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Abstract— This paper is motivated by the problem of quan-
titatively bounding the convergence of adaptive control meth-
ods for stochastic systems to a stationary distribution. Such
bounds are useful for analyzing statistics of trajectories and
determining appropriate step sizes for simulations. To this
end, we extend a methodology from (unconstrained) stochastic
differential equations (SDEs) which provides contractions in a
specially chosen Wasserstein distance. This theory focuses on
unconstrained SDEs with fairly restrictive assumptions on the
drift terms. Typical adaptive control schemes place constraints
on the learned parameters and their update rules violate the
drift conditions. To this end, we extend the contraction theory
to the case of constrained systems represented by reflected
stochastic differential equations and generalize the allowable
drifts. We show how the general theory can be used to
derive quantitative contraction bounds on a nonlinear stochastic
adaptive regulation problem.

I. INTRODUCTION

Adaptive control has a rich history in the controls literature
[1], [2], [3], and [4]. It has wide applications in areas such
as robotics [5], aerospace systems [1], and electromechanical
systems [6].

The typical approach utilizes Lyapunov-based design to
update the parameters while guaranteeing stability.

In recent years, there has been a drive to connect adaptive
control methods with techniques from reinforcement learning
[7]–[10]. In parallel, methods from reinforcement learning
have seen an explosion of work on linear giving precise
optimality guaranatees [11]–[13]. These works rely on pre-
cise convergence bounds that are fairly straightforward for
linear systems, but substantially more complex in stochastic
nonlinear systems.

Convergence of stochastic nonlinear systems is a vast area
with numerous approaches, e.g. [14]–[17]. In order to derive
convergence guarantees analogous to those available in linear
systems, explicit quantitative bounds are required.

The motivation behind this paper is to derive quantita-
tive convergence guarantees for stochastic adaptive control
methods. To this end, we build upon methodologies at the
intersection of stochastic differential equations and optimal
transport [18], [19]. However, the existing methods in this
area are too restrictive to be applied directly to common
adaptive control schemes. In particular, these focus uncon-
strained processes with strong Lipschitz-like conditions on
the drift term. However, in adaptive control, the parameters
are typically constrained and their update rules often contain
quadratic terms that violate the drift conditions.

Our primary contribution to stochastic convergence theory
is an extension of the methodology from [18] to constrained
processes with less restrictive drift conditions. We derive

an explicit exponential contraction bound under a specially
constructed Wasserstein distance. The result implies expo-
nential convergence to a unique stationary distribution under
a variety of measures, including total variation distance and
Euclidean Wasserstein distances. We then show how this
result can be used to prove exponential convergence in a
feedback-linearizable stochastic adaptive regulation problem.
Additionally, we show how a projection method based on
reflected stochastic differential equations can be used to
constrain the parameters to an arbitrary closed convex set.
This provides a flexible alternative to handling constraints,
which contrasts with more specialized projection operators
commonly employed in adaptive control [1], [2], [4].

The remaining parts of the paper are organized as follows.
Section II presents preliminary notation. Section III presents
the main contraction results, while Section IV presents
the application to stochastic adaptive control. Section V
presents numerical results and we provide closing remarks
in Section VI. The main contraction theorem is proved in
the appendix.

II. NOTATION

Random variables are denoted in bold, e.g. x. Time
indices are denoted by subscripts, e.g. xt denotes a stochastic
process. We equip Rn with an inner product and norm
denoted by 〈·, ·〉 and ‖·‖ respectively. We interpret x, y ∈ Rn
as column vectors and let x? denote the dual row vector
such that 〈x, y〉 = x?y. (Since 〈·, ·〉 is not necessarily the
Euclidean inner product, we may have x? 6= x>.) More
generally, for a matrix G, let G? denote its conjugate with
respect to the inner product. If A is a square matrix, its trace
is denoted by tr(A).

If X is a closed convex set in Rn, then at any y ∈ Rn the
normal cone of X is defined as

NX (y) = {v ∈ Rn |〈x− y, v〉 ≤ 0 ∀x ∈ X}, (1)

and the convex projection on X is ΠX (y) = arg min
x∈X
‖y−x‖.

We use the shorthand notations a ∧ b = min{a, b} and
a ∨ b = max{a, b}. I denotes the indicator function, and Id
is the d× d identity matrix.

III. CONTRACTION FOR REFLECTED STOCHASTIC
DIFFERENTIAL EQUATIONS

This section gives a general convergence result for re-
flected stochastic differential equations (RSDEs) over closed
convex domains. See Fig. 1. In this paper, we consider
RSDEs to handle the constraints that arise in adaptive
parameter tuning rules. A reflected stochastic differential
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Fig. 1. Reflected Brownian Motion. A non-smooth reflection process
forces the trajectory to remain in a constraint set.

equation is a stochastic differential equation which has been
augmented with a special process which ensures that the
trajectory remains within a constraint set. The results of this
section are required to handle the typical constraints placed
on parameters in adaptive control methods.

The results build upon the unconstrained contraction the-
ory of [20], but substantial novel work is required to enable
the adaptive control applications in Section IV. In particular,
we examine reflected SDEs to handle constraints, while [20]
considers unconstrained SDEs.

