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Synergistic Offline-Online Control Synthesis
via Local Gaussian Process Regression

John Jackson!, Luca Laurenti?, Eric Frew!, and Morteza Lahijanian

Abstract— Autonomous systems often have complex and pos-
sibly unknown dynamics due to, e.g., black-box components.
This leads to unpredictable behaviors and makes control design
with performance guarantees a major challenge. This paper
presents a data-driven control synthesis framework for such
systems subject to linear temporal logic on finite traces (LTLf)
specifications. The framework combines a baseline (offline) con-
troller with a novel online controller and refinement procedure
that improves the baseline guarantees as new data is collected.
The baseline controller is computed offline on an uncertain ab-
straction constructed using Gaussian process (GP) regression on
a given dataset. The offline controller provides a lower bound on
the probability of satisfying the LTLf specification, which may
be far from optimal due to both discretization and regression
errors. The synergy arises from the online controller using the
offline abstraction along with the current state and new data to
choose the next best action. The online controller may improve
the baseline guarantees since it avoids the discretization error
and reduces regression error as new data is collected. The
new data are also used to refine the abstraction and offline
controller using local GP regression, which significantly reduces
the computation overhead. Evaluations show the efficacy of the
proposed offline-online framework, especially when compared
against the offline controller.

I. INTRODUCTION

The accelerating development of autonomous systems
technology has led to their proliferation in many facets
of our society. Examples include manufacturing robots on
factory floors, autonomous cars on the roads, and delivery
drones in urban airspaces. Such systems often have complex
and possibly unknown dynamics due to, e.g., black-box
components, making accurate modeling unattainable. This
introduces a major challenge for analysis and control design
for such systems. This challenge is especially important to
confront in safety-critical domains, where assurances are
required. This work considers this challenge and aims to
provide a control synthesis framework that uses data in lieu
of a system model to provide performance guarantees.

A powerful approach to control design with assurances
is formal synthesis, e.g., [1]-[5]. In this approach, the
system specification is expressed in a formal language
such as linear temporal logic (LTL) [6], and the system
evolution is abstracted to a finite model—called abstraction—
with a simulation relation. Then, using automated verification
techniques, a controller is synthesized on the abstraction with
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performance guarantees. The controller and its guarantees are
then refined onto the underlying system. These frameworks
provide strong assurances but rely on accurate dynamics
model to construct the abstraction, which may be unavailable
for complex autonomous systems.

In recent years, data-driven control approaches have been
increasingly studied, e.g., [7]-[11]. These methods typically
consist of a machine learning component that constructs a
a variety of regression models, e.g., polynomial functions
and neural networks. Among them, Gaussian process (GP)
regression [12] offers a unique advantage of providing
quantified error bounds between the regressed model and the
underlying system [13]-[16]. This has given rise to a wide
use of GPs in safe learning frameworks [8]-[10]. In particular,
safe reinforcement learning approaches are developed to take
advantage of the GP modeling to learn a control policy with
guarantees such as stability [8], [11] and respecting safety
constraints [9], [10]. A shortcoming of classical GP regression,
however, is that it leads to computational intractability as the
data grows, making it difficult to use for online refinement
of policies.

Sparse GP approximation has been explored extensively to
handle large datasets [17]. These approximations range from
choosing subset of data, to making conditional assumptions
on the joint prior using inducing datapoints. While powerful,
sparse GP approximations can lack analytical guarantees [18].
The use of localized GP regressions to model local dynamics
has been studied for model learning and control [19], [20], and
it is shown that they can outperform sparse GP approximations
if intelligent data partitioning is used [21]. Although they
have been used in various control settings, formal online
synthesis using GPs remains an open challenge.

In previous work [22], we introduce a data-driven formal
control synthesis framework for unknown stochastic systems.
The framework takes a set of input-output data of the system
and a desired property in LTL on finite traces (LTLf) [23] as
input and synthesizes a robust control policy with guaranteed
lower-bound on the probability of achieving the LTLf property.
The method employs GP regression and a discretization to
construct an abstraction in the form of an uncertain Markov
process for the unknown system with a simulation relation.
It then computes a robust policy on the abstraction with a
quantified bound on the error (distance) to the optimal solution.
This error is due to both the discretization and regression
errors in generating the abstraction. Given the inherent
computational complexity, the framework is completely offline
and cannot take advantage of runtime data to reduce its error.

