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Abstract— The joint nonanticipative rate distortion function
(NRDF) for a tuple of random processes with individual fidelity
criteria is considered. Structural properties of optimal test
channel distributions are derived. Further, for the application
example of the joint NRDF of a tuple of jointly multivariate
Gaussian Markov processes with individual square-error fi-
delity criteria, a realization of the reproduction processes which
induces the optimal test channel distribution is derived, and
the corresponding joint NRDF is characterized. The analysis
of the simplest example, of a tuple of scalar correlated Markov
processes, illustrates many of the challenging aspects of such
problems.

I. INTRODUCTION

Presently of much interest in information theory and in
the theory of information transmission for control systems
applications, is the Gorbunov and Pinsker [1] nonanticipatory
epsilon entropy and message generation rates of a discrete-
time random process Xn 4= {X1, X2, . . . , Xn}, Xt(ω), t =
1, 2, . . . , n, ω ∈ Ω taking values in X, with joint probability
distribution PXn , subject to a fidelity criterion,

1

n
E
{
dn(Xn, Y n)

}
≤ ε, dn(xn, yn) ∈ [0,∞) (I.1)

of reconstructing Xn by another random process Y n
4
=

{Y1, Y2, . . . , Yn}, Yt(ω), t = 1, 2, . . . , n, ω ∈ Ω taking
values in Y ⊆ X. Nonanticipatory entropy is often described
under the designated name nonanticipative or sequential rate
distortion function (RDF) [2]–[6]. However, the name for
this quantity does alter the situation, that it corresponds to a
variant of Shannon’s [7] “rate of creating information with
respect to a fidelity”, often designated by the name rate
distortion function (RDF) [8]. Shannon’s RDF is the infor-
mation theoretic definition of the operational definition, “the
optimal performance theoretically attainable” (OPTA) (i.e.,
the infimum of rates of creating information) by noncausal
codes subject to a fidelity.

Gorbunov’s and Pinsker’s [1] nonanticipatory epsilon en-
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tropy of a process Xn with distribution PXn , is defined by

RXn(ε)
4
= inf

PXn,Y n

∫
log
( PY n,Xn

PY n ×PY n

)
PXn,Y n (I.2)

subject to the average disrortion (I.1) and (I.3)
causality, PY t|Xn = PY t|Xt , t = 1, . . . n (I.4)

where the infimum is taken over all joint distributions
PXn,Y n such that the X marginal distribution is the fixed
distribution PXn , and the fidelity and causality are satisfied.
Shannon’s RDF corresponds to RXn(ε) without the causality
restriction (I.4). PY n|Xn and PXn|Y n are known as, the
forward test channel and the backward test channel, respec-
tively, of reconstructing Xn by Y n subject to fidelity (I.1).
Over the years, RXn(ε) is applied in the following areas.
1) Quantification of the rate loss of the OPTA by causal

codes [9] and zero-delay codes [10], [11], with respect to
noncausal codes, for Gaussian Markov processes Xn with
square-error fidelity [3]. The construction of causal and
zero-delay codes [12], based on subtractive dither with
uniform scalar quantization (SDUSQ) [13].

2) Necessary and sufficient conditions to stabilize unstable
linear Gaussian control systems over finite rate, noise-
less or noisy, communications channels, and to design
controllers, encoders and decoders subject to finite rate
constraints [2], [14].

3) Synthesize recursive, causal filters of Gaussian Markov
processes subject to square-error fidelity [4], [6].

However, the complete characterization of the multivariate
Gaussian Markov process Xn with square-error fidelity, i.e.,
the specification of the realization of Y n and its structural
properties, which induces the optimal test channel, was
only recently completed in [15], although the problem was
posed and solved for the scalar Gaussian Markov source by
Gorbunov and Pinsker in [16].

In this paper we formulate and analyze the nonanticipatory
epsilon entropy, designated henceforth by the name joint
nonanticipative rate distortion function (NRDF), of a tuple
of processes (Xn

1 , X
n
2 ), when each process is assigned an

individual fidelity criterion, as shown in Fig. I.1.
Our interest in this problem is motivated by the classical

joint compression problem of a tuple of jointly independent
and identically distributed processes (Xn

1 , X
n
2 ) with individ-

ual fidelity criteria, introduced in [17]. As pointed out in
[17], contrary to the classical joint RDF of a tuple process,
viewed as a single process, Xn = (Xn

1 , X
n
2 ), with a single

fidelity criterion assigned to Xn, the classical joint RDF with

ar
X

iv
:2

10
3.

15
92

5v
1 

 [
cs

.I
T

] 
 2

9 
M

ar
 2

02
1



Source Encoder Decoder
(Xn

1 , X
n
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{
d1,n(Xn

1 , Y
n
1

}
≤ ∆1

Fig. I.1: Lossy Compression of correlated sources with
individual distortion criteria.

individual fidelity criteria aims at the design of encoders
with cooperation, and hence fundamentally different from
the former. Indeed, inherent in the optimal test channel
distribution is the encoder cooperation, which is absent in
the classical joint RDF with a single fidelity criterion. The
additional level of complexity of the encoder cooperation is
demonstrated in [17], through the calculation of the classical
joint RDF of a tuple of scalar, jointly independent and
identically distributed Gaussian RVs with individual square-
error distortion criteria. The recent treatment in [18], of
the classical joint RDF for a tuple of multivariate jointly
independent and identically distributed Gaussian processes
with individual square-error distortion criteria, demonstrated
additional challenges, which are due to the consideration
of the multivariate analog of [17], and which are absent
in the classical water-filling solution of the analogous RDF
with a single fidelity criterion. Another application of the
classical joint RDF of a tuple of processes with individual
fidelity criteria is the Gray and Wyner [19] source coding
for a simple network, where this joint RDF is needed to
characterize the rate region [20].

