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ABSTRACT

In this paper, a distributed learning leader-follower consensus protocol based on Gaussian process
regression for a class of nonlinear multi-agent systems with unknown dynamics is designed. We
propose a distributed learning approach to predict the residual dynamics for each agent. The stability
of the consensus protocol using the data-driven model of the dynamics is shown via Lyapunov analysis.
The followers ultimately synchronize to the leader with guaranteed error bounds by applying the
proposed control law with a high probability. The effectiveness and the applicability of the developed
protocol are demonstrated by simulation examples.

1 Introduction

Efficient control laws for nonlinear systems typically require precise knowledge of the system dynamics. This knowledge
is especially important for model-based control techniques such as feedback linearization, backstepping or model
predictive control [1–3]. Additionally, unknown interference also influences the stability of the control systems.
Therefore, data-driven control approaches that identify the unknown system model according to generated data have
received a lot of interest recently. In this paper we specifically consider Gaussian process regression (GPR), a data-driven
learning approach. It is a tool widely used for data-based control, especially in learning and modeling complex nonlinear
systems [4]. GPR provides several advantages: It provides uniform error bounds, which give the guarantees of safe
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control based on the data-driven model [5]. In comparison to neural networks (NN), GPR provides better results for
small training data sets. Another advantage is the flexibility coming with its nonparametric nature. Only minimal prior
knowledge is required [6]. Yet, still most studies on data-driven control based on GPR are committed to single systems.

Recently, the control of multi-agent systems (MAS) has received much attention, see e.g. [7–11]. Typically, in
these works the dynamics of MAS is assumed to be known. However, it is often challenging to obtain the accurate
dynamics and environmental disturbances that are added to the uncertainties of the system model. It is therefore of
practical significance, to resolve the control problem of MAS with unknown dynamics. A few works employ NNs to
approximate the unknown nonlinear function in MAS, see e.g. [12–14]. A drawback of this approach is that there is no
guaranteed bound of the approximation error. In addition, compared with the nonparametric nature of GPR, resolving
the optimization problem of the weight parameters in NN is time consuming.

A related field of research to our problem setting is the area of distributed learning algorithms, however, without
considering control. A GP decentralized data fusion algorithm is proposed in [15]. The design and evaluation of a
distributed method for exact GP inference presented in [16] achieves true model parallelism using simple, high-level
distributed computing frameworks. Under the collective online learning of GP framework [17], the online learning
algorithms can fuse and update online GP models efficiently with varying correlation structures. The communication-
aware GP algorithm allows a network of robots to collaboratively learn about the unknown functions with each other [18].
Very recently, a distributed model predictive control approach for MAS with GPR has been proposed [19]. However, the
work mainly focuses on the cooperative optimization problem. To the best of our knowledge, there exists no consensus
control approach with GPR that guarantees the convergence of tracking errors in unknown nonlinear MAS.

The main contribution of this paper is the design of a learning-based leader-follower consensus protocol for unknown
nonlinear MAS based on GPR. We propose a distributed non-parametric learning approach to model the unknown
residual nonlinear dynamics. Instead of learning individually in each follower, we design a novel distributed learning
approach based on GPR for the MAS, where the followers share the information of prediction and then aggregate the
individual predictions of their neighbors. Using a suitable Lyapunov function, we prove that the multi-agent system is
stable and the proposed control law guarantees the followers ultimately synchronize to the leader in a guaranteed errors
bound with a high probability.

The remainder of this article is structured as follows: Preliminaries including the relevant notation and basic graph
theory are stated in Section II followed by the problem formulation in Section III. In Section IV the proposed consensus
tracking control protocol employing a distributed learning approach based on GPR is presented, and stability for
the resulting closed-loop MAS is proven. The numerical simulation demonstrates the effectiveness of the proposed
approach in Section V followed by a conclusion in Section VI.

2 Preliminaries

2.1 Notation

In this paper, we let Rm denote the m-dimensional Euclidean space and Rm×n denote the set of m× n real matrices,
respectively. The set of real number is denoted by R, R0,+/R+ indicates the set of real positive numbers with/without
zero. The transpose of a vector or matrix A is given by A>. The smallest/largest eigenvalues of a matrix A are denoted
as λmin(A) and λmax(A), respectively. The n× n identity matrix is In. The symbol ⊗ denotes the Kronecker product.
The Euclidean norm of a vector, and the matrix norm induced by the Euclidean norm, are denoted by ‖ · ‖. N (µ, σ2)
denotes a Gaussian distribution with mean µ and variance σ2.