In this work, we build on [22], [24] and propose a
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synergistic offline-online framework to approach an optimal
solution. We combine the baseline offline controller in [22]
with a novel online controller and refinement procedure that
improves the baseline guarantees as new data is collected. The
synergy arises from the online controller using the offline
abstraction along with the current state and new data to
choose the next best action. The online controller improves
the baseline guarantees by avoiding the discretization error
and reducing regression error as new data is collected. The
new data are also used to refine the abstraction and offline
controller via local GP regression, which significantly reduces
the computation overhead, enabling online computations.

The contributions of this work are threefold. First, we
introduce an online procedure for control synthesis that
improves offline control policy’s probability of satisfaction
of the LTLf specification. Specifically, we show that the
online method works in synergy with the offline framework
to monotonically decrease the error to the optimal solution
at runtime. This is more general than the safety problem
considered in [9], [10]. Second, we reduce computational
overhead to enable refinement of the abstraction online, and
hence, improving the baseline controller via local GPs. We
show that a global GP is too expensive to use online, and
local GPs enable comparatively quick computations. Thirdly,
we compare the performance of the offline method against
the proposed synergistic framework in simulation, illustrating
the efficacy of the proposed method.

II. PROBLEM FORMULATION

We consider a stochastic system given by
X1 = f(Xk, ug) + Wi (1

where £ € N, x; € R", and up € U = {uy,...,uy}
is a finite set of controls or actions. x; is a discrete-time
controlled stochastic process governed by a fully- or partially-
unknown, non-linear function f : R” x U — R™ driven by an
additive noise term w; € R™. We assume that wj follows a
stationary and independent sub-Gaussian distribution py. This
includes Gaussian distributions as well as all distributions
with bounded support [25].

To reason about Process (I)) without having full knowledge
of f, we assume to have a set of state-action-state measure-
ments D = {(z;,u;, 7)™, } generated by Process (T), where
x] € R™ is a sample of one-step evolution of Process
initialized at x; € R™ with control u; € U. Our goal is to
use D as well as the data collected at runtime to infer f(-, u)
for each u € U. The following assumption guarantees that
f(-,u) can be learned arbitrarily well via GP regression.

Assumption 1. For a compact set X C R", let k : R™ X
R™ — R be a given kernel and H (X)) the reproducing kernel
Hilbert space (RKHS) of functions over X corresponding to k
with norm ||-|| .« [13]. Then, for eachw € U and i € {1,...,n},
F9O(-,u) € Ho(X) and for a constant B; > 0, it holds that
I fD (-, u)|l. < Bi, where {9 is the i-th component of f.

For instance, assuming that « is the widely used squared
exponential kernel (as in our experiments), then H,(X) is

a space of functions that is dense with respect to the set
of continuous functions on X, i.e., members of H, (X) can
approximate any continuous function on X arbitrarily well
[26].

We denote by wx = g D B a path or trajectory
of x; and use wy(k) = ) to indicate the state of wy at time
k. Further, we denote by Qfi" the set of all sample paths with
finite length, i.e, the set of trajectories w,’f =z Loy T TN
LN x, for all k € N. With a slight abuse of notation,
given a path wy, we denote by w! the prefix of wy up to
step k. A control strategy Ty : Q" — U is a function that
chooses the next control u € U given a finite path w? € Qfin,

For u € U, a Borel measurable set X C R”, and z € R",
call

T(X | 2,u) = / 1x (£, u) + D)pw(D)dD,

the stochastic transition function induced by Process (I)),
where

1x(z) =

1 ifzeX
0 otherwise

is the indicator function. Kernel T'(X | x,u) describes the
probability of x ending in set X in one-step evolution given
the current state « and control u. Given a control strategy
mx and a time horizon [0, N], it is possible [27] to define a
probability measure P over the paths of x;, uniquely generated
by T" and a (fixed) initial condition zo € R" such that

Pl (0) € X] = 1x(x0),
and for k € {1,..., N},
Pl (k) € X | @l (k —1) = 2,m] = T(X | 2, my(wl ™).

