,
is exploited in this work to study non-parametric frequency
response estimators of linear continuous-time systems. We
study the properties of non-causal least-square estimators for
continuous-time system identification, and propose a kernel-
based non-causal regularized least-squares approach for esti-
mating the band-limited equivalent impulse response. The pro-
posed methods are tested via extensive numerical simulations.

Index Terms— System identification; Continuous-time sys-
tems; Parameter estimation; Least-squares; Regularization.

I. INTRODUCTION

Continuous-time system identification studies how to ob-
tain continuous-time mathematical models of systems based
on sampled input and output data. This field, together with
its discrete-time counterpart, has had a deep impact in many
areas of science and engineering, and significant pieces of
literature have been written on the subject, see, e.g., [1], [2].

In both continuous and discrete-time system identification,
methods should be picked according to the assumptions the
user makes on the input signal. Three main assumptions can
be commonly found: that the input is piecewise constant,
piecewise linear, or band-limited, the latter meaning that
the power spectrum of the signal is zero above a certain
frequency. Due to the advantages provided by the Nyquist-
Shannon reconstruction theorem, which permits the exact
intersample behavior of the signal to be known based on sam-
ples, band-limited signals have been studied extensively in
signal processing, filter theory, and spectral theory. In system
identification, parametric continuous-time system identifica-
tion under band-limited inputs has been carried out mostly in
the frequency domain [3], in which the description of such
signals is natural. For the case of continuous-time multisine
inputs, a least-squares method in the frequency domain that
has been widely used is Levy’s method [4], and a time-
domain method based on refined instrumental variables has
recently been introduced and analyzed in [5].

In this paper we first show that, under band-limited input
assumptions, the equivalent discrete-time system is non-
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causal. A similar observation has been made in, e.g., [6],
where it is stated that the reconstruction of band-limited
signals is a non-causal filtering procedure. However, the
implications of this sampling result to the equivalent discrete-
time system description seem to have been overlooked in
the literature (see, e.g., Eq. (2) of [7], in which a direct
term has been added instead of a fully non-causal discrete-
time representation). Band-limited input signals were also
used in [8] for estimating a discrete-time finite-impulse
response (FIR) filter. This work was done in the discrete-
time domain and the non-causal components that arise were
also neglected.

The non-causal discrete-time equivalent system descrip-
tion leads to direct ways to estimate the non-causal im-
pulse response, and therefore the continuous-time frequency
response, based on sampled band-limited data. Non-causal
system identification has been recently studied in [9], in
which a Maximum Likelihood estimator is proposed for
symmetric non-causal systems with applications to cross
direction modeling of paper machines. In particular, non-
causal FIR models have been used for identifying systems
in closed-loop in [10], [11].

In summary, the main results of this paper are:
• We show that the equivalent discrete-time system aris-

ing from a band-limited input signal is non-causal, and
we analyze its properties.

• We propose a least-squares estimator for computing the
non-causal discrete-time impulse response, and derive
its asymptotic distribution.

• We present a non-causal regularized least-squares
method for estimating the non-causal impulse response
that represents the continuous-time system.

• We illustrate our methods via extensive Monte Carlo
simulations.

The rest of this work is organized as follows. In Section II
we introduce basic concepts of band-limited signals and their
implications on linear systems, and we state the problem we
study. In Section III we present the least-squares approach for
estimating the non-causal band-limited equivalent impulse
response, and propose non-causal regularization methods for
improving its performance. Section IV contains extensive
numerical experiments evaluating the algorithms, and we
provide concluding remarks in Section V. Proofs of the
theoretical results can be found in the Appendix.

II. PRELIMINARIES

In this section, we will discuss the topic of sampling band-
limited signals from a continuous-time system standpoint. In
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particular, we recall the concept of a band-limited signal, and
introduce the non-causal discrete-time impulse response that
is obtained under band-limited assumptions in the input.