2.2 Graph Theory

We model the interactions among the leader and n followers by an undirected graph, where the leader is denoted by
node 0 and the followers are denoted by nodes 1, . . . , n. We use G = (V,E,A) to describe the interactions among
the n follower agents with node set V = {v1, · · · , vn}, edge set E ⊆ V × V and adjacency matrix A = {aij}. An
ordered edge set of G is eij = (vi, vj). The adjacency matrix A = {aij} is the n × n matrix given by aij = 1, if
eij ∈ E and aij = 0, otherwise. We assume that aii = 0, i.e. graph G does not contain self-loops. For an undirected
graph, eij ∈ E ⇔ eji ∈ E and aij = aji. Diagonal matrix D = diag {d11, d22, . . . dnn} is the degree matrix of G,
where the element of dii =

∑n
j=1 aij . The Laplacian matrix of the graph G is defined as L = D −A. The graph for

all the leader-follower agents is denoted as Ḡ = (V̄ , Ē, Ā) with the node set V̄ = V ∪ {0}. We use a diagonal matrix
B = diag {b11, b22, . . . bnn} to describe the connection between the i-th agent and the leader. The entry bii = 1 if the
i-th agent connects to the leader and bii = 0 otherwise.
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Lemma 1 ( [20]) Let L = (lij) ∈ Rn×n be a Laplacian matrix of a connected undirected graph. Then the matrix

L̃ =

l11 + b11 · · · l1n
...

. . .
...

ln1 · · · lnn + bnn


is positive definite, if there exists an i such that bii > 0.

3 Problem Formulation

In this paper, we consider a nonlinear MAS, which consists of n homogeneous followers and one virtual leader. The
dynamics of the i-th follower is given by

ẋi = f (xi) + ui + h (xi) , i = 1, 2, . . . , n, (1)

where xi = [xi1, . . . , xim]
> ∈ X in a compact set X ⊂ Rm represents the state vector of the i-th follower, ui represents

the input of the i-th follower, f (xi) : X→ Rm represents the unknown dynamics of the i-th follower, h (xi) : X→ Rm
is an unknown disturbance.

Remark 1 The unknown functions f(·) and h(·) are not merged together on purpose as it allows to extend the proposed
approach straightforwardly to the case of partially unknown dynamics.

Assumption 1 The unknown nonlinear functions f (·) and h (·) are globally bounded and continuously differentiable.

Differentiability is a natural assumption for many physical systems. Additionally, bounded functions f (·) and h (·)
would be automatically guaranteed (due to the differentiability) if the set X was bounded [6].

The dynamics of the virtual leader is given by

ẋl = fl (xl, t) , (2)

where xl ∈ X represents the state vector of the virtual leader, and fl (xl, t) : X→ Rm represents the known dynamics
of the leader.

Assumption 2 The nonlinear function fl (xl, t) of the leader dynamic is a bounded and continuous function. There
exists a positive constant f̄l satisfying ‖fl (xl, t)‖ < f̄l, for all t.

The nonlinear function fl (xl, t) represents the dynamics of the leader (to be tracked by the followers), it is therefore
reasonable to assume it to be continuous and bounded.

We define the tracking error between the i-th follower and the leader to be

ei = xi − xl. (3)

From (1) and (2), the error dynamics is obtained as follows

ėi = f (xi) + h (xi)− fl (xl, t) + ui. (4)

Similarly, for each agent, we define the consensus error to be

ξi =

n∑
j=1

aij (xi − xj) + bii (xi − xl)

=

n∑
j=1

aij (ei − ej) + biiei,

(5)

where aij is the ij-th entry of the adjacency matrix AF of the communciation graph among the followers, and bii is the
ii-th entry of the diagonal matrix B. The equality bii = 1 means that the leader shares its state information with the i-th
follower.

The MAS (1) and (2) is to be interconnected by a distributed protocol of the form

ui = −kiξi − µ̃i (xi) , i = 1, . . . , n, (6)

where ki are control gains to be designed, and µ̃i are predictions of the unknown dynamics τ (xi) = f (xi) + h (xi), to
be determined later.

3
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Assumption 3 The communication graph G among the followers is assumed to be a connected undirected graph, and
the leader is assumed to share its state information with at least one of the followers.

Definition 1 (Practical consensus) The consensus protocol (6) is said to achieve practical consensus for the leader-
follower MAS (1) and (2) if the states of the leader and the followers satisfy:

lim
t→∞

‖xi(t)− xl(t)‖ ≤ δ, i = 1, . . . , n,

where δ is a small but positive constant.