A. Problem Statement and Main Results

We consider a tuple of random processes Xn
i

4
=

{Xi,1, . . . , Xi,n}, i = 1, 2,

Xi,t : Ω→ Xi, t = 1, . . . , n, i = 1, 2 (I.5)

where Xi, i = 1, 2 are metric spaces, with corresponding
tuple of reproduction processes Y ni

4
= {Yi,1, . . . , Yi,n}, i =

1, 2,

Yi,t : Ω→ Yi, t = 1, . . . , n, i = 1, 2 (I.6)

where Yi ⊆ Xi, i = 1, 2. The reproduction tuple satisfies
two individual fidelity criteria of reconstructing Xn

i by Y ni ,
i = 1, 2, defined by the measurable functions di,n : Xni ×
Yni → [0,∞), i = 1, 2,

1

n
E
{
di,n(Xn

i , Y
n
i )
}
≤ ∆i, i = 1, 2, (I.7)

di,n(xni , x
n
i ) =

n∑
t=1

ρt(xt, yt), i = 1, 2. (I.8)

Given the fixed joint distribution PXn
1 ,X

n
2

of the tu-
ple (Xn

1 , X
n
2 ), we define the joint distribution of

(Xn
1 , X

n
2 , Y

n
1 , Y

n
2 ), using the forward PY n

1 ,Y
n
2 |Xn

1 ,X
n
2

and
backward PXn

1 ,X
n
2 |Y n

1 ,Y
n
2

test channel distributions by

PXn
1 ,X

n
2 ,Y

n
1 ,Y

n
2

=PY n
1 ,Y

n
2 |Xn

1 ,X
n
2
⊗PXn

1 ,X
n
2

(I.9)

=PXn
1 ,X

n
2 |Y n

1 ,Y
n
2
⊗PY n

1 ,Y
n
2

(I.10)

where ⊗ denotes the compound probability operator.
Let I(Xn

1 X
n
2 ;Y n1 , Y

n
2 ) denote the mutual information be-

tween the tuple (Xn
1 , X

n
2 ) and its reproduction tuple

(Y n1 , Y
n
2 ), defined by [21]

I(Xn
1 , X

n
2 ;Y n1 , Y

n
2 )
4
=

∫
log
( PXn

1 ,X
n
2 ,Y

n
1 ,Y

n
2

PXn
1 ,X

n
2
×PY n

1 ,Y
n
2

)
PXn

1 ,X
n
2 ,Y

n
1 ,Y

n
2
. (I.11)

Let QSXn
1 ,X

n
2

(∆1,∆2) denote the fidelity constraint set of the
two individual distortions, defined by

QSXn
1 ,X

n
2

(∆1,∆2)
4
=
{
PY n

1 ,Y
n
2 |Xn

1 ,X
n
2

∣∣∣ the Xn1 × Xn2−

marginal of the joint dist. (I.9) is PXn
1 ,X

n
2

, and
1

n
E
{
di,n(Xn

i , Y
n
i )
}
≤ ∆i, i = 1, 2

}
. (I.12)

The joint NRDF for the tuple (Xn
1 , X

n
2 ) with individual

fidelity criteria is defined by

RXn
1 ,X

n
2

(∆1,∆2)
4
= inf
QS

Xn
1 ,Xn

2
(∆1,∆2): (C) holds

{
I(Xn

1 , X
n
2 ;Y n1 , Y

n
2 )
}

(I.13)

where the infimum is taken over all joint distributions
PXn

1 ,X
n
2 ,Y

n
1 ,Y

n
2
∈ QSXn

1 ,X
n
2

(∆1,∆2) such that following
condition holds:

(C) for each t ∈ {1, . . . , n}, the process (Y t1 , Y
t
2 ) is con-

ditionally independent of (Xn
1,t+1, X

2
2,t+1) conditioned on

(Xt
1, X

t
2), that is,

PY t
1 ,Y

t
2 |Xn

1 ,X
n
2

= PY t
1 ,Y

t
2 |Xt

1,X
t
2
, t = 1, . . . , n− 1 (I.14)

equivalently expressed as a Markov chain (↔)

(Xn
1,t+1, X

n
2,t+1)↔ (Xt

1, X
t
2)↔ (Y t1 , Y

t
2 ), t = 1, . . . , n− 1.

Conditional independence (I.14) is a “causality condition” of
the reproduction distribution.
The main result of the first part of the paper, is

(R1) the structural properties of optimal test channel
distributions, and realizations of the reproduction processes.

In the second part of the paper, we analyze the joint
NRDF RXn

1 ,X
n
2

(∆1,∆2), for a tuple of jointly multivariate
Gaussian Markov processes (Xn

1 , X
n
2 ), and two square-error

distortion functions, defined by

Xi,t : Ω→ Xi
4
= Rpi , t = 1, . . . , n, (I.15)

PX1,t,X2,t|Xt−1
1 ,Xt−1

2
= PX1,t,X2,t|X1,t−1,X2,t−1

, (I.16)

(X1,t, X2,t) ∈ G(0, Q(X1,t,X2,t
)), (I.17)

Q(X1,t,X2,t)
4
= E

{(
X1,t

X2,t

)(
X1,t

X2,t

)T}
(I.18)

Yi,t : Ω→ Yi
4
= Rpi , i = 1, 2, (I.19)

di,n(xni , y
n
i ) =

1

n

n∑
t=1

||xi,t − yi,t||2Rpi , i = 1, 2. (I.20)



Here X ∈ G(0, QX) means X is a Gaussian RV, with zero
mean and covariance matrix QX � 0.
Our main contributions include,

(R2) realizations of optimal reproduction process
(Y n2 , Y

n
2 ), and its structural properties, and

(R3) characterization of joint NRDF RXn
1 ,X

n
2

(∆1,∆2).

II. JOINT NONANTICIPATIVE RDF WITH INDIVIDUAL
FIDELITY CRITERIA

A. Notation

R , (−∞,∞), Z 4
= {. . . ,−1, 0, 1, . . .}, Z0 ,

{0, 1, 2, . . .}, N , {1, 2, . . .}, Nn , {1, . . . , n}, n ∈ N.
For any matrix A ∈ Rp×m, (p,m) ∈ N × N, we denote its
transpose by AT, its pseudoinverse by A† ∈ Rm×p, and for
m = p, we denote its trace by tr(A). The n by n identity
(resp. zero) matrix is represented by In (resp. 0n). Sp×p+

denotes the set of symmetric positive semidefinite matrices
A ∈ Rp×p, and Sp×p++ its subset of positive definite matrices.
The statement A � B (resp. A � B) means that A − B is
symmetric positive semidefinite (resp. positive definite).
Denote an arbitrary set or space by U and the product space
formed by n ∈ N copies of it by Un 4= ×nt=1U. un ∈ Un