Consider the following system description

x(t) =

∫ ∞
0

g(τ)u(t− τ)dτ, (1)

where {u(t)} is a scalar input of the continuous-time, asymp-
totically stable, linear and time invariant system that has a
causal impulse response {g(t)}, and {x(t)} is the output.
The frequency response of the system and the continuous-
time Fourier transform of the input are given by

G(iω) =

∫ ∞
0

g(t)e−iωtdt and U(iω) =

∫ ∞
−∞

u(t)e−iωtdt

respectively. The key assumption in this work is that the input
signal is band-limited, that is, {u(t)} does not have energy
above a certain frequency ωB . In other words, U(iω) = 0
for |ω| > ωB . If u(t) is sampled every h seconds, where
h < π/ωB , then its discrete-time Fourier transform pair is
given by

Uh(e
iωh)=h

∞∑
k=−∞

u(kh)e−iωkh⇐⇒u(kh)=

∫ π
h

−πh
Uh(e

iωh)
eiωkh

2π
dω.

These expressions can be exploited so that the discrete-time
Fourier transform is written in terms of the continuous-time
one, which is known as Poisson’s summation formula [12]

Uh(eiωh) =

∞∑
n=−∞

U

(
iω + i

2πn

h

)
.

Due to {u(t)} being band-limited, this formula indicates
that Uh(eiωh) = U(iω) for |ω| < π/h. Since X(iω) =
G(iω)U(iω), we find that {x(t)} is also band-limited, and
thus Xh(eiωh) = X(iω) in the same domain. Using these
identities, we can exactly reconstruct a continuous-time
band-limited signal based on its samples:

u(t) =
1

2π

∫ π
h

−πh
Uh(eiωh)eiωtdω

=

∞∑
n=−∞

u(nh)
h

2π

∫ π
h

−πh
eiω(t−nh)dω

=

∞∑
n=−∞

u(nh) sinc
(
t− nh
h

)
, (2)

where the sinc function is defined as sinc(t) := sin(πt)/(πt).
Replacing this description of u(t) in (1) and interchanging
summation and integration, the system equation can then be
rewritten as

x(t) =

∞∑
n=−∞

u(nh)

∫ ∞
0

g(τ) sinc
(
t− τ − nh

h

)
dτ. (3)

Thus, we have the following result.
Proposition 2.1: The equivalent discrete-time model of a

system whose input is a band-limited signal is described by
the impulse response

gBL(kh) :=
1

h

∫ ∞
0

g(τ) sinc
(
kh− τ
h

)
dτ, k ∈ Z. (4)
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Fig. 1. Left: Impulse response of a second order continuous-time system.
Right: Impulse response of its discrete-time band-limited equivalent.

Furthermore, the continuous-time frequency response of the
system satisfies, for all |ω| ≤ ωB ,

G(iω) =
X(iω)

U(iω)
=
Xh(eiωh)

Uh(eiωh)
= h

∞∑
k=−∞

gBL(kh)e−iωkh.

Interestingly, by (4) we find that the impulse response
{gBL(kh)}k∈Z is non-causal in general. In other words, a
causal continuous-time system behaves like a non-causal
system when sampled with a band-limited intersample be-
havior assumption. Intuitively, this can be deduced by how
the intersample behavior of the input is formed: by (2), we
see that the sinc interpolation of the input must take into
consideration the contributions of all the future values of the
input at the sampling instants. Thus, the system output will
be a function of these future input values as well.

An example of this non-causal behavior can be seen
in Figure 1, where we have plotted the impulse response
g(t) of a second order continuous-time system and the
impulse response of its band-limited discrete-time equivalent
gBL(kh). With regards to the behavior of the non-causal part
of {gBL(kh)}k∈Z, we note that
• A significant non-causal part is present if g(t) correlates

with sinc(t/h − k). For example, let h = 1[s] and
g(t) = −e−0.2t sin( π

1.1 t). As seen in Figure 2, g(t) has
an important overlap with the sinc function, which in-
duces considerable non-causal values in gBL(kh). Note
that such correlation is more likely to occur when the
sampling period is close to π/ωB , as in this example.