Remark 2 Practical consensus indicates that the leader-follower consensus error lies within an interval, i.e. zero.

The objective of this paper is to design distributed protocols of the form (6) such that practical consensus is achieved,
i.e., the tracking error (3) converges to a small neighborhoods of zero, for all i = 1, . . . , n.

Note that the control objective can also be seen as a tracking control problem, so in the remainder of the paper the
meaning of agents and followers is synonymous.

4 Distributed Learning Consensus Protocol Design and Analysis

In this section, we show how to design distributed learning leader-follower consensus protocols based on GPR, such that
the tracking consensus problem is solved. Firstly, GPR is introduced (Sec. 4.1); then a distributed learning approach
based on GPR is proposed in Sec. 4.2; Sec. 4.3 finally analyzes the stability of the system.

4.1 Gaussian Process Regression

The Gaussian process (GP) is a stochastic process that assigns a joint Gaussian distribution to any finite subset
{x1,x2, . . . ,xM} ⊂ X in a continuous domain [21]. A GP can be interpreted as a ‘distribution over functions’ and
written

f (x) ∼ GP (m (x) , k (x,x′)) (7)

where, m (x) : X→ R is the prior mean function and k (x,x′) : X× X→ R is the covariance function. m(·) can be
used to incorporate a prior model, k(·, ·) encodes abstract concepts such as smoothness, periodicity, etc. In this paper,
the covariance function is typically chosen as the squared exponential kernel

k (x,x′) = σ2
r exp

(
−1

2

n∑
i

di (xi − x′i)

)
, (8)

where σ2
r ∈ R0,+, di ∈ R+.

In order to illustrate the GPR, we assume a training data set D = {X,Y } consisting of training inputs X ={
x(1),x(2), . . .x(M)

}
∈ Rm×M and training outputs Y =

{
y(1), y(2), . . . , y(M)

}
∈ RM , which consists of noisy

observations y(i) = f
(
x(i)

)
+ ς , where i = 1, . . . ,M , of an unknown function f(·) perturbed by Gaussian noise,

ς ∼ N
(
0, σ2

o

)
∈ R. The evaluations of y at a given test input x ∈ Rn is again a Gaussian distribution with the posterior

mean and variance

µ (x,D) = k> (x)
(
K (X) + Inσ

2
o

)−1
Y , (9)

σ2 (x,D) = k (x,x)−k>(x)
(
K (X)+Inσ

2
o

)−1
k (x) , (10)

where the elements of k (x) ∈ Rm and K(X) ∈ Rm×m are defined through ki(x) = k(x,X(i)) and Kii′ =

k(X(i),X(i′)), respectively.

In order to ensure a posterior variance function which captures the epistemic uncertainty properly, we assume a
well-calibrated prior distribution:

Assumption 4 ( [5] ) Assume the nonlinear function f (x) with Lipschitz constant Lf to be a sample obtained from a
Gaussian process GP (0, k (x,x′)) with Lipschitz continuous kernel k : Rm × Rm → R0,+.

4
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4.2 Distributed Learning based on GPR

Consider the nonlinear MAS in (1) with unknown dynamics and unknown disturbance. The unknown function of the
i-th agent to be predicted based on GPR can be written as

τ (xi) = f (xi) + h (xi) , i = 1, 2, . . . , n. (11)

Remark 3 If prior knowledge on the dynamics of agents is available, (cf. Remark 1) then, instead of (11), the following
unknown function

τ (xi) = f (xi)− f̂ (xi) + h (xi)

for i = 1, . . . , n is considered, where f̂ (xi) represents the known part of the dynamics. Note that f̂ (·) does not need to
be identical to the true dynamics f (·), but just a globally bounded term. Accordingly, instead of the protocol (6), (cf.
Remark 1), the distributed protocol is then given by

ui = −kiξi − µ̃i (xi)− f̂ (xi) , i = 1, . . . , n.

The straightforward approach to individually predict the unknown function (11) is that each agent provides the posterior
mean and variance of the associated GPs based on its own local data. However, in order to utilize the characteristics of
information exchange in MAS, each agent’s posterior knowledge is shared with its neighboring agents. This means that
each agent not only exchanges state information, but also exchanges the prediction of its own GPs.