denotes the set of n−tuples un
4
= (u1, u2, . . . , un), where

uk ∈ U, k = 1, . . . , n are its coordinates.
Denote a probability space by (Ω,F ,P). For a sub-sigma-
field G ⊆ F , A ∈ F , we denote by P(A|G) =
P(A|G)(ω), ω ∈ Ω the conditional probability of A given
G. For a tuple of real-valued RVs (RV) X : Ω → X, Y :
Ω→ Y, where (X,B(X)), (Y,B(Y)) are measurable spaces,
we denote the measure (resp. joint distribution, if X,Y are
Euclidean spaces) induced by RVs (X,Y ) on X × Y by
P(dx, dy) (resp. PX,Y ), and their marginals on X and Y
by P(dx) and P(dy) (resp. PX and PY ), respectively. We
denote the conditional distribution of RV X conditioned on
Y by PX|Y or P(dx|y), if Y = y is fixed.
For a triple of real-valued RVs X : Ω→ X, Y : Ω→ Y, Z :
Ω→ Z, we say that RVs (Y, Z) are conditional independent
given RV X if PY,Z|X = PY |XPZ|X−a.s (almost surely)
or equivalently PZ|X,Y = PZ|X−a.s; the specification a.s
is often omitted. We often denote the above conditional
independence by the Markov chain (MC) Y ↔ X ↔ Z.
The conditional covariance of the two-component vector RV
X = (XT

1, X
T
2)T, Xi : Ω → Rpi , i = 1, 2 conditioned on the

two-component vector Y = (Y T
1 , Y

T
2 )T, Yi : Ω → Rpi , i =

1, 2 is denoted by Q(X1,X2)|Y
4
= cov

(
X,X

∣∣∣Y ) � 0, where

Q(X1,X2)|Y =

(
QX1|Y QX1,X2|Y
QT
X1,X2|Y QX2|Y

)
∈ R(p1+p2)×(p1+p2),

QX1,X2|Y
4
=cov

(
X1, X2

∣∣∣Y ).
(1)
=E

{(
X1 −E

{
X1

∣∣∣Y })(X2 −E
{
X2

∣∣∣Y })T}
=E
{
E1E

T
2

}
, Ei

4
= Xi −E

{
Xi

∣∣∣Y }, i = 1, 2

≡ΣE1,E2 (II.1)

and where (1) holds if (X1, X2, Y1, Y2) is jointly Gaussian.
Similarly for QXi|Y , i = 1, 2. Consequently, for jointly
Gaussian RVs (X1, X2, Y1, Y2), and the two-component vec-
tor RV E

4
= (ET

1, E
T
2)T, we have Q(X1,X2)|Y = Σ(E1,E2).

B. Equivalent Sequential Formula of Joint NRDF

First, we give the sequential equivalent of the joint NRDF
RXn

1 ,X
n
2

(∆1,∆2). We make use of the following lemma.

Lemma 1: [4], [6] Conditional independence conditions
The following statements are equivalent ∀n ∈ N.
MC1: PY n

1 ,Y
n
2 |Xn

1 ,X
n
2

= ⊗nt=1PY1,t,Y2,t|Y t−1
1 ,Y t−1

2 ,Xt
1,X

t
2
.

MC2: (Y1,t, Y2,t) ↔ (Xt
1, X

t
2, Y

t−1
1 , Y t−1

2 ) ↔
(Xn

1,t+1, X
n
2,t+1) forms a MC, for each t = 1, . . . , n−1.

MC3: (Y t1 , Y
t
2 ) ↔ (Xt

1, X
t
2) ↔ (X1,t+1, X2,t+1) forms a

MC, for each t = 1, . . . , n− 1.
MC4: (Xn

1,t+1, X
n
2,t+1) ↔ (Xt

1, X
t
2) ↔ (Y t1 , Y

t
2 ) forms a

MC, for each t = 1, . . . , n− 1.

By Lemma 1, Condition (C) is equivalent to MC1, and
the joint distribution of (Xn

1 , X
n
2 , Y

n
1 , Y

n
2 ), is expressed as

PXn
1 ,X

n
2 ,Y

n
1 ,Y

n
2

= PY1,n,Y2,n|Y n−1
1 ,Y n−1

2 ,Xn
1 ,X

n
2

⊗PX1,n,X2,n|Y n−1
1 ,Y n−1

2 ,Xn−1
1 ,Xn−1

2
. . .

⊗PY1,2,Y2,2|Y1,1,Y2,1,X2
1 ,X

2
2
⊗PX1,2,X2,2|X1,1,X2,1

⊗PY1,1,Y2,1|X1,1,X2,1
⊗PX1,1,X2,1

(II.2)

The information measure I(Xn
1 , X

n
2 ;Y n1 , Y

n
2 ) in (I.13) is

expressed sequentially as,

I(Xn
1 , X

n
2 ;Y n1 , Y

n
2 )

= E
{ n∑
t=1

log
(PY1,t,Y2,t|Y t−1

1 ,Y t−1
2 ,Xt

1,X
t
2

PY1,t,Y2,t|Y t−1
1 ,Y t−1

2

)}
=

n∑
t=1

I(Xt
1, X

t
2;Y1,t, Y2,t|Y t−1

1 , Y t−1
2 ).

The joint NRDF RXn
1 ,X

n
2

(∆1,∆2) of (I.13) subject to con-
dition (C) is expressed sequentially as follows.

RXn
1 ,X

n
2

(∆1,∆2) (II.3)

= inf
QXn

1 ,Xn
2

(∆1,∆2)

{ n∑
t=1

I(Xt
1, X

t
2;Y1,t, Y2,t|Y t−1

1 , Y t−1
2 )

}
where

QXn
1 ,X

n
2

(∆1,∆2) ,
{
PXt

1,X
t
2,Y

t
1 ,Y

t
2
, t = 1, . . . , n

∣∣∣
(II.2) holds, the Xn1 × Xn2− marginal is PXn

1 ,X
n
2

,
1

n
E
{
di,n(Xn

i , Y
n
i )
}
≤ ∆i, i = 1, 2

}
. (II.4)

It can be shown that

QXn
1 ,X

n
2

(∆1,∆2) =
{
PY1,tY2,t|Y t−1

1 ,Y t−1
2 ,Xt

1,X
t
2
, t = 1, . . . , n

∣∣∣
the Xn1 × Xn2− marginal of (II.2) is PXn

1 ,X
n
2

,
1

n
E
{
di,n(Xn

i , Y
n
i )
}
≤ ∆i, i = 1, 2

}
. (II.5)



C. Information Structures of Sequential Joint RDF for a
Tuple of Markov Processes

The main result of this section is Theorem 2,
which identifies structural properties of the realiza-
tions (Y n1 , Y

n
2 ), of the test channels that minimize∑n

t=1 I(Xt
1, X

t
2;Y1,t, Y2,t|Y t−1

1 , Y t−1
2 ), when the joint pro-

cess (Xn
1 , X

n
2 ) is Markov and the fidelity is defined with

respect to the square-error.
First, we recall a preliminary result, of a structural property

of test channel distributions from the set QXn
1 ,X

n
2

(∆1,∆2).