A. Problem Setup

Let X be a closed convex subset of Rn. We will examine
contractivity properties of reflected stochastic differential
equations of the form:

dxt = H(xt)dt+Gdwt − vtdµ(t), (2)

where G is an invertible n × n matrix, wt is a standard
Brownian motion, and ψt = −

∫ t
0
vsdµ(s) is a bounded

variation reflection process that enforces that xt ∈ X for all
t ≥ 0 whenever x0 ∈ X . In this case, wt has mean zero and
E[wtw

?
t ] = tIn.

When H is Lipschitz, it can be shown that ψt is the
unique bounded variation process such that for all t ≥ 0
and vt ∈ NX (xt), ‖vt‖ ∈ {0, 1}, µ is a random measure
with µ([0, t]) <∞, and the solution has xt ∈ X . See [21],
[22]. The Lipschitz condition can be relaxed to H being
locally Lipschitz, provided that the process is non-explosive.
See Section 2.4 of [23].

Reflected stochastic differential equations can be simu-
lated numerically via a projected Euler method:

xt+η ≈ ΠX (xt + ηH(xt) +G(wt+η −wt)).

See [21], [24]. In other words, the effect of ψt is the
continuous time limit of a projection operation.

B. Assumptions

The first requirement is a one-sided growth condition. We
assume that there is a function κ(r) : (0,∞)→ [0,∞) with

∫ 1

0
sκ(s)ds <∞ and a non-negative number α such that for

all x, y ∈ X with r = ‖x− y‖ the following bound holds:

〈x− y,H(x)−H(y)〉 ≤ κ(r)r2 + αr(‖x‖+ ‖y‖) (3)

This one-sided growth condition generalizes the one-sided
Lipschitz condition from [20], which corresponds to the
special case with α = 0. The extra terms are required to
handle the application to adaptive control in Section IV.

Let A denote the generator associated with the process xt.
Specifically, for any function g : X → R

(Ag)(x) = lim
h↓0

h−1(E[g(xh)|x0 = x]− g(x)).

We assume that there is a twice continuously differentiable
Lyapunov function V : X → [0,∞) and positive numbers λ
and C such that for all x ∈ X and all t ≥ 0:

(AV)(x) ≤ C − λV(x). (4)

We assume that V(x) increases monotonically with ‖x‖.
Specifically, there is a strictly monotonically increasing func-
tion φ such that V(x) = φ(‖x‖). We will further assume that
V grows at least linearly with ‖x‖.

Let R1 be the diameter of the set {(x, y) ∈ X |V(x) +
V(y) ≤ 4C/λ}. Linear growth implies that R1 is finite. By
construction, if ‖x− y‖ > R1, then

(AV)(x) + (AV)(y) ≤ −(λ/2)(V(x) + V(y)). (5)

Let M be a positive number such that M ≥ R1 and for
all x with ‖x‖ ≥M , the following bound holds:

V(x) ≥ max

{
2

λ
(α‖x‖+ C),

4C

λ
(2‖x‖+ 1)

}
. (6)

Let R2 be the diameter of {(x, y) ∈ X |‖x‖ ≤M and ‖y‖ ≤
M}. Note that R2 ≤ 2M by the triangle inequality.

In Section IV we take V(x) = ‖x‖2 + 1, so the growth
conditions are automatically satisfied.

C. Background on Wasserstein Distances

Our main theory describes convergence in a Wasserstein
distance. To state the result, some basic concepts from opti-
mal transport are required. See [25] for a general reference.
Let P and Q be probability measures over X with respect to
the standard Borel sigma algebra. A measure, Γ, over X ×X
is called a coupling of P and Q if its marginals are P and Q,
respectively. In other words, for any Borel set S, we have
Γ(S × X ) = P (S) and Γ(X × S) = Q(S). Let C(P,Q)
denote the set of all couplings of P and Q.

If ρ : Rn × Rn → [0,∞) is a metric, the induced q-
Wasserstein distance between P and Q is defined by:

W q
ρ (P,Q) = inf

Γ∈C(P,Q)

(∫
X×X

ρ(x, y)qdΓ(x, y)

)1/q

(7)

For simple notation, we follow the convention that Wρ :=
W 1
ρ for general ρ and for the norm, W q := W q

‖·‖.



D. Main Contraction Result

The idea behind [20] is to construct a new metric for
which convergence of Wρ can be tractably analyzed, and
then use the result to examine more standard measures such
as W q and the total variation distance. We follow a similar
approach, but the metric must be modified to account for the
more general growth condition.

Our metric will have the form:

ρ(x, y) = [f(‖x− y‖) + γV(x) + γV(y)+

V(x) ∨ φ(M) + V(y) ∨ φ(M) ] I(x 6= y). (8)

Recall that φ is a function such that V (x) = φ(‖x‖) and
the I is the indicator function. Here γ is a positive number
defined below.

The function f : [0,∞) → [0,∞) is defined via the
following chain of definitions:

h(r) =
1

σmin(G)2

(
1

2

∫ r

0

sκ(s)ds+ αMr

)
(9a)

ϕ(r) = e−h(r) (9b)

Φ(r) =

∫ r

0

ϕ(s)ds (9c)

ξ−1 =

∫ R1

0

ϕ(s)−1ds (9d)

β−1 =

∫ R2

0

(Φ(s)/ϕ(s))ds (9e)

g(r) = 1− ξ

4

∫ r∧R1

0

ϕ(s)−1ds− β

4

∫ r∧R2

0

(Φ(s)/ϕ(s))ds

(9f)

f(r) =

∫ r∧R2

0

ϕ(s)g(s)ds. (9g)

Here σmin(G) > 0 is the smallest singular value of G.
Additionally, we set

γ =
ξσmin(G)2

4C
. (10)

The general contraction result is given below. The proof
is given in appendix I.