In [22], the distributed Gaussian process (DGP) technique indeed exchanges the predictions of the agents. However, a
central entity is required to distribute the final prediction. This means that the DGP approach is not a fully distributed
learning approach. To overcome this drawback, we propose a fully distributed learning approach based on GPR. The
prediction of each agent is computed by exchanging its own prediction with that of the neighboring agents. Considering
the unknown function (11) of each agent, GPs are trained with Mi data pairs of set Di = {Xi,Yi}Mi , i = 1, 2, . . . , n.
The agent’s posterior mean and variance of the multi-variable GP trained with data set Di are denoted as µi (x,Di) and
σ2
i (x,Di), respectively. Thus the prediction of the k-th dimensional unknown function, k = 1, . . . ,m, is calculated as

follows

µ̃ik (xi)=
σ−2
ik (xi)µik (xi)+

∑n
j=1 aijσ

−2
jk (xi)µjk (xi)

σ̃−2
ik (xi)

=

n∑
j=1

wjkik (xi)µjk (xi)

(12)

where σ̃−2
ik (xi)=σ−2

ik (xi)+
∑n
j=1 aijσ

−2
jk (xi), µik (xi) is µik (τk | xi,Di) and σ−2

ik (xi) is σ−2
ik (τk | xi,Di) for short,

respectively. wjkik (xi) = aijσ
−2
jk (xi)σ̃

2
ik (xi) ∈ R0,+, for j = 1, . . . , n, and wikik (xi) = σ−2

ik (xi)σ̃
2
ik (xi) ∈ R0,+ for

i = 1, . . . , n. Note that
∑n
j=1 w

jk
ik (xi) = 1 for each agent i and the elements of the weighted adjacency matrix aij are

governing the information exchange between neighbors.

According to the proposed distributed learning approach, we now show the bounded error of the prediction µ̃ik
associated with the k-th dimensional unknown function for each agent i.

Lemma 2 For any compact set Ω ∈ Rm and a probability δ ∈ (0, 1), consider the unknown function (11) and GPs with
the training data set Dj = {Xj ,Yj}Mj containing Mj data pairs satisfying Assumption 4, ∀j = 1, 2, . . . , n. Moreover,
consider the distributed learning with GP method in (12) to predict the k-th dimensional of (11), k = 1, . . . ,m. Pick
ρ ∈ R+ and define

β(ρ, δ) = 2m log

(
rΩ
√
m

2ρ

)
+ 2 log(n)− 2 log(δ) (13)

γjk(ρ) = (Lf + Lµjk
)ρ+

√
β(ρ, δ)Lσ2

jk
ρ, (14)

where rΩ = maxx,x′∈Ω ‖x− x′‖, Lµjk
and Lσ2

jk
are the Lipschitz constants of the individual GP mean and variance

functions, respectively. Define the model error for the model estimate as ∆τ(xi) = ‖τ(xi)− µ̃(xi)‖, and its k-th

5
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element ∆τ(xi) is denoted as ∆τk(xi). Then for agent i, there holds that

P
{

∆τk(xi) = |τk(xi)− µ̃k(xi)|

≤
n∑
j=1

wjkik (xi)(
√
β(ρ, δ)σjk(xi)+γjk(ρ)),∀xi ∈ X

}
≥1−δ.

(15)

By recalling (12), it is straightforward to show that

|τik(xi)− µ̃ik(xi)| =

∣∣∣∣∣∣
n∑
j=1

wjkik (xi) (µjk(xi)− τik(xi))

∣∣∣∣∣∣
≤

n∑
j=1

wjkik (xi)|µjk(xi)− τik(xi)|,

(16)

where the equality in the first line is due to the fact that
∑n
j=1 w

jk
ik (xi) = 1, and the inequality in the second line

follows from the triangle inequality. Under Assumption 4 we can apply [5, Theorem 3.1] to the local models, such that
we have with probability of at least 1− δ/n

|τk(xi)− µjk(xi)| ≤
√
β(ρ, δ)σjk(xi) + γjk(ρ) (17)

for ρ ∈ R+ and β(ρ, δ) = 2 log(M(ρ,Ω)n/δ), where M(ρ,Ω) denotes the ρ-covering number of Ω. By overapproxi-
mating Ω through a hypercube with edge length rΩ, the covering number M(ρ,Ω) can be bounded by (rΩ

√
m/(2ρ))m

satisfying (13). Therefore, the joint probability over all agents yields the result in combination with the union bound.

4.3 Stability Analysis

In this subsection, we analyze the stability of MAS based on the proposed distributed protocol via Lyapunov analysis.
Before giving the main result in Theorem 1, we first present the following technical lemma.