Theorem 1: [6], [22]
Consider the joint NRDF of (II.3), and assume the joint

process (Xn
1 , X

n
2 ) is Markov, that is, ∀t ∈ Nn

PX1,t,X2,t|Xt−1
1 ,Xt−1

2
= PX1,t,X2,t|X1,t−1,X2,t−1

. (II.6)

Then the joint NRDF is given by

RXn
1 ,X

n
2

(∆1,∆2) = inf
MXn

1 ,Xn
2

(∆1,∆2)

{
(II.7)

E
{ n∑
t=1

log
(PY1,t,Y2,t|Y t−1

1 ,Y t−1
2 ,X1,t,X2,t

PY1,t,Y2,t|Y t−1
1 ,Y t−1

2

)}}
(II.8)

= inf
MXn

1 ,Xn
2

(∆1,∆2)

{ n∑
t=1

I(X1,t, X2,t;Y1,t, Y2,t|Y t−1
1 , Y t−1

2 )
}

where

MXn
1 ,X

n
2

(∆1,∆2) ,
{
PY1,tY2,t|Y t−1

1 ,Y t−1
2 ,X1,t,X2,t

,

t = 1, . . . , n
∣∣∣ the Xn1 × Xn2− marginal corresp. to (II.6)

1

n
E
{
di,n(Xn

i , Y
n
i )
}
≤ ∆i, i = 1, 2

}
, (II.9)

PXt
1,X

t
2,Y

t
1 ,Y

t
2

= PX1,1,X2,1
⊗PY1,1,Y2,1|X1,1,X2,1

⊗ti=1

(
PX1,t,X2,t|Xi−1

1 ,Xi−1
2
⊗PY1,i,Y2,i|Y i−1

1 ,Y i−1
2 ,Xt

1,X
t
2

)
,

PY1,t,Y2,t|Y t−1
1 ,Y t−1

2
=

∫
X1×X2

PY1,t,Y2,t|Y t−1
1 ,Y t−1

2 ,X1,tX2,t

⊗PX1,t,X2,t|Y t−1
1 ,Y t−1

2
(II.10)

Next, we identify an important structural property of the
optimal reproduction process (Y n1 , Y

n
2 ).

Theorem 2: Structural property of reproduction process
Consider the statement of Theorem 1 and the joint NRDF
RXn

1 ,X
n
2

(∆1,∆2) of (II.7) for the Markov (Xn
1 , X

n
2 ).

(a) Define

X̂i,t = gi,t(Y
t
1 , Y

t
2 ), ∀t ∈ Nn, i = 1, 2, (II.11)

gi,t : Yt1 × Yt2 → Yi, gi,t(·) are meas. functions, i = 1, 2.

Then, the following inequality holds for t = 1, . . . , n:

I(X1,t, X2,t;Y1,t, Y2,t|Y t−1
1 , Y t−1

2 )

≥ I(X1,t, X2,t; X̂1,t, X̂2,t|Y t−1
1 , Y t−1

2 ). (II.12)

Moreover, if there exist (X̂1,t, X̂2,t) such that the functions
gi,t(·, ·) satisfy for i = 1, 2

gi,t(Y
t
1 , Y

t
2 ) = E

{
Xi,t

∣∣∣Y t1 , Y t2} = Yi,t, ∀t ∈ Nn, (II.13)

then the inequality in (II.12) holds with equality.
(b) Let X1 × X2 × Y1 × Y2 = Rp1 × Rp2 × Rp1 × Rp2 ,
(p1, p2) ∈ Z+. For all measurable functions hi,t(Y t1 , Y

t
2 ),

i = 1, 2 then

E
{∣∣∣∣Xi,t − hi,t(Y t1 , Y t2 )

∣∣∣∣2
Rpi

}
≥ E

{∣∣∣∣Xi,t −E
{
Xi,t

∣∣∣Y t1 , Y t2}∣∣∣∣2Rpi

}
, ∀t ∈ Nn, i = 1, 2.

(c) Suppose X1×X2×Y1×Y2 = Rp1 ×Rp2 ×Rp1 ×Rp2 ,
(p1, p2) ∈ Z+, and (II.13) holds. Then the joint RDF given
by (II.8) is characterized by

RXn
1 ,X

n
2

(∆1,∆2) = inf
Mcm

Xn
1 ,Xn

2
(∆1,∆2)

{
n∑
t=1

I(X1,t, X2,t;Y1,t, Y2,t|Y t−1
1 , Y t−1

2 )
}

(II.14)

where Mcm
Xn

1 ,X
n
2

(∆1,∆2) ⊆ MXn
1 ,X

n
2

(∆1,∆2), with the

additional restriction gi,t(Y
t
1 , Y

t
2 ) = E

{
Xi,t

∣∣∣Y t1 , Y t2} =

Yi,t,−a.s.,∀t ∈ Nn for i = 1, 2.
Proof: (a) By properties of mutual information, we have

I(X1,t, X2,t;Y1,t, Y2,t|Y t−1
1 , Y t−1

2 ) (II.15)
(1)
= I(X1,t, X2,t;Y1,t, Y2,t, X̂1,t, X̂2,t|Y t−1

1 , Y t−1
2 ) (II.16)

(2)
= I(X1,t, X2,t;Y1,t, Y2,t|X̂1,t, X̂2,t, Y

t−1
1 , Y t−1

2 )

+ I(X1,t, X2,t; X̂1,t, X̂2,t|Y t−1
1 , Y t−1

2 )

(3)