Furthermore, for N = oo, P is still uniquely defined by T’
by the lonescu-Tulcea extension theorem [28].

A. Specification Language

We are interested in the properties of Process (I} in a
compact set X C R"™ with respect to a finite set of closed
regions of interest R = {r1,...,7|g|}, where r; C X. To this
end, we associate to each region r; the atomic proposition
p; such that p; = T (i.e., p; is true) if x € r;; otherwise
pi = L (e, p; is false). Let AP = {p1,...,p|r|} denote
the set of all atomic propositions and L : X — 24" be the
labeling function that assigns to state x the set of atomic
propositions that are true at z. Then, we define the trace of
pathwf:xoﬂ)xl u—1>uk—71>xk to be

P = Pop1 - Pk

where p; = L(x;) € 247 for all 4 < k. With an abuse of
notation, we use L(w!) to denote the trace of w.

We use a temporal logic to express desired properties
of Process (I). Classical temporal logics such as LTL
specifications [6], however, are interpreted over infinite
behaviors (traces), and given the high levels of uncertainty of
Process (unknown dynamics as well as noise), its infinite
behaviors have trivial probabilities. Therefore, we instead
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employ recently developed LTL over finite traces (LTLf) [23],
which has the same syntax as LTL but its semantics is defined
over finite traces.

Definition 1 (LTLf Syntax). An LTLf formula p over a set
of atomic propositions AP is recursively defined as

p:=Tlpl-ploNe|Xo|pUp

where p € AP, = (negation) and N (conjunction) are Boolean
operators, and X (next) and U (until) are temporal operators.

Definition 2 (LTLf Semantics). The semantics of an LTLf
Sformula ¢ are defined over finite traces. Let trace p € (2AP ),
|p| denote its length, and p; be the i-th symbol of p. Then, the
satisfaction of ¢ by the i-th step of p, denoted by p,i = o,
is recursively defined as

] p,Z ': T,

s piEP & PpE,

s pifE—p & pilEe,

e piEPI APy & pilE@and p,i = @,

e piEXe & |p|>i+1land p,i+1E o,

e pilEpilUps & Fjsti<j<|plandp,jE o

and Vk, i <k <j, pkE ¢1.

Finite trace p satisfies @, denoted by p |= o, if p,0 |= .

Similar to LTL, the temporal operators F (eventually) and G
(globally) are defined as: F o= TU ¢ and G o = =F .

An LTLf formula ¢ defines a language L(¢) = {p €
(247)* | p = ¢}, which is in fact a regular language. Similar
to [29], we say that a path wy of Process satisfies LTLf
formula ¢ if there exists a prefix of wy that lies entirely in
X and its trace is in L(yp), i.e.,

wxEe o 3JkeN st Lwr) e L(p) and
WY e X VK <k, (2)

B. Problem Statement

Given an LTLf specification ¢ and dataset D, our goal is
to synthesize a control strategy 75 under which Process
attempts to satisfy ¢ with the maximum probability.

Problem 1. [Offline-Online Synthesis] Given an initial
dataset D and the capability of collecting data of Process (1))
at runtime, a compact set X, and an LTLf property ¢ defined
over the regions of interest in X, find a control strategy m;
that maximizes the probability of satisfying o, i.e.,

Ty = argnlraXP[wx E o | T, we(0) = ).

The fact that Process (I) is unknown makes solving
Problem [I] particularly challenging. In this work, we develop
a data-driven method that achieves the optimality objective
of the problem at the limit. In particular, we develop an
offline-online synergistic framework, where the offline module
uses GP regression on D to build an initial abstraction of
Process (I) in terms of a finite uncertain Markov model
and synthesizes a robust control strategy on the resulting
abstraction. This abstraction and control strategy suffer from
two types of errors: discretization and regression errors. Via

the online module, we iteratively reduce these errors as
explained below.