Theorem 1: The function ρ(x, y) is a metric over X . Let
xt and yt be two solutions to (2) with respective laws Pt
and Qt. If the initial laws satisfy

∫
X V(x)dP0(x) <∞ and∫

X V(x)dQ0(x), then

Wρ(Pt,Qt) ≤ e−atWρ(P0,Q0).

where a = min{λ, ξσmin(G)2, βσmin(G)2}/2.
The following corollary establishes convergence to a sta-

tionary distribution in total variation distance and norm-based
q-Wassertein distances. It is analogous to Corollary 2.1 and
Remark 3.4 of [20]. The proof is omitted, since the argument
from [20] works with minimal modification.

Corollary 1: The system from (2) has a unique stationary
distribution π such that

∫
X V(x)dπ(x) < ∞. Let xt be a

solution to (2) with law Pt such that
∫
X V(x)dP0(x) <∞. If

V(x) ≥ 1 for all x ∈ X , then Pt converges in total variation
as:

‖Pt − π‖TV ≤ γ−1e−atWρ(P0, π).

Say q > 1 and 1
p + 1

q = 1 . If V(x) ≥ ‖x‖q for all x ∈ X ,
then Pt converges with respect to W q as:

W q(Pt, π) ≤ 21/p
(
γ−1Wρ(P0, π)

)1/q
e−at/q.

E. Discussion

We describe the distinctions between our results and those
of [20]. The most obvious is that ours applies to processes
reflected to remain in the set X , while [20] examines uncon-
strained SDEs. Additionally, our one-sided growth condition
is used instead of a one-sided Lipschitz condition:

〈x− y,H(x)−H(y)〉 ≤ κ(r)r2.

with the same definition of κ. This condition, however,
fails in very basic versions of the control problem from
Section IV, thus necessitating the our condition (3). Our
main application utilizes quadratic Lyapunov functions, and
so we restrict to the case of Lyapunov functions V(x) with
quadratic growth. This is less general than [20], but leads
to substantially simpler analysis. Additionally, this leads to
a much simpler and more explicit metric.

IV. APPLICATION TO ADAPTIVE REGULATION

A. Problem Setup

We analyze a stochastic variation of a model reference
adaptive control problem examined in Chapter 9 of [1].

The basic plant model has the form

dxt = [Āxt +B(Ω̄>Ψ(xt) + ut)]dt+Gxdwx
t . (11)

Here Ā is an unknown state matrix, B is a known input
matrix, Ψ is a known vector of feature functions (which
could be linear or nonlinear), Ω̄ is an unknown matrix
of parameters, and Gx is an unknown matrix scaling the
Brownian motion. The state is xt and the inputs are ut. The
setup in [1] also includes an unknown scaling factor on B,
which we have omitted for simplicity.

We focus on the problem of adaptive regulation, while
[1] examines tracking problems. In our setup, the matching
assumption is that there is a known Hurwitz matrix, A, and
an unknown feedback gain, K̄, such that

Ā+BK̄ = A.

Here A is the state matrix for the reference system.
It appears to be possible to extend the contraction theory

to tracking problems, but this is left for future work.
If we knew K̄ and Ω̄, we could set ut = K̄xt−Ω̄>Ψ(xt)

and render the system stochastically stable:

dxt = Axtdt+Gxdwx
t .

The challenge is that we do not know K̄ or Ω̄. So instead, we
use ut = Ktxt−Ω>t Ψ(xt), where Kt and Ωt are estimates.
We derive rules for their computation later.



To simplify notation, we set

Θ̄ =

[
−K̄>

Ω̄

]
, Θt =

[
−K>t

Ωt

]
, Λ(xt) =

[
xt

Ψ(xt)

]
.

Then the dynamics of (11) with ut = Ktxt−Ω>t Ψ(xt) can
be written as

dxt =
(
Axt +B (Θ̄−Θt)

>Λ(xt)
)
dt+Gx dwx

t . (12)

where fixed matrices A ∈ Rn×n and B ∈ Rn×` form a
controllable pair and wx

t ∈ Rn is standard Brownian motion
with coefficient matrix Gx ∈ Rn×n, which is fixed and
invertible.

We assume that the function Λ : Rn → RL is Lipschitz:

‖Λ(x)− Λ(y)‖2 ≤ L‖x− y‖2,

for some L > 0, where ‖ · ‖2 is the Euclidean norm.
Assume that Θ̄ and Θt are L×` matrices, and set m = L`.

Let S : Rm → RL×` be the reshaping function defined by
S(v)i,j = v(i−1)`+j for i = 1, . . . , L and j = 1, . . . , `. Then
S is an invertible linear function.

Let θ̄ = S−1(Θ̄) be the unknown parameters and let K be
a compact convex subset of Rm, containing θ̄. We assume
that K is known. Let D be the diameter of K.

Now let X = Rn × K be the closed convex subset of
Rn+m containing the combined state zt = [x>t θ

>
t ]>, and

assume that θt has dynamics of the form

dθt = R(zt) dt+Gθ dwθ
t − vθt dµθ(t) , (13)

where R : X → Rm,wθ
t ∈ Rm is standard Brownian motion

with invertible coefficient matrix Gθ ∈ Rm×m, and ψθt =
−
∫ t

0
vθs dµθ(s) is a bounded variation reflection process that

enforces θt ∈ K for all t ≥ 0 whenever θ0 ∈ K. Here we
assume that the reflections are computed with respect to the
standard Euclidean inner product for simplicity.