≥ I(X1,t, X2,t; X̂1,t, X̂2,t|Y t−1
1 , Y t−1

2 ), (II.17)

where (1) is due to X̂i, i = 1, 2, are functions of (Y t1 , Y
t
2 ),

(2) is due to the chain rule of mutual information, and (3)
is due to I(X1,t, X2,t;Y1,t, Y2,t|X̂1,t, X̂2,t, Y

t−1
1 , Y t−1

2 ) ≥
0. Thus, (II.12) is obtained. Furthermore, if X̂i,t =
gi,t(Y

t
1 , Y

t
2 ) = Yi,t − a.s, i = 1, 2 hold, then

I(X1,t, X2,t;Y1,t, Y2,t|X̂1,t, X̂2,t, Y
t−1
1 , Y t−1

2 ) = 0, and
hence the inequality (II.17) become equality. (b) The inequal-
ity is well-known, due to the orthogonal projection theorem.
(c) This is due to (a), (b), and the fact that the fidelity
constraints hold with equality.

Remark 1: For a tuple of Gaussian Markov processes,
(Xn

1 , X
n
2 ), Theorem 1 and Theorem 2, are used in the

remaining paper to characterize joint NRDF.

III. JOINT NRDF OF MULTIVARIATE GAUSSIAN
MARKOV PROCESSES WITH INDIVIDUAL MSE

DISTORTION CRITERIA

For the rest of the paper we consider the tuple of
multivariate Gaussian Markov process of Definition 1.



Definition 1: A tuple of multivariate Gaussian Markov
process, Xt = (XT

1,t, X
T
2,t)

T, Xi,t : Ω → Rpi , t = 0, . . . , n,
i = 1, 2, is defined for t = 1, . . . , n− 1 by the recursion

(
X1,t+1

X2,t+1

)
= At

(
X1,t

X2,t

)
+Bt

(
W1,t+1

W2,t+1

)
, (III.1)

where (i) At ∈ R(p1+p2)×(p1+p2), Bt ∈ R(p1+p2)×(q1+q2)

are non-random matrices; (ii) {Wi,t : t = 2, . . . , n − 1} is
an Rqi -valued independent Gaussian process, for i = 1, 2,
Wt = (W T

1,t,W
T
2,t)

T ∈ G(0, Q(W1,t,W2,t)), Q(W1,t,W2,t) � 0,
independent of X1; (iii) X1 ∈ Rp1+p2 is Gaussian X1 ∈
G(0, Q(X1,1,X2,1)), Q(X1,1,X2,1) � 0.

Definition 2: Define

Xt
4
=

(
X1,t

X2,t

)
, Yt

4
=

(
Y1,t

Y2,t

)
, ∀t ∈ Nn,

Et
4
=

(
E1,t

E2,t

)
, E−t

4
=

(
E−1,t
E−2,t

)
,

Ei,t
4
= Xi,t − X̂i,t|t, E

−
i,t

4
= Xi,t − X̂i,t|t−1, i = 1, 2,

X̂t|s
4
= E

{(
X1,t

X2,t

) ∣∣∣Y s} =

(
X̂1,t|s
X̂2,t|s

)
, ∀(t, s) ∈ Nn × Nn

and the mean-square errors

Σ(E1,t,E2,t)
4
= E

{
EtE

T
t

}
, ∀t ∈ Nn, (III.2)

Σ(E−1,t,E
−
2,t)

4
= E

{
E−t
(
E−t
)T
}
∀t ∈ Nn (III.3)

where for t = 1, Σ(E−1,1,E
−
2,1)

4
= Q(X1,1,X2,1).

Next, we present another structural property. the tuple
of Gaussian Markov process subject to two square-error
distortion criteria.

Theorem 3: Consider the joint NRDF RXn
1 ,X

n
2

(∆1,∆2)
of (II.3) for the tuple of multivariate Gaussian Markov
process of Definition 1, with individual distortion criteria,
di,n(xn1 , y

n
1 )
4
= 1

n

∑n
t=1 ||x1,t − y1,t||2Rpi , i = 1, 2.

The following hold.
(a) The minimizing element of the set QXn

1 ,X
n
2

(∆1,∆2)
is jointly Gaussian PXt

1,X
t
2,Y

t
1 ,Y

t
2

= PGXt
1,X

t
2,Y

t
1 ,Y

t
2
, t =

1, . . . , n, and it is induced by the parametric realization

(
Y1,t

Y2,t

)
=Ht

(
X1,t

X2,t

)
+

(
g1,t(Y

t−1
1 , Y t−1

2 )
g2,t(Y

t−1
1 , Y t−1

2 )

)
+

(
V1,t

V2,t

)
,

(III.4)

=HtXt +
(
Ip1+p2 −Ht

)
X̂t|t−1 + Vt (III.5)

where

Ht =

(
H11,t H12,t

H21,t H22,t

)
∈ R(p1+p2)×(p1+p2) are nonrandom,

(III.6)

gi,t(Y
t−1
1 , Y t−1

2 ) = X̂i,t|t−1 −
(
Hi1,t Hi2,t

)
X̂t|t−1,

(III.7)

X̂t|t−1 = E
{
Xt

∣∣∣Y t−1
1 , Y t−1

2

}
= At−1

(
X̂1,t−1|t−1

X̂2,t−1|t−1

)
Vt = (V T

1,t, V
T
2,t)

T ∈ G(0, Q(V1,t,V2,t)), Q(V1,t,V2,t) � 0,

Vt is indep. of X1 and Ws = (W T
1,s,W

T
2,s)

T, s = 1, . . . , t.
(III.8)

Moreover,
(i) the test channel, denoted by PG

Y1,t,Y2,t|Y t−1
1 ,Y t−1

2 ,X1,t,X2,t
,

is parametrized by
(
Ht, Q(V1,t,V2,t)

)
, t = 1, . . . , n, and

satisfies

PG
Y1,t,Y2,t|Y t−1

1 ,Y t−1
2 ,X1,t,X2,t

(III.9)

= Qt(dy1,t, dy2,t|x̂1,t−1|t−1, x̂2,t−1|t−1, x1,t, x2,t)

(ii) for each t = 1, . . . , n the pay-off satisfies

I(Xt
1, X

t
2;Y1,t, Y2,t|Y t−1

1 , Y t−1
2 ) (III.10)