The offline strategy serves as a baseline controller for the
online module and provides an initial performance guarantee
in terms of the lower bound on the probability of satisfying .
Online, while executing the system, we use the observed data
to refine the abstraction, potentially improving the control
strategy and its probability of satisfaction of ¢ in two ways:
1) we reduce the space discretization error in the abstraction
by reducing the uncertainty in the transition probabilities
of the abstraction, which can be done by leveraging our
continuous state knowledge at every time step, and 2) using
the data collected at each time step, we improve our learned
model of Process , hence, reducing the regression error. We
show that updates to the abstraction and baseline controller
at runtime is computationally feasible by learning a series of
local GPs instead of a single global GP. Furthermore, we show
that the framework formally accounts for the uncertainty in
the learning process, and the online guarantees see monotonic
improvement over those generated offline.

III. PRELIMINARIES
A. Gaussian Process Regression

Gaussian Process (GP) regression is a non-parametric
Bayesian machine learning method [12] that aims to infer an
unknown function f : R™ — R from noisy data. A standard
assumption of GP regression is that f is a sample from a
GP with zero mean and covariance  : R” x R" — R. Let
D = {(xi,yi),% € {1,...,m}} be a dataset, where y; is a
sample of an observation of f(x;) with independent zero-
mean noise v, which is assumed to be normally distributed
with variance 02 and X and Y be ordered vectors with all
points in D such that X; = x; and Y; = y;. Further, call
K (X,X) the matrix with K; ;(X;, X;) = r(xs,%5), K(x,X)
the vector such that K;(x,X) = k(x,X;), and K(X,x)
defined accordingly. Then, the predictive distribution of f at
a test point x is given by the conditional distribution of f
given D, which is Gaussian with mean pp and variance o3
given by

pp(x) = K(x,X) (K(X,X) + 0%L,) 'Y 3)
012) (x) = k(x,x) — K(x,X) (K(X7 X) + 0‘2]m) _1K(X, )21,
)

where I, is the identity matrix of size m x m. For stationary
kernels, such as the squared-exponential kernel, op(-) sees
monotonic decay as m increases. As m — oo, the posterior
covariance op(-) — 0 and pup — g [12].

In this work, contrary to the standard GP regression setting
described above, we do not assume that f is sampled from
a given GP or that the observation noise is Gaussian. To
quantify the estimation error in this more agnostic setting,
under Assumption El, we can rely on Theorem 2 from [15],
which bounds the regression error with high-probability in
the form:

Plvx € X, |up(x) — f(x)] < B(8)op(x)] =148, (5)
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where § € (0,1) specifies the upper bound, and 3 is a
compensator that depends on the choice of x, the dataset D,
and 0. We refer to [15] for further information on 8 and (3)).

B. Interval Markov Decision Processes (IMDPs)

We use interval Markov decision process (IMDPs) as the
abstraction model for Process (I)). IMDPs generalize Markov
decision processes (MDPs) by allowing an interval of values
for transition probabilities [30].

Definition 3 (IMDP). An interval Markov decision process
(IMDP) is a tuple T = (Q, A, P, P, AP, L), where
o (Q is a finite set of states,

o A is a finite set of actions, and A(q) denotes the set of
available actions at state q € Q,

o P:QxAxQ—0,1] is a function, where P(q,a,q')
defines the lower bound of the transition probability from
state q € Q to state ¢' € Q under action a € A(q),

« PiQxAXQ— [0,1] is a function, where I:’(q,a, q)
defines the upper bound of the transition probability from
state q € Q to state ¢’ € Q under action a € A(q),

o AP is a finite set of atomic propositions,

o L:Q — 2% is a labeling function that assigns to each
state q € @ a subset of AP.

For all ¢,¢’ € Q and a € A(q), it holds that P(q,a,q') <

P(qv a, q/) and ZQ'EQ P(qv a, q/) S 1 S Zq’EQ P(qvav q,)

A path of an IMDP is a sequence of states wr = gy —
a2 gy 2 ... such that a; € A(q) and P(qk,ak,
gr+1) > 0 for all k£ € N. We denote the last state of a finite
path Wi by last(wi™) and the set of all finite and infinite
paths by Paths™ and Paths, respectively.