Lemma 3 If there exists a positive definite matrix L̃ = L + B satisfying Lemma 1, the smooth scalar function
V = e>

[
L̃⊗ Im

]
e is bounded by

λmin

(
L̃−1

) n∑
i=1

‖ξi‖2 ≤ V ≤ λmax

(
L̃−1

) n∑
i=1

‖ξi‖2 , (18)

where e =
[
e>1 , e

>
2 , . . . , e

>
n

]>
.

Since L̃ is positive definite, it holds that L̃ L̃−1 = In. Then, the smooth scalar function V can be rewritten as

V = e>
(
L̃⊗ Im

)
e = e>

(
L̃L̃−1L̃⊗ Im

)
e (19)

Due to ξ(k) =
(
L̃⊗ Im

)
e(k), it holds that

V = ξ>
(
L̃−1 ⊗ Im

)
ξ, (20)

where ξ = [ξ>1 , . . . , ξ
>
n ]>. So we have

λmin

(
L̃−1

) n∑
i=1

‖ξi‖2 ≤ V ≤ λmax

(
L̃−1

) n∑
i=1

‖ξi‖2 .

Based on these lemmas, we are now in the position to state the main result of this paper.

Theorem 1 Consider a nonlinear MAS (1) with a virtual leader (2) under Assumptions 1-4. Then, for any ki > 0, the
distributed learning control law (6) employing predictions (12) based on the agent data sets Di, i = 1, . . . , n, achieves

6
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practical consensus, and, with probability (1− δ)m, δ ∈ (0, 1), the tracking error (3) converges to a ball centered at
the origin with the radius

r =

√
2ν

k∗λmin

(
L̃
) , (21)

where the parameters k∗ = min {k1, . . . , kn}, ν =
∑n
i=1

(
f̄2
l + ‖∆τ(xi)‖2

)
and the model error ∆τ(xi) is defined

in Lemma 2.

A Lyapunov candidate is chosen as

V =
1

2
e>
(
L̃⊗ Im

)
e, (22)

where the definition of L̃ is the same as Lemma 1 and the global tracking error e is defined in Lemma 3.

The time derivative of V (t) along (4) is

V̇ = e>
(
L̃⊗ Im

)
ė =

n∑
i=1

ξ>i ėi

=
n∑
i=1

ξ>i

(
f (xi) + ui + h (xi)− fl (xl, t)

)
.

(23)

Based on Assumption 2, V̇ can be rewritten as

V̇ ≤
n∑
i=1

{
ξ>i

(
f (xi) + ui + h (xi)

)
− f̄l ‖ξi‖

}
. (24)

Substituting the controller (6) into (24), we have

V̇ ≤
n∑
i=1

(
−kiξ>i ξi + ξ>i τi (xi)− ξ>i µ̃i (xi)− f̄l ‖ξi‖

)
. (25)

Combining the scalar case prediction error bound proposed in Lemma 2 and the full component case prediction error
bound proposed in [23] (Lemma 2), due to the m-dimensional unknown function (11) it is straightforward to show that
the overall upper bound for V̇ with probability at least (1− δ)m holds that

V̇ ≤ −
n∑
i=1

ki ‖ξi‖2 +

n∑
i=1

(
‖∆τ(xi)‖ − f̄l

)
‖ξi‖ . (26)

Applying the inequality v1 ‖x‖ ≤ v2
1/v2 + v2 ‖x‖2 /4 that holds ∀x ∈ Rm and v1, v2 ∈ R+, we have(

‖∆τ(xi)‖ − f̄l
)
‖ξi‖ ≤

‖∆τ(xi)‖2

ki
+
f̄2
l

ki
+
ki
2
‖ξi‖2 . (27)

With (27), equation (26) can be rewritten as

V̇ ≤ −1

2

n∑
i=1

ki ‖ξi‖2 +
ν

k∗
, (28)

with probability at least (1−δ)m, where ν=
∑n
i=1

(
f̄2
l +‖∆τ(xi)‖2

)
, k∗ = min {k1, . . . , kn}. According to Lemma 3

and (28), we have

P

{
V̇ ≤ −k∗λmin

(
L̃
)
‖e‖2 +

ν

k∗

}
≥ (1− δ)m.

We have used the fact that 1/λmax(L̃−1) = λmin(L̃). It then follows that, with probability (1− δ)m, δ ∈ (0, 1), the
tracking error (3) converges to a ball centered at the origin with radius:

r =

√
2ν

k∗λmin

(
L̃
) .