= I(X1,t, X2,t;Y1,t, Y2,t|Y t−1
1 , Y t−1

2 ) (III.11)

= I(X1,t, X2,t;Y1,t, Y2,t|Y t−1
1 , Y t−1

2 ,

X̂1,t−1|t−1, X̂2,t−1|t−1), (III.12)

= I(X1,t, X2,t;Y1,t, Y2,t, X̂1,t|t, X̂2,t|t|Y t−1
1 , Y t−1

2 ,

X̂1,t|t−1, X̂2,t|t−1), (III.13)

= I(X1,t, X2,t;Y1,t, Y2,t|Y t−1
1 , Y t−1

2 ,

X̂1,t−1|t−1, X̂2,t−1|t−1, X̂1,t|t, X̂2,t|t)

+ I(X1,t, X2,t; X̂1,t|t, X̂2,t|t|Y t−1
1 , Y t−1

2 ,

X̂1,t−1|t−1, X̂2,t−1|t−1) (III.14)

≥ I(X1,t, X2,t; X̂1,t|t, X̂2,t|t|Y t−1
1 , Y t−1

2 , X̂1,t|t−1, X̂2,t|t−1),
(III.15)

and equality holds in (III.15) if

X̂i,t|t = E
{
Xi,t

∣∣∣Y t1 , Y t2} = Yi,t − a.s., i = 1, 2. (III.16)

(b) Consider the realization of part (a). A sufficient condition
for (III.16) to hold is,

E
{
Xt

∣∣∣Y t1 , Y t2} = E
{
Xt

∣∣∣Y t−1
1 , Y t−1

2

}
+ cov

(
Xt, Yt|Y t−1

1 , Y t−1
2

)
cov
(
Yt, Yt|Y t−1

1 , Y t−1
2

)†
(
Yt −E

{
Yt

∣∣∣Y t−1
1 , Y t−1

2

})
= Yt − a.s. (III.17)

for t = 1, . . ., provided such a
(
Ht, Q(V1,t,V2,t)

)
exists.

Moreover, if the pseudoinverse cov
(
Yt, Yt|Y t−1

1 , Y t−1
2

)†
=

cov
(
Yt, Yt|Y t−1

1 , Y t−1
2

)−1

i.e., the inverse exists, then the



following, Conditions 1 and 2, are sufficient for (III.17) to
hold for t = 1, . . . , n.

(1) cov
(
Xt, Yt|Y t−1

1 , Y t−1
2

)
= cov

(
Yt, Yt|Y t−1

1 , Y t−1
2

)
(III.18)

(2) E
{
Xt

∣∣∣Y t−1
1 , Y t−1

2

}
= E

{
Yt

∣∣∣Y t−1
1 , Y t−1

2

}
. (III.19)

Proof: (a) The fact that a jointly Gaussian distribu-
tion is optimal, is shown similar to the classical RDF of
Gaussian random processes with square error fidelity, and
follows from [6]. Hence, the test channel distribution is
conditionally Gaussian, i.e., PY1,t,Y2,t|Y t−1

1 ,Y t−1
2 ,X1,t,X2,t

=

PG
Y1,t,Y2,t|Y t−1

1 ,Y t−1
2 ,X1,t,X2,t

, with linear conditional mean
and nonrandom conditional covariance. Such a distribu-
tion is induced by the parametric realization (III.4) with
linear gi,t(·), i = 1, 2. (III.7) follows from the joint
NRDF given by (II.7), because for each t, the pay-

off E
{

log
(P

Y1,t,Y2,t|Y
t−1
1 ,Y

t−1
2 ,X1,t,X2,t

P
Y1,t,Y2,t|Y

t−1
1 ,Y

t−1
2

)}
does not depend

on gi,t(·), and the average distortions E
{∑n

t=1 ||Xi,t −

Yi,t||2Rpi

}
, i = 1, 2 is minimized by gi,t(·) given by (III.7).

(i) The test channel distribution (III.9) follows from the
realization. (ii) Equalities (III.11)-(III.13) follow from the
realization and properties of conditional mutual information,
and the equality (III.14) follows from the chain rule of con-
ditional mutual information [23]. Inequality (III.15) is due to
the nonnegative property of conditional mutual information

I(X1,t, X2,t;Y1,t, Y2,t|Y t−1
1 , Y t−1

2 ,

X̂1,t−1|t−1, X̂2,t−1|t−1, X̂1,t|t, X̂2,t|t) ≥ 0. (III.20)

Moreover, if (III.16) holds, then the value of the left hand
side of (III.20) is zero, and the inequality (III.15) holds with
equality. (b) Since (Xn

1 , X
n
2 , Y

n
1 , Y

n
2 ) is jointly Gaussian, by

mean-square estimation theory follows that if (III.17) holds
then (III.16) holds. If the stated inverse exists then (III.18),
(III.19) imply (III.17).

Next, we establish existence of the tuple (H,Q(V1,t,V2,t))
such that equality holds in (III.16), which is essential to
characterize the joint NRDF.

Theorem 4: Consider the joint NRDF RXn
1 ,X

n
2

(∆1,∆2)
of (II.3) for the tuple of multivariate Gaussian Markov
process of Definition 1, with individual distortion criteria,
di,n(xn1 , y

n
1 )
4
= 1

n

∑n
t=1 ||x1,t − y1,t||2Rpi , i = 1, 2.

The following hold.
(a) The optimal test channel distribution of the joint NRDF
is conditionally Gaussian, PGY1,t,Y2,t|Y1,t−1,Y2,t−1,X1,t,X2,t

, in-
duced by (Xn

1 , X
n
2 ) and the realization, for t = 1, . . . , n,(

Y1,t

Y2,t

)
=Ht

(
X1,t

X2,t

)
+
(
Ip1+p2 −Ht

)
At−1

(
Y1,t−1

Y2,t−1

)
+

(
V1,t

V2,t

)
(III.21)

=HtXt +
(
Ip1+p2 −Ht

)
At−1Yt−1 + Vt (III.22)

where the matrices, (Ht, Q(V1,t,V2,t)) satisfy,

HtΣ(E−1,t,E
−
2,t)

= Σ(E−1,t,E
−
2,t)
− Σ(E1,t,E2,t) (III.23)