Definition 4 (Strategy). A strategy w of an IMDP model 7 is
a function w : Paths™ — A that maps a finite path w%“ of
T onto an action in A(last(Paths™)). If a strategy depends
only on last(w%“), it is called a memoryless (stationary)
strategy. The set of all strategies is denoted by I1.

Once an action is chosen by strategy m, we evolve from
the current state to the next state according to a probability
distribution that respects the transition probability bounds
of the IMDP. There exist possibly infinitely many such
distributions, and an adversary chooses this distribution.

Definition 5 (Adversary). For an IMDP Z, an adversary
is a function € : Paths™ x A — D(Q) that, for each
finite path Wi € Paths™, state q = last(wi™), and action
a € A(last(wi™)), assigns a feasible distribution ~§ which
satisfies P(q,a,q') < va(q') < P(q,a,q’). The set of all
adversaries is denoted by =.

Given a strategy 7 and an adversary &, a probability measure
over the paths of IMDP 7 can be defined using the induced
Markov chain [4].

C. Deterministic Finite Automaton (DFA)

Given LTLf formula ¢, a DFA can be constructed that
precisely accepts the language of ¢ [23].

Definition 6 (DFA). A deterministic finite automaton (DFA)
constructed from an LTLf formula o defined over atomic
propositions AP is a tuple A, = (Z, 24P 5. 20, Zr), where
Z is a finite set of states, 2T is a finite set of input symbols,
§: 7 x 24P 5 Z is the transition function, zy € Z is the
initial state, and Zr C Z is the set of accepting (final) states.

A finite run on A, is a sequence of states 2021 . .. Zp41
induced by trace p = pop1 - ..pn, Where p; € 247 and
zi+1 = 0(2;, p;). A finite run on p is accepting if z, € Zp.
If the run is accepting, then trace p is accepted by A,. The
set of all traces that are accepted by A, is call the language
of A, denoted by L(A,). This language is equal to the
language of ¢, i.e., L(p) = L(Ay).

IV. OFFLINE-ONLINE SYNTHESIS

In this section, we describe our synergistic offline-online
control synthesis framework, which consists of two modules.
The offline module constructs an IMDP abstraction for
Process (T)) and generates the baseline control strategy with a
lower-bound guarantee on the probably of satisfying (. The
online module uses the offline abstraction and lower-bound
probabilities to refine the control strategy and abstraction,
which results in monotonic improvements to the guarantees.
We first briefly describe the offline module, which is based
on previous work [22], and then detail the online module,
which is the main contribution of this work.

A. Offline Module

The offline module first performs GP regression to estimate
the unknown function f(-,u) for each u € U from the given
initial dataset D. This is achieved by using (3) and @) on
each component of f. Note that the corresponding regression
error | @) (2, u) — £ (x,u)|, where f() is the estimate (GP
mean) of the i-th component of f obtained from (3), is given
by @).

Given f, the method constructs the IMDP abstraction
T = (Q,A,P,P,AP,L) by partitioning of the compact
set X. Each resulting discrete region is associated with an
IMDP state ¢ € Q. One state of the IMDP is also used
to represent the rest of the continuous space R™ \ X. The
labeling function L of the IMDP states is defined according
to the labels of continuous states within each region. We
remark that, to ensure correct labeling, the space discretization
performed above must respect the regions of interest in .
This guarantees that the label of the discrete regions correctly
hold for every continuous state in that region, i.e., for discrete
region ¢ C R™, L(q) = L(x) for every z € gq.

Next, the set of IMDP actions is defined to be the set
of controls of Process (1)), i.e., A = U. The transition
probability bounds are then given by the following proposition,
which uses the discrete regions, the regressed GP, and its
corresponding error.