This completes the proof.

7
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Remark 4 By observing equation (21), the error bound is related to the learning performance (characterized by ν),
the control gain (characterized by k∗) and the connectivity of the network (characterized by λmin(L̃)). For control
systems with given control gains, we can reduce the tracking error by either improving the learning performance, or
increasing the network connectivity.

Remark 5 The result of Theorem 1 also holds analogously for the partial dynamics knowledge case by applying the
proposed controller (3) (cf. Remarks 1, 2 and 3).

5 Simulation

In this subsection comparative simulations are presented, which contains three different control protocols. The first
simulation is using a standard control protocol without GP learning, where the controller ui = −kiξi; the second one
with individual learning, which means each agent makes its own prediction of the GP independently with local training
data only; the third one with proposed distributed learning based on GPR in this paper. We consider four agents with
identical dynamics. To demonstrate the comparative simulations, we consider the following nonlinear agent dynamics

ẋi1 = 2xi2 sin (xi1) + ui1,

ẋi2 = xi1 cos
(
0.2x2

i2 + xi2
)

+ ui2,
(29)

where i = 1, . . . , 4.

The 400 training data pairs are equally distributed on the set [−2, 2]× [−2, 2]. To make four different training sets for
the four agents, we divide the training set directly into quarters for convenience. The initial positions of the four agents
are chosen randomly within the interval [−2, 2]. The trajectory of the virtual leader is given as follows

ẋl1(t) = sin(0.02πt),

ẋl2(t) = cos(0.02πt).
(30)

The environmental interference dynamics is chosen as

h1 (xi) = sin (xi2) ,

h2 (xi) = sin (xi1) .
(31)

The control gains are chosen to be ki = 2. Fig. 1 shows the connection relationship between the agents and the virtual
leader, which is chosen under Assumption 3. The diagonal matrix B = diag {1, 1, 0, 0, 0}, the adjacency matrix A and
matrix L̃ are given as follows

A =

0 0 1 0
0 0 1 1
1 1 0 0
0 1 0 0

 , L̃ =

 2 0 −1 0
0 3 −1 −1
−1 −1 2 0
0 −1 0 1

 .

0

1 2

3 4

Figure 1: The communication graph of the MAS

The examples show the tracking performance in three cases, which include the case without learning of the unknown
dunamics, with individual learning and with distributed learning based on GPR. Fig. 2 shows the accumulated tracking
errors of the MAS, which are defined as Ej =

∑4
i=1 |xi,j − xl|, where j = 1, 2 denotes the dimension of x, and

i = 1, . . . , 4 denotes the number of the agents. The tracking errors with the GP learning approaches are smaller than
without learning approach. The curves of the accumulated errors with distributed learning tend to zero and have the
smallest amplitudes, which show that MAS with distributed learning achieve the best tracking performance. To visually

8



A PREPRINT - MARCH 31, 2021

0 10 20 30 40 50 60 70 80 90 100
Time

-4

-2

0

2

4

6

E
1

Without GP learning
With individual learning
With distributed learning

0 10 20 30 40 50 60 70 80 90 100
Time

-4

-2

0

2

4

6

E
2

Without GP learning
With individual learning
With distributed learning

Figure 2: Accumulated errors of 4 agents curves for xi1 and xi2
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Figure 3: Three-dimensional trajectories of 4 agents with individual learning
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Figure 4: Three-dimensional trajectories of 4 agents with distributed learning based on GPR
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demonstrate the tracking performance, the three-dimensional plots of the motion curves of agents, which represent the
evolution of the states over time, are shown in Fig. 3 and Fig. 4, respectively. All four agents can follow the virtual
leader, however the tracking trajectories do not converge very well all the time in Fig. 3 compared to the approach with
distributed learning in Fig. 4.

6 Conclusions

In this paper, we have proposed a consensus control protocol with distributed learning based on GPR for an unknown
nonlinear MAS. We have first provided a distributed learning approach based on GPR to estimate the unknown agent
dynamics. Unlike the individual learning approach, each agent exchanges the posterior knowledge of its own GPs,
which overcomes the drawback of the centralized learning-based approach. Based on the estimated models, we then
have designed a distributed protocol which guarantees that the states of the agents track that of the leader and the
tracking error of the controlled MAS to converge to a ball centered at origin with a high probability. The radius of the
error ball depends on the control gains, the smallest eigenvalue of a matrix that involving the communication graph of
MAS and the learning performance.
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