• As the sampling period tends to zero, the non-causal
part vanishes. In fact, since h−1sinc([t − τ ]/h) con-
verges weakly [13] to δ(t − τ), we see that for any
fixed t of the form t = kh we have gBL(t)

h→0−−−→ g(t).
We now state the problem that is of interest in this paper.
Problem 2.1: Consider the system described in (1), where
{u(t)} is a band-limited input signal. Assume that we
retrieve noisy measurements of the output of the form

y(kh) = x(kh) + v(kh), k = 1, 2, . . . , N, (5)

where v(kh) is a zero-mean stochastic process of variance
σ2 that is independent of the sampled input. The question
we address is how to estimate the continuous-time frequency
response G(iω) (or equivalently, the band-limited equivalent
impulse response {gBL(kh)}k∈Z) from sampled values of the
input and noisy output. To avoid further confusion, from now
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Fig. 2. Left: Impulse response g(t) with the sinc function that is used
for computing gBL(−1) with (4). Since the most pronounced lobes are
synchronized, the resulting impulse response coefficient is significant. Right:
The band-limited equivalent impulse response of g(t).

on we denote the true frequency response as G∗(iω), and its
band-limited equivalent impulse response as {g∗BL(kh)}k∈Z.

Remark 2.1: It is well known that band-limited signals
must extend infinitely in time [14]. Equivalently, a time-
limited signal is not band-limited. Thus, in practice we
will encounter approximately band-limited signals, which are
commonly obtained via anti-aliasing filters [15].

III. NON-PARAMETRIC FREQUENCY RESPONSE
ESTIMATION

In this section we describe our approach for estimating the
continuous-time frequency response of a system for band-
limited inputs. The sampled output y(kh) can be written as

y(kh) = h

Mc∑
n=−Mnc

u([k − n]h)g∗BL(nh) + w(kh), (6)

where Mnc and Mc satisfy Mnc + Mc ≥ 0. These integers
indicate the number of non-causal and causal terms of
the impulse response that will be estimated. The signal
{w(kh)}Nk=1 is a residual term accounting for the noise
sequence {v(kh)}Nk=1, the approximation error of the series
in (3), and possible transient effects. The equations that the
output data satisfies can be put in matrix form as

y = Φρ∗ + w,

where

y=
[
y(h), y(2h), . . . , y(Nh)

]>
,

Φ=h


u([1+Mnc]h) u(Mnch) . . . u([1−Mc]h)
u([2+Mnc]h) u([1+Mnc]h) . . . u([2−Mc]h)

...
...

...
u([N+Mnc]h) u([N−1+Mnc]h) . . . u([N−Mc]h)

,
ρ∗=

[
g∗BL(−Mnch), g∗BL([1−Mnc]h), . . . , g∗BL(Mch)

]>
, (7)

w=
[
w(h), w(2h), . . . , w(Nh)

]>
.

As the goal is to provide an estimate for G∗(iω), we focus on
estimating the vector of coefficients of its truncated Laurent
series, ρ∗. To this end, we will first consider the least-
squares estimate of ρ∗ and study its properties. Afterwards,
we present its regularized least-squares variant.

A. Non-causal least-squares estimator
The least-squares estimate of ρ∗ is given by

ρ̂N = (Φ>Φ)−1Φ>y

=

[
N∑
k=1

ϕ(kh)ϕ>(kh)

]−1[ N∑
k=1

ϕ(kh)y(kh)

]
, (8)

where ϕ(kh) is the transpose of the k-th row of Φ. The
impulse response estimate generates a non-parametric fre-
quency response estimate ĜN (iω) = ρ̂>NΓ(eiω), where
Γ(eiω) is a vector of the form

Γ(eiω) = h
[
eiωMnch, eiω(Mnc−1)h, . . . , e−iωMch

]>
.

Note that, by construction, the proposed estimate satisfies the
conjugacy property

ĜN (iω) = ρ̂>NΓ(eiω) = ρ̂>NΓ(e−iω) = ĜN (−iω).

To analyze this estimator, we consider inputs of the form

u(t) =

N∑
n=1

e(nh)sinc
(
t− nh
h

)
, (9)

where {e(nh)}Nn=1 is a white noise sequence of finite
variance. For practical purposes, we shall consider that the
non-causal samples of the input are all equal to zero (i.e.,
u(kh) = 0 for k < 0). Note that this does not mean that
the continuous-time input to the system is causal, as every
band-limited signal must extend infinitely in both directions
in time.

The following results concern the consistency and asymp-
totic distribution of the least-squares estimator in (8) when
the input is discrete-time white noise interpolated through
sinc functions. The proofs can be found in the Appendix.

Theorem 3.1: Consider the system (1) with measured out-
put (5), and {u(t)} given by (9). Then, for any integers
Mnc,Mc such that Mnc + Mc ≥ 0, we have ρ̂N

a.s.−−→ ρ∗,
where ρ̂N and ρ∗ are defined in (8) and (7) respectively.