= Σ(E−1,t,E
−
2,t)
HT
t � 0,

Q(V1,t,V2,t) = HtΣ(E−1,t,E
−
2,t)
−HtΣ(E−1,t,E

−
2,t)
HT
t � 0,

Σ(E−1,t,E
−
2,t)

= At−1Σ(E1,t−1,E2,t−1)A
T
t−1

+Bt−1Q(W1,t,W2,t)B
T
t−1, t = 2, . . . , n (III.24)

Σ(E−1,1,E
−
2,1) = Q(X1,1,X2,1). (III.25)

If Q(X1,1,X2,1) and Bt−1Q(W1,t,W2,t)B
T
t−1, t = 2, . . . , n are

full rank matrices then

Q(V1,t,V2,t) = Σ(E1,tE2,t)

− Σ(E1,tE2,t)

(
Σ(E−1,t,E

−
2,t)

)−1

Σ(E1,tE2,t) � 0. (III.26)

(b) The characterization of the NRDF is given by

RXn
1 ,X

n
2

(∆1,∆2) = inf
MG

Xn
1 ,Xn

2
(∆1,∆2)

{
n∑
t=1

I(X1,t, X2,t;Y1,t, Y2,t|Y1,t−1, Y2,t−1)
}

(III.27)

= inf
MG

Xn
1 ,Xn

2
(∆1,∆2)

{1

2

n∑
t=1

log
( |Σ(E−1,t,E

−
2,t)
|

|Σ(E1,t,E2,t)|

)}
(III.28)

where the constraint set is

MG
Xn

1 ,X
n
2

(∆1,∆2)
4
=
{

Σ(E1,t,E2,t) ∈ S
p×p
+ , t = 1, . . . , n

∣∣∣
Σ(E1,t,E2,t) � Σ(E−1,t,E

−
2,t)
, t = 1, . . . , n, (III.24), (III.25)

1

n

n∑
t=1

tr(ΣE1,t
) ≤ ∆1,

1

n

n∑
t=1

tr(ΣE2,t
) ≤ ∆2

}
. (III.29)

Proof: First, note that by Theorem 3.(a), the joint
NRDF is also expressed as

RXn
1 ,X

n
2

(∆1,∆2) = inf
MG

Xn
1 ,Xn

2
(∆1,∆2)

{
(III.30)

n∑
t=1

I(X1,t, X2,t;Y1,t, Y2,t|Y t−1
1 , Y t−1

2 )
}

= inf
MG

Xn
1 ,Xn

2
(∆1,∆2)

E
{ n∑
t=1

log
(PG

X1,t,X2,t|Y t−1
1 ,Y t−1

2

PG
X1,t,X2,t|Y t

1 ,Y
t
2

)}
(III.31)

whereMG
Xn

1 ,X
n
2

(∆1,∆2) is the subset ofMXn
1 ,X

n
2

(∆1,∆2)
defined by (II.9), generated by jointly Gaussian distribu-
tions PGXt

1,X
t
2,Y

t
1 ,Y

t
2

, t = 1, . . . , n and PG
X1,t,X2,t|Y t−1

1 ,Y t−1
2

,

PGX1,t,X2,t|Y t
1 ,Y

t
2

denote conditionally Gaussian distributions,
obtained from the realization (III.4)-(III.8). By properties of
jointly Gaussian random processes, then

cov
(
Xt, Xt

∣∣∣Y t) = E
{
Et
(
Et
)T
}

= Σ(E1,tE2,t)

cov
(
Xt, Xt

∣∣∣Y t−1
)

= E
{
E−t
(
E−t
)T
}

= Σ(E−1,t,E
−
2,t)

Clearly, Σ(E−1,t,E
−
2,t)

is given by (III.24).
(a) Realization (III.21) and specifically, (III.23)-(III.25) are



obtained by applying Theorem 3.(b) so that (III.16) holds.
The conditions of Theorem 3.(b) give rise to the equations
of (Ht, Q(V1,t,V2,t)) as specified. (b) This follows directly by
using the realization of part (a) to calculate (III.31).

The next theorem gives the Kuhn-Tucker conditions of
the optimization problem of Theorem 4.(b).

Theorem 5: Consider RX1,X2(∆1,∆2) of
Theorem 4.(b), defined by (III.28) and assume Qt

4
=

BtQ(W1,t+1,W2,t+1)B
T
t � 0, and RXn

1 ,X
n
2

(∆1,∆2) < +∞.
The Lagrange functional is,

L 4=
n∑
t=1

{
1

2
log
( |Σ(E−1,t,E

−
2,t)
|

|Σ(E1,t,E2,t

)
|

)
+ tr

(
Θt

(
Σ(E1,t,E2,t) − Σ(E−1,t,E

−
2,t)

))
− tr

(
VtΣ(E1,t,E2,t)

)}
+ λ1

( n∑
t=1

tr
(

ΣE1,t

)
− n∆1

)
+ λ2

( n∑
t=1

tr
(

ΣE2,t

)
− n∆2

)
where Θt � 0, Vt � 0, λi ∈ [0,∞), i = 1, 2.
The optimal {Σ(E1,t,E2,t) : t = 1, . . . , n} ∈
MG

Xn
1 ,X

n
2

(∆1,∆2) for RXn
1 ,X

n
2

(∆1,∆2) is found as follows.
(i) Stationarity:

−1

2
Σ−1

(E1,t,E2,t)
+

[
λ1Ip1 0

0 λ2Ip2

]
+ Θt + Vt = 0.

(III.32)

(ii) Complementary Slackness:

λ1

( n∑
t=1

tr
(

ΣE1,t

)
− n∆1

)
= 0, (III.33)

λ2

( n∑
t=1

tr
(

ΣE2,t

)
− n∆2

)
= 0, (III.34)

tr
(
VtΣ(E1,t,E2,t)

)
= 0, t = 1, . . . , n, (III.35)

tr
(

Θt

(
Σ(E1,t,E2,t) − Σ(E−1,t,E

−
2,t)

))
= 0. (III.36)

(iii) Primal Feasibility: Defined by MG
Xn

1 ,X
n
2

(∆1,∆2.
(iv) Dual Feasibility: λ1 ≥ 0, λ2 ≥ 0, Θt � 0, Vt �
0, t = 1, . . . , n.
Moreover, the following hold.
(a) Vt = 0 for t = 1, . . . , n and

For t = n :

Σ(E1,n,E2,n) =
1

2

([
λ1Ip1 0

0 λ2Ip2

]
+ Θn

)−1

� 0.