Proposition 1 ([22], Theorem 1). For a region ¢ C R"
and control u € A, let |h||%" = sup,c, |h(z,u)| . Given a
control u € A, regions q,q' C R", dataset D, regression f,
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and positive real vectors e € R™ and n € R", then

P(g,u.q') = maxT(q' | z,u)

n

< (a7 L0l < nl+ TTPIw®1 > )

1

1207 = D) <e]+ ][ P
=1

=1

[[FARES
(6)

P(q,u,q') = min (¢’ | z,u)
Im(q,u i w
U—kﬁ$ﬂﬂ[w)fW&§ﬂ-

=1

[ PlIw? <nl. @
i=1

where 15 returns one if AN B # () otherwise zero, §'(c) and
¢ (c) are the regions obtained by expanding and shrinking
(each dimension of) ¢’ by the scalars in vector ¢, respectively,
and Im(q,u) is the image of q under f defined as Im(q,u) =
{f(@,u) |z € q).

Further details of Proposition |1| can be found in [22]. Note
that the discretization (volume of ¢ and ¢’) plays a significant
role in the transition probability bounds as the image of ¢
under the learned dynamics can be very large (especially
when it is over-approximated). In addition, the regression
errors dictate both the P[||f() — f()||2% < ¢,] terms along
with affecting the magnitude of the expanded and reduced
sets. Hence, the larger these errors, the looser the bounds P
and P, leading to larger uncertainty in the abstraction.

Given abstraction 7 and specification ¢, a control strategy
can be generated that is robust against these errors and
maximizes the lower bound probability of satisfying . This
is achieved via a product construction between abstraction Z
and DFA A, which represents ¢. The result is the product
IMDP (PIMDP) which is defined below.

Definition 7 (Product IMDP). Given an IMDP 7 =
(Q,A,P,P,AP,L) and DFA A, = (Z,247 3, ZO,ZF)
the product IMDP (PIMDP) P = (S A, PP PP Sy, 8p),
where S =Q X Z, Sp =Q X Zp,

So = {(q, zinit) | ¢ € Q, Zinit = (20, L(q))},
and

P(q,u.q') if 2/ =6(z,L(q))
0 otherwise

R

pp((Qa Z)’u7 (qlvzl)) = {

The PIMDP accepting states S encapsulate the satisfac-
tion of the specification ¢, i.e., a path that reaches S satisfies
. Hence, we formulate the following optimization problem

FONL > e,

to compute a robust strategy mog : S — A that maximizes
the lower bound of the probability of reaching a state in Sp:

=s. (8

i(s) = in P 0
moft(5) = arg max min lwp | ¢ | m,wp(0)

We solve this optimization problem using an interval-value
iteration as detailed in [4], which results in a memoryless
strategy on P. The interval-value iteration procedure also
returns the lower- and upper-bounds of the probability of
satisfaction of ¢ under 7y, i.e.,

BWO“(S) = Ifnelél P[wP |: © ‘ Toffs wp(O) = 3}7 9)
Pro(s) = max Plop |= ¢ | mor,wp(0) = 5], (10)

respectively. These satisfaction intervals let us identify regions
where success is more likely (a lower-bound near one), regions
where violation is more likely (an upper-bound near zero), and
regions with high uncertainty (large intervals). By deploying
the system with 7o at g, the system is guaranteed to satisfy
¢ with a probability at least p ((q,zlmf)) The goal of
the online module is to synthes1ze controllers at runtime
to improve this guarantee towards the optimal probability,
which is evidently most helpful for the regions with high
uncertainty.

B. Online Module

In constructing the PIMDP P and strategy mos offline, we
are limited by the uncertainty introduced by the finite amount
of data in D and by the discretization of X. Our goal is to
use the information collected at runtime to improve g by
reducing both sources of uncertainty. In Alg. [T} we present a
high-level description of our synergistic control framework
that obtains both of these goals.

Online, at each time step, we observe the current state
of the system zj; and build a set of (local) GPs to make
predictions for the transitions of Process (I to the states of
the abstraction in one-time step starting from x; (Line 5).
Note that this set of GPs (QP ) are employed exclusively to
make local predictions starting from xj. Hence, to train them,
we can simply use only data local to zj, thus making the
training process efficient enough to be employed at runtime.