Under any norm of the form ‖z‖2 = x>Px + θ>θ, the
joint dynamics defined by (12) and (13) define a special case
of the reflected stochastic differential equation (2). Indeed, if
z> = [x>, θ>], then every element of NX (z) has the form
v> = [0>, (vθ)>], where vθ ∈ NK(θ) and NK(θ) is defined
with respect to the Euclidean inner product.

Remark 1: Our parameter tuning rule from (13) differs
from typical methods from adaptive control in how it forces
θt to remain in the constraint set, K. Indeed, our method
uses reflection processes, which can be approximated in
discrete time by convex projections. For simple sets such
as Euclidean balls and boxes, the convex projections have
simple analytic formulas. More generally, for any convex
set, the convex projection can be computed via optimization.
In contrast, the parameters of adaptive control laws are
commonly constrained using specialized projection operators
that are designed for specific classes of convex sets [1]–[4].

B. Lyapunov-Based Adaptation

Here we follow a Lyapunov-based design procedure to
design the update rule, (13), similar to the method from
[1]. The main differences are that we examine stochastic
problems and the constraints are enforced by reflection.

First we construct the Lyapunov function candidate. Fix a
positive definite Q ∈ Rn×n. Then since A is Hurwitz, there
is a unique positive definite P such that

A>P + P A = −Q.

For z> = [x>, θ>], we define the Lyapunov function
candidate by:

V(z) = x>Px+ (θ − θ̄)>(θ − θ̄) + 1. (14)

Define a norm over Rn+m by ‖z‖2 = x>Px+ θ>θ.
Theorem 1 requires that the Lyapunov function be a

monotonic function of a norm. This could be attained using
the affine coordinate transformation ẑ> = [x>, (θ− θ̄)>]. In
that case we can set V̂(ẑ) = V(z) = ‖ẑ‖2+1. In the analysis
below, we will work in the original coordinates.

To derive the required decrease condition, we use Itô’s
formula:

dV(zt) = ∇xV>dxt +
1

2
dx>t (∇2

x V) dxt

+∇θV>dθt +
1

2
dθ>t (∇2

θ V) dθt

= 2x>t P
>dxt + dx>t P dxt

+ 2 (θt − θ̄)>dθt + dθ>t dθt
= x>t

(
A>P + PA

)
xt dt

− 2x>t P B(Θt − Θ̄)>Λ(xt) dt+ 2x>t P Gx dwx
t

+ dx>t P dxt + 2 tr
(
(Θt − Θ̄)>dΘt

)
+ dθ>t dθt

= −x>t Qxt dt

+ 2 tr
(
(Θt − Θ̄)>(dΘt − Λ(xt)x

>
t P B dt)

)
+ tr(G>x P Gx) dt+ dθ>t dθ̂t + 2x>t P Gx dwx

t ,
(15)

where the third equality uses symmetry of P and that

2x>t P
>dxt = x>t P

>dxt + dx>t P xt ,

and the fourth equality uses the definition of Q,P . Addition-
ally, is uses the fact that

x>t P B(Θt − Θ̄)>Λ(xt) = tr
(
(Θt − Θ̄)>Λ(xt)x

>
t P B

)
,

and the Itô rule dwx
t (dwx

t )> = dt In.
By examining the second term in (15), we see that the

Λ(xt)x
>
t P B dt term is canceled if R in (13) is defined as

R(zt) = S−1
(
Λ(xt)x

>
t P B

)
, (16)

where S−1 is the inverse shaping function.
Plugging (13) into (15), as dΘt = S(dθt), then gives

dV = −x>t Qxt dt

+ 2 tr
(
(Θt − Θ̄)>

(
S(Gθ dwθ

t )− S(vθt dµθ(t))
))

+ tr(G>x P Gx) dt+ tr(G>θ Gθ) dt+ 2x>t P Gx dwx
t

=
(
− x>t Qxt + tr(G>x P Gx) + tr(G>θ Gθ)

)
dt

+ 2x>t P Gx dwx
t + 2 (θt − θ̄)>Gθ dwθ

t

− 2 (θt − θ̄)>vθt dµθ(t) , (17)

where again we use that dwθ
t (dwθ

t )> = dt Im.



Now since vθt ∈ NK(θt) and µθ̂ is a nonnegative measure,
(1) implies

−(θt − θ̄)>vθt dµθ(t) ≤ 0 .

Therefore, the generator of the Lyapunov function V(zt)
satisfies

AV(z) ≤
(
− x>Qx+ tr(G>x P Gx) + tr(G>θ Gθ)

)
. (18)

Now using standard quadratic form bounds, followed by the
diameter condition on K gives:

x>Qx ≥ λmin(Q)

λmax(P )
x>Px

≥ λmin(Q)

λmax(P )
V(z)− λmin(Q)

λmax(P )
(D2 + 1) .

Here λmin(Q) is the minimum eigenvalue of Q and λmax(P )
is the maximum eigenvalue of P . Plugging this bound into
(18) shows V satisfies (4) with

C = tr(G>x P Gx) + tr(G>θ Gθ) +
λmin(Q)

λmax(P )
(D2 + 1)

λ =
λmin(Q)

λmax(P )
.