Remark 3.1: Theorem 3.1 also shows that when causal
FIR models are being fit to data with a band-limited input, the
coefficients that are estimated converge to the ones provided
by the band-limited equivalent, and not the zero-order hold
one, which is commonly assumed when discrete-time data
is obtained. This fact has implications on the accuracy of
the model, as the band-limited equivalent has non-causal
coefficients that are different from zero but are usually left
unmodeled. As mentioned in Section II, these non-causal
terms may only be neglected if the sampling period is small.

Theorem 3.2: Consider the system (1) with measured out-
put (5), where the input is given by (9), and {e(nh)}Nn=1 is
white noise of variance λ2 that is independent of the output
noise sequence {v(kh)}Nk=1. Then, the least-squares estimate
ρ̂N in (8) is asymptotically Gaussian distributed, i.e.,

√
N(ρ̂N − ρ∗)

dist.−−−→ N (0,PLS),

where the asymptotic covariance matrix is given by

PLS := lim
N→∞

1

h4λ4N

N∑
k=1

N∑
n=1

E{ϕ(kh)w(kh)w(nh)ϕ>(nh)}.



B. Non-causal regularized least-squares estimator

The proposed least-squares estimator has been shown to be
consistent in Theorem 3.1. However, usually the practitioner
is interested in the finite-time behavior, where the number
of parameters to be estimated can be of the order of the
number of samples. Another situation that may occur is that
the number of parameters is larger than the persistence of
excitation order of the input signal. In both of these cases,
it is convenient to use regularized least-squares estimators.

The regularized least-squares estimate of ρ∗, denoted here
by ρ̂rN , is given by

ρ̂rN = arg min
ρ
‖y −Φρ‖22 + γρ>P−1r ρ

= (PrΦ
>Φ + γIMnc+Mc+1)−1PrΦ

>y, (10)

where Pr � 0 is a regularization matrix and γ is a positive
scalar. The problem of choosing the best regularization
matrix for causal FIR models has been thoroughly studied
during the past years [16], [17]. This problem is challenging,
since it is known that the optimal regularization matrix
depends on the true system [18]. An analogous result holds
for non-causal FIR models, as stated next.

Proposition 3.3: Consider the system with sampled output
as in (6), and assume {w(kh)} is white noise of variance σ2.
The regularization term that minimizes the MSE matrix in a
positive definite sense is given by γopt =σ2 and Popt

r =ρ∗ρ∗>,
and the corresponding optimal regularized estimate is

ρ̂r,opt
N =(ρ∗ρ∗>Φ>Φ + σ2IMnc+Mc+1)−1ρ∗ρ∗>Φ>y. (11)

Proof: The proof follows by the same reasoning as in
the proof of Theorem 1 of [18].
Since the optimal regularization matrix is not known a
priori, the matrix Pr is typically parameterized by a low-
dimensional hyperparameter vector β ∈ B according to what
can be assumed about the impulse response. The difference
between the estimation problem in this work and causal FIR
estimation is that the impulse response has a causal and non-
causal exponential decay, which induces changes in the way
kernels should be designed. Recently [19], the kernel-design
problem for general non-causal systems was studied with the
goal of identifying systems with feedforward control. Here
we recall the findings in [19] and apply them to our context.

Let

bk =

{
λ−2knc if k < 0

λ2kc if k ≥ 0,

with 0 ≤ λnc, λc < 1. The non-causal tuned/correlated (TC)
kernel and the second-order stable spline (SS) kernel yield
the following regularization matrices:

TC kernel: Pr,(j,l)(β)=αmin{bj−Mnc−1, bl−Mnc−1};
β= [λnc, λc, α]>; B= {β ∈ R3 : α > 0, 0≤ λnc, λc < 1}.

SS kernel: Pr,(j,l)(β)=
α

6
min{bj−Mnc−1, bl−Mnc−1}2×

(3max{bj−Mnc−1, bl−Mnc−1}−min{bj−Mnc−1, bl−Mnc−1}) ;

β= [λnc, λc, α]>; B= {β ∈ R3 : α > 0, 0≤ λnc, λc < 1}.