(III.37)
For t = n− 1, . . . , 1 :

Σ(E1,t,E2,t) + Σ(E1,t,E2,t)QtΣ(E1,t,E2,t)

− 1

2

([
λ1Ip1 0

0 λ2Ip2

]
+ Θt −AT

tΘt+1At

)−1

= 0

(III.38)

(b) If Σ(E−1,t,E
−
2,t)
−Σ(E1,t,E2,t) � 0 for all t = 1, . . . , n then

Θt = 0 for all t = 1, . . . , n, and
Proof: The derivation is utilizes [6, Theorem 5.3].

Example 1: To illustrate fundamental challenges, we
consider Xi,t : Ω→ R, i = 1, 2 and Yi,t : Ω→ R, i = 1, 2
for t = 1, . . . , n. For simplicity, assume Qt = diag(q1, q2) �
0, i.e., q1 > 0, q2 > 0, and At = A =

[
a11 a12
a21 a22

]
t =

0, . . . , n, and X1,1, X2,1 are independent with variances σ2
1 , σ

2
2 ,

respectively. By Theorem 5 item (b), we have: For t = n:

Σ(E1,n,E2,n) =

[ 1
2λ1

0

0 1
2λ2

]
,ΣE1,n,E2,n = 0. (III.39)

For t = 1, . . . , n− 1:

Σ(E1,t,E2,t) + Σ(E1,t,E2,t)QtΣ(E1,t,E2,t) −
[ 1

2λ1
0

0 1
2λ2

]
= 0

The set of equations for t = 1, . . . , n− 1, are

ΣE1,t + Σ2
E1,tq1 + Σ2

E1,t,E2,tq2 −
1

2λ1
= 0 (III.40)

ΣE1,t,E2,t(1 + ΣE1,tq1 + ΣE2,tq2) = 0 (III.41)

ΣE2,t + Σ2
E2,tq2 + Σ2

E1,t,E2,tq1 −
1

2λ2
= 0 (III.42)

By (III.41), ΣE1,E2,t = 0 or ΣE1,tq1 + ΣE2,tq2 = −1.
The later cannot hold because the left hand side is always
positive, hence ΣE1,t,E2,t = 0 and the optimal matrices
Σ(E1,t,E2,t) are diagonal for all t = 1, . . . , n − 1. Then by
(III.40) and (III.42) the positive solutions are

ΣE1,t =
−1 +

√
1 + 2q1

λ1

2q1
, ΣE2,t =

−1 +
√

1 + 2q2
λ2

2q2

For t = 0, . . . , n using the above values we can determine
λi ≥ 0, i = 1, 2, using the average distortions as follows.

1

2λi
+ (n− 1)

(−1 +
√

1 + 2qi
λi

2qi

)
= n∆i, i = 1, 2

(III.43)

Then by using (III.24), need to determine the matrix
Σ(E−1,t,E

−
2,t)

. Suppose its diagonal entries are αt, βt and its
non-diagonal entry is γt. Then the equations for Σ(E−1,t,E

−
2,t)

,
for t = 2, . . . , n, are given by

αt = a2
11ΣE1,t−1 + a2

12ΣE2,t−1 + q1, (III.44)

βt = a2
21ΣE1,t−1 + a2

22ΣE2,t−1 + q2, (III.45)
γt = a11a21ΣE1,t−1 + a22a12ΣE2,t−1 (III.46)

For t = 1, α1 = σ2
1 , β1 = σ2

2 , γ1 = 0. Therefore, the joint
NRDF is given by,

RXn
1 ,X

n
2

(∆1,∆2) =
1

2

n∑
t=1

log
( αtβt − γ2

t

ΣE1,tΣE2,t

)
(III.47)

=
1

2
log
( α1β1 − γ2

1

ΣE1,1ΣE2,1

)
+

(n− 2)

2
log
( αtβt − γ2

t

ΣE1,tΣE2,t

)
+

1

2
log
( αnβn − γ2

n

ΣE1,nΣE2,n

)
(III.48)



and (III.47) holds for (∆1,∆2) such that Σ(E−1,t,E
−
2,t)
−

Σ(E1,t,E2,t) � 0 for all t = 1, . . . , n. The closed form
calculations of this region as a function of (λ1, λ2, A,Qt)
are lengthy hence omitted due to space limitation. The per
unit time limit is, then obtain from the solution of (III.44)-
(III.46), at any t ∈ {2, . . . , n− 1}, i.e.,

lim
n−→∞

1

n
RXn

1 ,X
n
2

(∆1,∆2) =
1

2
log
( αtβt − γ2

t

ΣE1,tΣE2,t

)
.

(III.49)

Remark 2: For the sub-set of the rate region for which
Theorem 5.(b) holds, it is possible to compute the closed-
form expression of the joint NRDF RXn

1 ,X
n
2

(∆1,∆2), by
using (III.37), (III.38), with Θt = 0, t = 1, . . . , n. This
will lead to a generalization of the classical joint RDF given
in [18, Theorem III.3], for the tuple of jointly independent
and identically (IID) distributed Gaussian process (Xn

1 , X
n
2 ),

i.e., PX1,t,X2,t = PX1,X2 , t = 1, . . . , n, with individual
distortion criteria [18, Theorem III.3]. The case Σ(E1,t,E2,t)−
Σ(E−1,t,E

−
2,t)
� 0 but not Σ(E1,t,E2,t) − Σ(E−1,t,E

−
2,t)
� 0 is to

our experience, a challenging problem, even for the simplest
application example of a tuple of IID process.

IV. CONCLUSIONS AND OPEN PROBLEMS

The joint nonanticpative RDF is analyzed for a tuple of
random process with individual fidelity criteria. Achievable
lower bound and structural properties of the test channels
are derived. The application example of a tuple of jointly
multivariate Gaussian Markov process with two square-error
fidelity criteria is analyzed. A fundamental open problem
which is not addressed in this paper is the computation
of the joint nonanticipative RDF of Theorem 4. Although,
for a tuple of multivariate Gaussian Markov process this is
challenging problem (i.e., currently the only known solution
is, for a tuple of scalar, IID Gaussian random variables [17]),
some progress is expected.
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