In particular, V satisfies all of the required conditions to
apply the general theory from Section III.

C. One-Sided Growth for Adaptive Regulation

The final task needed to apply Theorem 1 to the adaptive
regulation problem is ensuring that the one-sided growth
condition from (3) holds. Note that the combination of (12),
(13), (16) leads to a special case of (2) with:

H(zt) =

[
Axt +B

(
Θ̄−Θt)

>Λ(xt)
)

S−1
(
Λ(xt)x

>
t PB

) ]

G =

[
Gx 0
0 Gθ

]
, vt dµt =

[
0

vθt dµ(t)θ

]
.

Set z> = [x>, θ>] and z̃> = [x̃>, θ̃>]. Direct calculation
using the specialized inner product shows that

〈z − z̃,H(z)−H(z̃)〉
= (x− x̃)>P A (x− x̃)

− (x− x̃)>P B (Θ− Θ̄)>Λ(x)

+ (x− x̃)>P B (Θ̃− Θ̄)>Λ(x̃)

+ tr
(

(Θ− Θ̃)>(Λ(x)x> − Λ(x̃)x̃>
)
PB

)
= −1

2
(x− x̃)>Qx (x− x̃)

− tr
(

(Θ− Θ̄)>Λ(x)(x− x̃)>P B
)

+ tr
(

(Θ̃− Θ̄)>Λ(x̃)(x− x̃)>P B
)

+ tr
(

(Θ− Θ̃)>(Λ(x)x> − Λ(x̃)x̃>
)
PB

)

= −1

2
(x− x̃)>Q (x− x̃)

−
���������
tr
(

Θ>Λ(x)x>P B
)

+ tr
(

Θ>Λ(x)x̃>P B
)

+ tr
(

Θ̄>Λ(x)x>P B
)
− tr

(
Θ̄>Λ(x)x̃>P B

)
+ tr

(
Θ̃>Λ(x̃)x>P B

)
−
���������
tr
(

Θ̃>Λ(x̃)x̃>P B
)

− tr
(

Θ̄>Λ(x̃)x>P B
)

+ tr
(

Θ̄>Λ(x̃)x̃>P B
)

+
���������
tr
(

Θ>Λ(x)x>P B
)
− tr

(
Θ>Λ(x̃)x̃>P B

)
− tr

(
Θ̃>Λ(x)x>P B

)
+
���������
tr
(

Θ̃>Λ(x̃)x̃>P B
)

≤ tr
(

Θ>Λ(x)x̃>P B
)

+ tr
(

Θ̄>Λ(x)x>P B
)

− tr
(

Θ̄>Λ(x)x̃>P B
)

+ tr
(

Θ̃>Λ(x̃)x>P B
)

+ tr
(

Θ̄>Λ(x̃)x̃>P B
)
− tr

(
Θ̄>Λ(x̃)x>P B

)
− tr

(
Θ>Λ(x̃)x̃>P B

)
− tr

(
Θ̃>Λ(x)x>P B

)
= −x>P B (Θ̃− Θ̄)>(Λ(x)− Λ(x̃)) (19)

+ x̃>P B (Θ− Θ̄)>(Λ(x)− Λ(x̃)),

where we use the fact that a>b = tr(b a>) holds for any two
equal length vectors a, b, and in the last inequality we drop
the nonpositive − 1

2 (x− x̃)>Q (x− x̃) term.
Set

y = P B (Θ− Θ̄)>(Λ(x)− Λ(x̃))

ỹ = P B (Θ̃− Θ̄)>(Λ(x)− Λ(x̃)).

Then note that

‖y − ỹ‖2 = ‖PB(Θ− Θ̃)>(Λ(x)− Λ(x̃))‖2
≤ ‖PB‖2‖Θ− Θ̃‖2 L‖x− x̃‖2
≤ ‖PB‖2‖Θ− Θ̃‖F L‖x− x̃‖2
≤ ‖PB‖2DL‖x− x̃‖2 .

Here ‖ · ‖2 applied to matrices refers to the induced 2-norm.
Then the first inequality uses submultiplicativity followed
by the Lipschitz assumption on Λ. Next we note that the
induced 2-norm is bounded above by the Frobenius norm,
and that ‖Θ − Θ̃‖F = ‖θ − θ̃‖2. So, the final inequality
follows from the diameter bound.

An analogous derivation shows that

‖ỹ‖2 ≤ ‖PB‖2DL‖x− x̃‖2.

Now the right side of (19) can be upper bounded by:

−x>ỹ + x̃>y = (x̃− x)>ỹ + x̃>(y − ỹ)

≤ ‖x̃− x‖2‖ỹ‖2 + ‖x̃‖2‖y − ỹ‖2
≤ ‖PB‖2DL

(
‖x− x̃‖22 + ‖x̃‖2‖x− x̃‖2

)
.

Now using the bound ‖x‖2 ≤ 1√
λmin(P )

‖z‖ gives a special

case of (3) with κ(r) = α = ‖PB‖2DL
λmin(P ) .



The results are summarized in the following theorem:
Theorem 2: The controller ut = Θ>t Ψ(xt) with param-

eters by (13) and (16) drives the closed-loop system to a
unique stationary distribution. Convergence is exponential
with respect to total variation distance and W 2, with con-
vergence rates described by Theorem 1 and Corollary 1.