Remark 3.2: Using the identities 2 min(a, b) = a + b −
|a − b| and 2 max(a, b) = a + b + |a − b|, it can be shown
that the kernels above are equivalent to the standard TC and
SS causal kernels if λnc is set to zero [19].
To compute the regularized estimator in (10), all that is left
to know is how to tune the hyperparameters in β. This can
be done using marginal likelihood optimization with respect
to the data, as in the causal estimation case. In other words,

β̂ML = arg max
β∈B

log(p(y|β))

= arg min
β∈B

y> [Z(β)]
−1

y + log det(Z(β)),

where Z(β) := ΦPr(β)Φ>+σ2IN . Regarding the variance
σ2, we provide the computational considerations that must
be taken place for including it as a hyperparameter1, most
of which are included in [20].

First, we must factor the regularization matrix as
Pr(β)/σ2 = L(β)L>(β). Afterwards, we consider the thin
QR factorization [21, Theorem 2.1.14][

ΦL(β) y
IMnc+Mc+1 0

]
= Q(β)

[
R1(β) R2(β)

0 r(β)

]
,

where Q(β) is a rectangular orthogonal matrix,
r(β) is a scalar greater than zero, and R1(β) ∈
R(Mnc+Mc+1)×(Mnc+Mc+1) is an upper triangular matrix
with positive diagonal entries. Note that the following
identities are satisfied:

R>1(β)R1(β)=L>(β)Φ>ΦL(β)+IMnc+Mc+1, (12)

R>1(β)R2(β)=L>(β)Φ>y, (13)

R>2(β)R2(β)+r(β)2=y>y.

After some technical derivations, the equalities above lead
to expressing the log-likelihood cost as

y>[Z(β)]−1y+logdet(Z(β))=
r2(β)

σ2
+log(σ2N)+2logdet(R1(β)).

Since the TC and SS regularization matrices are already
factored by a scalar constant α, the dependence on σ in L
(and therefore in R1) is redundant for the optimization of
the marginal likelihood with respect to β and σ2. Therefore,
we can concentrate the cost function by minimizing the log-
likelihood cost with respect to σ2, which leads to

β̂ML = arg min
β∈B

N log(r(β)) + log det(R1(β)). (14)

Finally, thanks to (12) and (13), the regularized least-squares
estimate can be computed by

ρ̂rN = L(β̂ML)
[
R1(β̂ML)

]−1
R2(β̂ML).

IV. SIMULATIONS

In this section we illustrate the proposed non-causal es-
timators though simulation examples, and later verify their
advantages through tests on random systems.

1As reported in Remark 5 of [16], σ2 can also be estimated separately
by computing the sample variance that results from ARX or FIR modeling.



A. Two examples

We first consider the following two systems:

G∗1(p) =
1.25

0.25p2 + 0.7p+ 1
, G∗2(p) =

−π/1.1
(p+ 0.2)2 + π2

1.12

,

where p is the differentiation operator, i.e., px(t) = dx(t)
dt .

These systems have been used for generating the band-
limited equivalent impulse responses in Figures 1 and 2.
The sampling periods are h1 = 0.3[s] and h2 = 1[s]
respectively, and the inputs to G∗1(p) and G∗2(p) are given
by (9), where {e(kh)} is white noise of unit variance. The
noiseless continuous-time output is simulated by oversam-
pling the input by a factor of 100, and assuming a first-
order hold behavior. White noise is added to the samples
of the simulated output, with variance corresponding to an
amplitude signal-to-noise ratio of approximately five.

For each system, N = 100 causal samples are obtained.
In order to capture the effect of the non-causal part of the
input, we computed the noiseless output x(t) starting from
t = −Nh, and only the causal sequence {x(kh)}Nk=1 was
contaminated with noise and used for identification. Three
causal and four non-causal estimators are tested, all with
40 parameters each; the non-causal ones use (Mnc,Mc) =
(15, 24). The following estimators were considered:

1) Causal least-squares (C-LS);
2) Non-causal least-squares (NC-LS);
3) Causal TC-regularized least-squares (C-TC);
4) Non-causal TC-regularized least-squares (NC-TC);
5) Causal SS-regularized least-squares (C-SS);
6) Non-causal SS-regularized least-squares (NC-SS);
7) Optimal non-causal regularized least-squares (Oracle).