Algorithm 1 Online control loop

1. procedure CONTROLLOOP(P, GP*, zo, D)
2 k<0

3 so <~ INITIALPIMDPSTATE(P, x¢)

4 while sk ¢ Sr do

5: gPu <—CREATEL0CGP(Q7?A x, D)
6 P «+UPDATEPIMDP (P, GP2 )

7 u* - GETOPTIMALACTION(P xk)
8

9

Trr1 < fag, u*) + wy
: Sg+1 < UPDATEPIMPDSTATE(P, x11)
10: DeDU{(xk,u*,xk_H)}
11: k+—k+1
12: end while

13: end procedure
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The resulting GPs are then employed to refine the PIMDP
‘P and get the optimal action u* using the values computed
offline as explained below. Until we reach an accepting state
of P, we continue the process and keep enlarging D with
the runtime observations. Below, we give further details of
how we update P and we select the optimal action as well
as how we train local GPs QPfk.

1) Optimal Actions: To choose the optimal action, we
first augment the PIMDP with the current state and then
choose the optimal next action (Lines [5] and [7] in Alg. [I).
Given the current state z;, we begin by defining a new P
state 8" = (xg, z), where z is the current state of the DFA.
By reasoning over a singleton (x; instead of region ¢ that
contains x), we eliminate the discretization error over the
next step. In particular, for 2’ = 6(z, L(xy)) we can compute

PP((xk’z)’u7 (qlvz/» 1) :xk,u],
(11

and similarly for the upper bound. The bound in (TI) can
be computed directly using Proposition [I] and is guaranteed
to improve compared to PP ((q,z),u,(q',2")) as we can
compute the image I'm({xy}) under the learned dynamics
exactly and mitigate this discretization error.

We now focus on how to choose the best action in order
to reach a state in Sp. In particular, similar to the goal of
the optimization problem in (8), we want to find the action
u* that maximizes (with an abuse of notation)

p(s’,u) —mm Z V(W w)(s),
SGS“(S
where S*(s’) {s € S | PP(s',u,s) > 0}. Note
that p(s’,u) is the worst-possible expected lower-bound
probability under action u. We pick the best control as

= P[xp11 € ¢ | wx(k —

(12)

= " ). 13
u” = arg max p(s',u) (13)

In practice, it is common to have multiple actions that
maximize p(s’,u) e.g. when it is O for all actions. We intro-
duce secondary and tertiary metrics grounded encouraging
progression, though maximizing p(s’, u) is always preferred.

a) Satisfaction Upper Bound: As a secondary criteria,
we consider the upper-bound of the probability of satisfaction
from s’, which is defined as

§ fin
HllIl p‘n'on wI ’
T sesa(s)

u)(s). (14

p(s’,u)
In particular, we select the action u* = arg max, .- p(s’, u),
where U* is the set of actions returned by (I3). Hence, u* is
the one with the greatest lower- and upper-bound probability
of satisfying ¢. Note that we are again selecting actions
against the worst adversary, which is required in order to be
robust against uncertainty.

Even with these primary metrics defined, in practice they
are not always sufficient to realize good online behavior,
and there may be multiple u* optimizing both criteria. As
we are concerned with choosing u* that best improves the
performance for the next step, we introduce two tertiary
metrics that encourage one-step progression.

b) Sink-State Metric: This metric prefers actions that
do not violate ¢ by using the inherent DFA sink state, from
which reaching the accepting state is impossible. For each
s € S%s"), we check if the DFA transitions to the sink state
and prefer actions with a low chance of doing so.

c) Progression Metric: We consider a progression metric
that defines progress towards reaching Sr. Given s’, we can
measure its distance from an accepting state in Sr by using
the minimum distance to S from each s € S%(s’), which is
easily computed offline. Once online, we choose the action
that gives the shortest expected distance to Sp.

2) Local GP and PIMDP Updates: At runtime, we collect
data that were not available offline. By using this new data,
we can refine the regression error and in turn obtain a less
uncertain IMDP abstraction. Rather than updating the full
GP corresponding to action u, GP*, we construct a local GP
GP, using the (-nearest datapoints in D to x. Training
then proceeds as for standard GP regression using the same
hyperparameters as GP“. The hyperparameter ¢ (number of
data employed to train our local GP) induces a trade-off
between regression accuracy and computation overhead. For
more insight on picking ¢ we refer to [31], [32].