V. NUMERICAL RESULTS
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Fig. 2. Reflection Coupling. System states xt and x̃t of the reflection
coupling. The red line shows the coupling time τ .
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Fig. 3. Lyapunov Functions. Lyapunov functions V(zt) and V(z̃t) of
the reflection coupling. The red line shows the coupling time τ .

We simulate1 the plant system from Sec. 11.5 of [1], with
n = 4, ` = 2, N = 3, L = 7, and thus m = 14 (flattening
of Ω̄ and K̄). The G matrices were Gx = In and Gθ = Im.
The Euler method was run over time t ∈ [0, 50] seconds
and with timestep η = 0.001 seconds. The compact set K
was a separate 2 dimensional polygon applied to each row
of Θt (a parameter for each control input). For the N =
3 rows of Ωt (6 total parameters), the same polygon was
used, and is shown in Figure 4. Figure 2 shows the reflection
coupling of the system states xt and x̃t, and their coupling
time τ . Figure 3 shows the respective Lyapunov functions

1All code available at: https://github.com/tylerlekang/CDC2021
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Fig. 4. Convex Projection. Projection of each row of parameter estimates
Ωt and Ω̃t of the reflection coupling on the same polygon. Green and
yellow dots show initial, while cyan dots show final (coupled) points.

V(zt) and V(z̃t), also with the coupling time. Figure 4 shows
the results of the convex projection on the polygon for each
2-dimensional space corresponding to a row of Ωt and Ω̃t.

VI. CONCLUSION

A. Discussion on Practical Applications

In regards to practical application of the results, the
authors would like to highlight two key factors: 1) the
flexibility afforded by the projection method in the various
geometries that can constrain the parameter estimates, as an
improvement over existing methods, and 2) opening the door
for analysis of Langevin Algorithms on more general state
spaces (see [26]).

B. Closing Remarks

In this paper we introduced a novel extension of contrac-
tion methods for SDEs which enables restrictions to closed
convex domains. We utilized this theory to prove conver-
gence for stochastic versions of adaptive controllers from
[1]. Future work includes expanding the class of systems for
which this theory holds, including exogenous input tracking.
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APPENDIX I
PROOF OF THEOREM 1

Many of the arguments are similar to those of [20].
We give terse explanations of these, and then highlight the
differences.

The main idea is to define an explicit coupling between xt
and yt and show that eatρ(xt,yt) is a supermartingale under
this coupling. Then the definition of Wρ from (7) followed
by the supermartingale property show that:

Wρ(Pt,Qt) ≤ E[ρ(xt,yt)] ≤ e−atE[ρ(x0,y0)].

The final bound from the theorem follows by taking an
optimal coupling for P0 and Q0. This optimal coupling exists
by Theorem 4.1 of [25].

Showing That ρ is a Metric

First note that

[γV (x) + γV (y) + V (x) ∨ φ(M) + V (y) ∨ φ(M)]I(x 6= y)

is a metric since V (x) ≥ 0 and φ(M) > 0. In particular, it
is a weighted version of the Hamming metric.

Now since the sum of metrics is again a metric, it suffices
to show that f(‖x−y‖) is a metric. This holds provided that
f is concave, with f ′(0) > 0 and f(0) = 0. See [19], [20]
for details.

To this end, it suffices to show that f(0) = 0, f is
monotonically increasing, and f(a + b) ≤ f(a) + f(b) for
any a, b ≥ 0. The property f(0) = 0 is immediate from (9g).



Monotonicity follows because ϕ(r) > 0 and g(r) ≥ 1/2
by construction. In particular, we get concavity since for
r ∈ (0,∞) \ {R1, R2} it holds that

f ′′(r) = −h′(r)f ′(r)− ξ

4
I(r < R1)− β

4
Φ(r)I(r < R2).

(20)
In particular f ′′(r) ≤ 0, so that f ′ is monotonically decreas-
ing. The triangle inequality property then follows because

f(a+ b) = f(a) +

∫ a+b

a

f ′(s)ds

≤ f(a) +

∫ b

0

f ′(s)ds = f(a) + f(b).

Reflection Coupling

The key approach from [20] is to create an explicit
coupling between xt and yt and then bound E[ρ(xt,yt)].
By the definition of the Wasserstein distance from (7),
Wρ(Pt,Qt) ≤ E[ρ(xt,yt)]. The specific coupling is known
as a reflection coupling [27].

To define the reflection coupling, let τ be coupling time:

τ = inf{t|xt = yt}.

Let ut = (xt − yt)/‖xt − yt‖ and let u?t be its dual vector
so that ‖ut‖2 = u?tut. The reflection coupling is given by
the following definitions of xt and yt:

dxt = H(xt)dt+Gdwt − vxt dµx(t)

dyt = H(yt)dt+ (In − 2utu
?
t I(t < τ ))Gdwt − vyt dµyt (t).

Here −
∫ t

0
vxs dµx(s) and −

∫ t
0
vysdµy(s) are the unique

bounded-variation reflection processes that ensure that xt
and yt remain in X .

Note that xt = yt for all t ≥ τ .
Remark 2: Unfortunately, “reflection” has two unrelated

meanings in this setup: 1) reflecting the processes to remain
within X and 2) reflecting the Brownian motion via In −
2utu

?
t to couple xt and yt.