The causal TC and SS-regularized least-squares estimators
are obtained via the impulseest command in MATLAB,
while the non-causal TC and SS kernels are tuned by solving
(14). The unrealizable oracle is computed by (11). The
performance of these estimators is compared via Monte Carlo
simulations with 300 different noise realizations. Validation
data are generated to compute the fit metric

Fit = 100

(
1− ‖y −Φρ̂N‖2

‖y − ȳ‖2

)
,

where ȳ indicates the sample mean of y.
The box plots of the fit of each method, for G∗1(p) and

G∗2(p), are shown in Figure 3. In both cases there is an
advantage in considering non-causal parameters versus fixing
them to zero. For G∗1(p) only a modest improvement can
be observed by estimating the non-causal terms, as the
sampling period is not large compared to the bandwidth
of the system and thus the non-causal component of the
impulse response is not significant. On the other hand, the
gain in performance in the test with G∗2(p) is substantial:
this is explained by the fact that an important part of the
band-limited equivalent impulse response is non-causal. As
expected for small sample sizes, an increase in performance
is observed on both systems if regularization is included.
Note that including regularization in the causal least-squares
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Fig. 3. Fit box plots of seven different impulse response estimators. Left:
G∗1(p); right: G∗2(p).

estimate improves the fit of the causal model but will anyway
disregard the significant non-causal components, leading to
a worse performance compared to the non-causal regularized
least-squares estimators.

B. Random systems

We now test the proposed methods on a set of random
systems. Similar to the bank of test systems presented in
[18], a number of continuous-time systems of order 30 are
generated using the rss command in MATLAB, and are
sampled at a frequency f = 1/h equal to three times the
bandwidth. The systems are split into 300 “fast” systems
whose poles have real parts not greater than log(0.95)/h, and
300 “slow” systems which have at least one pole with real
part greater than log(0.95)/h. The systems are excited with
the same input as in Section IV-A, and N = 500 samples are
obtained. The outputs are contaminated by Gaussian white
noise with an SNR of approximately 20.

All estimators tested previously, except the oracle, are
assessed in this new scenario. The box plots of the fit metric
for the fast and slow systems are presented in Figure 4. In
both cases, the non-causal estimators are the ones for choice
in terms of median fit, which provides strong evidence for
the adequacy of including non-causal terms for continuous-
time system identification with band-limited input excitation.
Note that the “fast” systems exhibit on average a greater
improvement if non-causal terms are included. This can be
explained by the fact that the sampling period for this case
is relatively large compared to the dominant time-constant,
which can induce greater non-causal values for the band-
limited equivalent impulse response as studied in Section II.

V. CONCLUSIONS

In this work we have introduced a novel method for
estimating the band-limited equivalent impulse response of
a continuous-time system based on non-causal regularized
least squares. We began this study by showing that the
equivalent discrete-time system for band-limited inputs is
non-causal, which led to the analysis of non-causal least-
squares estimators for estimating the band-limited equivalent
impulse response. The proposed non-causal kernel-based
methods show significant advantages in terms of the fit
criterion compared to the state-of-the-art methods, since they
model the non-causal terms that are commonly overlooked.



C-LS NC-LS C-TC NC-TC C-SS NC-SS
30

40

50

60

70

80

90

C-LS NC-LS C-TC NC-TC C-SS NC-SS
10

20

30

40

50

60

70

80

90

Fig. 4. Fit box plots of six different impulse response estimators. Left:
“fast” random systems; right: “slow” random systems.

APPENDIX

Proof of Theorem 3.1: By leveraging (6) and (8), we have

ρ̂N =ρ∗+

[
N∑
k=1

ϕ(kh)ϕ>(kh)

]−1[ N∑
k=1

ϕ(kh)w(kh)

]
,

where w(kh) is given by

w(kh) = h
∑

{n : n<−Mnc}∪{n : n>Mc}

u([k − n]h)g∗BL(nh) + v(kh).