The Supermartingale Property

Here we show that eatρ(xt,yt) is a supermartingale. This
is an exercise in non-smooth Itô calculus for continuous
semimartingales. A good reference is Chapter 29 of [28].
In the discussion below, mt will denote a local martingale.
We use this notation in several places to denote different
processes. The specific value of mt of will not matter, since
it will have zero mean.

Let zt = xt−yt and rt = ‖zt‖. We will evaluate drt via
Itô’s formula when rt > 0. (Note that rt > 0 if and only
if t < τ .) The method is similar to the proof of Theorem
2.1 in [20], but here extra reflection terms, −vxt dµx(t) and
−vyt dµy(t), appear.

For any z ∈ Rn, let u = z/‖z‖. Then we have the Taylor
expansion:

‖z + δ‖ = ‖z‖+ 〈u, δ〉+
1

2‖z‖
〈(In − uu?)δ, δ〉+ o(‖δ‖2).

Itô’s formula for continuous-semimartingales gives

drt = 〈ut,H(xt)−H(yt)〉dt+〈ut,vyt dµy(t)−vxt dµx(t)〉

+
1

2‖zt‖
tr ((In − utu?t )4utu?tGG?utu?t ) dt+2〈ut, Gdwt〉.

A significantly simpler upper bound on drt can be ob-
tained. Recall that ut = (xt−yt)/‖zt‖, vxt ∈ NX (xt), and
vyt ∈ NX (yt). It follows from the definition of the normal
cone that 〈ut,vyt 〉 ≤ 0 and −〈ut,vxt 〉 ≤ 0. Since µx and µy

are non-negative measures, it follows that the corresponding
terms can be bounded above by 0. Furthermore, the trace
term vanishes, thus giving:

drt ≤ 〈ut,H(xt)−H(yt)〉dt+ dmt. (21)

Recall that mt denotes a zero-mean local martingale.
Now we aim to bound df(rt). This part is similar to the

analysis from [20]. The main distinction is that [20] examines
the special case of G = In, while the more general case
leads to slightly more complex formulas. We extend f to the
entire real line by setting f(r) = r for r ≤ 0. Note that f is
a non-smooth concave function which is left-differentiable
everywhere. Denote the left-derivative by f ′−(r). Let Lrt
denote the right-continuous local time of rt. Then Theorem
29.5 of [28] states that

f(rt)− f(r0) =

∫ t

0

f ′−(rs)drs +
1

2

∫ ∞
−∞

Lrtdf
′
−(r), (22)

where the integral on the right is a Stieltjes integral. (Specif-
ically, it is an integral with respect to the signed measure ν
defined by ν([a, b)) = f ′−(b)− f ′−(a) for a < b.)

Theorem 29.5 of [28] also states that for any measurable
function b(r), we have∫ t

0

b(rs)d[r]s =

∫ ∞
−∞

b(r)Lrtdr, (23)

almost surely. Here [r]t = 4
∫ t

0
‖G?us‖2ds is the quadratic

variation. Since G is assumed to be invertible, it follows
that 4σmin(G)2t ≤ [r]t ≤ 4‖G‖22t, where σmin(G) > 0 is
the smallest singular value of G.

Note that f is twice continuously differentiable except at
{R1, R2}. For compact notation, set ζ = 4σmin(G)2. Then
(23) implies that rt spends zero time at {R1, R2} almost
surely since:∫ t

0

I(rs ∈ {R1, R2})ds ≤ ζ−1

∫ t

0

I(rs ∈ {R1, R2})d[r]s

= ζ−1

∫ ∞
−∞

I(r ∈ {R1, R2})Lrtdr = 0. (24)

The last equality follows because Lrt is right continuous in
r. More generally, this argument shows that rt spends zero
time in any finite collection of points.

The local time is non-negative, and the measure defined
by ν([a, b)) = f ′−(b)− f ′−(a) is non-positive. Thus, we get



the following inequalities:∫ ∞
−∞

Lrtdf
′
−(r) ≤

∫ ∞
−∞

I(r /∈ {R1, R2})Lrtdf ′−(r)

=

∫ ∞
−∞

I(r /∈ {R1, R2})f ′′(r)Lrtdr

=

∫ t

0

I(rs /∈ {R1, R2})f ′′(rs)d[r]s

≤ ζ
∫ t

0

f ′′(rs)ds. (25)

The last inequality follows from the bounds on the quadratic
variation, non-negativity of f ′′ and the fact that rs spends
zero time in {R1, R2} almost surely.

The preceding argument then implies that for almost all
t ∈ [0, τ ), the following holds almost surely:

df(rt)

≤ [f ′(rt)〈ut,H(xt)−H(yt)〉+
1

2
ζf ′′(rt)]dt+ dmt

≤ [f ′(rt)(κ(r)r + α(‖xt‖+ ‖yt‖) +
1

2
ζf ′′(rt)]dt+ dmt

≤ [f ′(rt)α(‖xt‖+ ‖yt‖ − 2M)

−ξζ
8
I(r < R1)− βζ

8
f(r)I(r < R2)

]
dt+ dmt.

The first inequality combined (21), (22), and (25). The
second inequality uses the one-sided growth bound (3). The
third inequality uses (20), combined with the following facts,
which hold by construction:

f(r) ≤ Φ(r)

h′(r) =
2

ζ
(rκ(r) + 2αM) .

a ≤ βζ/8 = βσmin(G)/2.

The fact that f(r) ≤ Φ(r) can be deduced from the
definitions of Φ and f from (9), since g(r) ∈ [1/2, 1].

Using the Lyapunov assumption, we have

dV(xt) ≤ (C − λV(xt))dt+ dmt

dV(yt) ≤ (C − λV(yt))dt+ dmt.

Now, we wish to bound d(V(xt) ∨ φ(M)). Recall that
V(x) = φ(‖x‖) and φ(r) is strictly monotonically increas-
ing. We will follow a similar strategy as used to bound
df(rt). For compact notation, set Vt = V(xt), let L̂rt
be the right-continuous local time of Vt, and let F (r) =
max{r, φ(M)}. Note that F is convex and smooth for r 6=
φ(M). Furthermore, (24) implies that rt spends zero time at
M , and thus Vt spends zero time at φ(M).

Note that the measure defined by ν̂([a, b)) = F ′−(b) −
F ′−(a) is a Dirac delta centered at φ(M). Thus, the calcula-
tion analogous to (22) gives

F (Vt)− F (V0) =

∫ t

0

F ′−(Vs)dVs +
1

2
L̂
φ(M)
t .

Note that the local time, Lφ(M)
t only changes at the times

when Vt = φ(M). See [28]. Indeed, the local time is defined

by:

L̂
φ(M)
t = |Vt − φ(M)| − |V0 − φ(M)|

−
∫ t

0

(I(Vs > φ(M))− I(Vs ≤ φ(M))) dVs

Thus, the local time remains unchanged on intervals in which
Vt > φ(M) or Vt < φ(M). Then, since the amount of time
Vt spends at φ(M) is zero almost surely, we have that for
almost all t < τ :

dF (Vt) = I(Vt > φ(M))dVt
= I(‖xt‖ > M)dV(xt)

≤ I(‖xt‖ > M)(C − λV(xt)) + dmt

≤ −I(‖xt‖ > M)(α‖xt‖+ λV(xt)/2) + dmt.

The first inequality is due to the Lyapunov assumption, while
the second inequality follows from the assumption from (6).

Finally, all of the differentials can be combined to give for
almost all t < τ :

d(eatρ(xt,yt)) ≤ eat
[
af(rt)−

βζ

8
f(rt)I(rt < R2)+

f ′(rt)α(‖xt‖+ ‖yt‖ − 2M)− ξζ

8
I(rt < R1)

+γ(2C + (a− λ)V(xt) + (a− λ)V(yt))

+I(‖xt‖ > M)((a− λ/2)V(xt)− α‖xt‖)

+ I(‖xt‖ > M)((a− λ/2)V(xt)− α‖xt‖)
]
dt+ dmt.

Now we will explain why all of the positive terms inside the
brackets get canceled by an appropriate negative term.

Note that for rt < R2, the af(rt) term is canceled by
βζ
8 f(rt), since a ≤ βη/8 = βσmin(G)/2. When rt ≥
R2, Lemma 2.1 of [20] shows that af(rt) is canceled by
AV(xt) +AV(yt).

In this case, the triangle inequality implies that
2 max{‖xt‖, ‖yt‖} ≥ rt ≥M/2. Without loss of generality,
assume that ‖xt‖ ≥ ‖yt‖. Then a ≤ λ/2, combined with (6)
imply

γ(2C + (a− λ)V(xt) + (a− λ)V(yt))

≤ γ(2C − (λ/2)V(xt))

≤ −γ4C‖xt‖

≤ −ξσmin(G)2

2
rt

≤ −art

This cancels af(rt) since f(rt) ≤ rt.
Now consider the case that f ′(rt)α(‖xt‖+‖yt‖−2M) >

0. Then, since f ′(rt) ≥ 0, at least one of ‖xt‖ > M or
‖yt‖ > M must hold. If ‖xt‖ > M , then since f ′(rt) ≤ 1,
the corresponding term is canceled by

I(‖xt‖ > M)((a− λ/2)V(xt)− α‖xt‖) ≤ −α‖xt‖.

A similar cancellation occurs if ‖yt‖ > M .
The only remaining positive term is now γ2C =

ξσmin(G)2/2 = ξζ/8. In the case that rt < R1, this term



is canceled by −(ξζ/8)I(rt < R1). When rt ≥ R1, the
definition of R1 along with a ≤ λ/2 imply that

2C + (a− λ)V(xt) + (a− λ)V(yt)

≤ 2C − (λ/2)(V(xt) + V(yt)) ≤ 0.

Thus, this term is canceled as well.
We have shown that d(eatρ(xt,yt)) ≤ dmt.

Localization

The last step in proving the theorem requires ruling out
the possibility that E[eatρ(xt,yt)] = ∞. This is performed
in [20] by a localization argument using stopping times τk =
inf{t|‖rt‖ ≤ 1/k or max{‖xt‖, ‖yt‖} ≥ k} with τk → τ .
The argument works without change in this setting.


	I Introduction
	II Notation
	III Contraction for Reflected Stochastic Differential Equations
	III-A Problem Setup
	III-B Assumptions
	III-C Background on Wasserstein Distances
	III-D Main Contraction Result
	III-E Discussion

	IV Application to Adaptive Regulation
	IV-A Problem Setup
	IV-B Lyapunov-Based Adaptation
	IV-C One-Sided Growth for Adaptive Regulation

	V Numerical Results
	VI Conclusion
	VI-A Discussion on Practical Applications
	VI-B Closing Remarks

	Appendix I: Proof of Theorem 1