The ergodic lemma in [22, Lemma 3.1] and the continuous-
mapping theorem permit us to write, as N →∞,

ρ̂N
a.s.−−→ ρ∗+E{ϕ(kh)ϕ>(kh)}−1E{ϕ(kh)w(kh)}, (15)

where the matrix being inverted is a positive-definite scalar
matrix. Since the system in (1) is asymptotically stable,
its band-limited impulse response has finite 2-norm. Thus,
thanks to [22, Lemma 3.1] and the fact that {u(t)} is white
noise at the sampling instants, the following expectation can
be computed:

E{ϕ(kh)w(kh)}

= h2
∑

{n:n<−Mnc}∪
{n:n>Mc}


E{u([k−n]h)u([k+Mnc]h)}g∗BL(nh)

E{u([k−n]h)u([k− 1 +Mnc]h)}g∗BL(nh)
...

E{u([k−n]h)u([k−Mc]h)}g∗BL(nh)


= 0.

This result, together with (15), leads to the desired conclu-
sion. �

Proof of Theorem 3.2: We have

√
N(ρ̂N−ρ∗)=

[
1

N

N∑
k=1

ϕ(kh)ϕ>(kh)

]−1[
1√
N

N∑
k=1

ϕ(kh)w(kh)

]
.

Since the first sum converges to its expected value for large
N , we can write

√
N(ρ̂N − ρ∗) =

1

h2λ2

[
1√
N

N∑
k=1

ϕ(kh)w(kh)

]
+ op(1).

By Lemma A4.1 of [23], the sum in brackets above converges
in distribution to a zero-mean normal random variable with
covariance

P = lim
N→∞

1

N

N∑
k=1

N∑
n=1

E{ϕ(kh)w(kh)w(nh)ϕ>(nh)}.

The asymptotic covariance PLS of Theorem 3.2 is thus ob-
tained by applying Lemma A4.2 of [23] and its corollary. �
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[7] R. Relan and J. Schoukens, “Recursive discrete-time models for
continuous-time systems under band-limited assumptions,” IEEE
Transactions on Instrumentation and Measurement, vol. 65, no. 3,
pp. 713–723, 2016.

[8] L. Rabiner, R. Crochiere, and J. Allen, “FIR system modeling and
identification in the presence of noise and with band-limited inputs,”
IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 26, no. 4, pp. 319–333, 1978.

[9] Q. Lu, P. D. Loewen, R. B. Gopaluni, M. G. Forbes, J. U. Backström,
G. A. Dumont, and M. S. Davies, “Identification of symmetric
noncausal processes,” Automatica, vol. 103, pp. 515–530, 2019.

[10] U. Forssell and L. Ljung, “A projection method for closed-loop
identification,” IEEE Transactions on Automatic Control, vol. 45,
no. 11, pp. 2101–2106, 2000.

[11] K. F. Aljanaideh and D. S. Bernstein, “Closed-loop identification of
unstable systems using noncausal FIR models,” International Journal
of Control, vol. 90, no. 2, pp. 168–185, 2017.

[12] R. Boas Jr., “Summation formulas and band-limited signals,” Tohoku
Mathematical Journal, Second Series, vol. 24, no. 2, pp. 121–125,
1972.

[13] R. P. Kanwal, Generalized Functions: Theory and Applications, 3rd
Edition. Springer, 2011.

[14] B. P. Lathi and R. A. Green, Essentials of digital signal processing.
Cambridge University Press, 2014.

[15] R. Pintelon and J. Schoukens, System Identification: A Frequency
Domain Approach. John Wiley & Sons, 2012.

[16] G. Pillonetto, F. Dinuzzo, T. Chen, G. De Nicolao, and L. Ljung, “Ker-
nel methods in system identification, machine learning and function
estimation: A survey,” Automatica, vol. 50, no. 3, pp. 657–682, 2014.

[17] L. Ljung, T. Chen, and B. Mu, “A shift in paradigm for system identi-
fication,” International Journal of Control, vol. 93, no. 2, pp. 173–180,
2020.

[18] T. Chen, H. Ohlsson, and L. Ljung, “On the estimation of transfer func-
tions, regularizations and Gaussian processes–Revisited,” Automatica,
vol. 48, no. 8, pp. 1525–1535, 2012.

[19] L. Blanken and T. Oomen, “Kernel-based identification of non-
causal systems with application to inverse model control,” Automatica,
vol. 114, p. 108830, 2020.

[20] T. Chen and L. Ljung, “Implementation of algorithms for tuning
parameters in regularized least squares problems in system identifi-
cation,” Automatica, vol. 49, no. 7, pp. 2213–2220, 2013.

[21] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd Edition. Cam-
bridge University Press, 2012.
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