Our motivation for using local GP regression stems from
computational tractability in the online setting. Performing
regression with local data is O(£3) in the worst case. Thus, by
choosing ¢ much smaller than the total number of available
data, we can have a polynomial speed up that allows for
runtime computations. Note that once we have GP.%, we can
update the abstraction and product PIMDP by recalculating
P(q,u*,q') and P(q,u*,q) for all ¢ in a neighbourhood of
z. The transitions are then updated in Z and consequently
in P only if the resulting interval is tighter. Once enough
transitions are updated in the abstraction, the offline strategy
Toff can be updated using the refined PIMDP, denoted 7.
This is done again using interval-value iteration, which is
polynomial time (cubic) in the size of P.

C. Correctness

The following theorem guarantees that Alg. |1| monotonically
reduces the uncertainty in the system predictions.

Theorem 1. Let x; be the state of Process (1)) at the k-th
step of Alg. |I} Similarly, let m, be the refinement of w,y with
k additional datapoints computed according to (8). Then, for
any s € S it holds that

Dy, (9):Pn (9] € [, (5), P, (5)]

The proof of Theorem || relies on the fact that, at runtime,
we modify only the transition probabilities of P that are
improved by the new data. Hence, the set of adversaries of
the updated PIMDP are a subset of those of the PIMDP at
the previous time step.

Finally, we remark that in the limit as D becomes dense
in X, the regression error in (3 goes to zero with probability
one. As a consequence, it is possible to show that as the
size of the discretization goes to 0 and as the coverage of D
approaches X, Alg. [l| converges to the optimal strategy for

Process ().

5)



Updated from version in the 2021 Proceedings of the IEEE Conference on Decision and Control

V. EVALUATIONS

We evaluated our framework on the nonlinear system
X1 = Xi + g(Xp, up) + Wy,

where uy, € {u1,us, uz, uqs}, and g is a priori unknown with
9(Xg,u) =

+ smx cos X if up = uyq
[0.25 4+ 0.05 O 1 (1)] if
025+00581nx() Olcosx() if up = ug
k
cosx. + sinx,; if up = ug
0.1 k 0 254 0.05 (1) if
cosx! ,— .25 4+ 0.05sinx if up = uyq,
0.1 k 0.25 4+ 0.05 ,(cl) T if

and wy, is Gaussian noise drawn from N'(0,0.017).

The compact set X = [—2,2]? and its regions of interest
are shown in Fig.[Ta] The atomic propositions are O (obstacle),
D1 (destination 1) and D2 (destination 2). The specification
s “to visit destinations 1 and 2 in any order and always avoid
the obstacle.” It translates to the LTLf formula

¢ = G(=0) A F(D1) A F(D2).

The offline abstraction, PIMDP, and 7w were computed
in an hour with m = 200 uniformly random datapoints for
each action. We intentionally used a small D to demonstrate

the efficacy of the proposed offline-online control framework.

In the online module, local GPs were created at every
step using the ¢ = 75 nearest datapoints and the same
hyperparameters as the offline GPs (which were trained using
a zero-mean prior and the squared-exponential kernel). We
chose three initial states from the states with p_ = =0, and
deployed the system with the proposed framework. Each
simulation ran until the specification was satisfied, violated

or the trajectory length reached a predefined bound of 500.

Note that ¢ is an unbounded-time property, and hence, the
trajectories need to be extended to infinite length though this
is impossible in practice. Figure |1| shows multiple simulated
trajectories generated with the online framework using the
sink-state (“Sink’”) metric, and the combined sink-state and
progression metric (“Sink-Prog”) (see Sec. [[V-B).

Table [l contains benchmark results for different GP cases
and tertiary metrics. We compare the empirical probabilities of
violating and satisfying ¢ using static global GPs, static local

GPs, and local GPs with online updates over 500 simulations.

The framework is evaluated using the tertiary metrics for each
GP case and compared to the performance of 7o, which has
Qﬂon_(s) = 0 for all possible initial states. In other words, mof
does not provide any a priori satisfaction guarantees.

First, we compare the efficacy of our online framework

and the different tertiary metrics against the offline strategy.

In all cases, the online framework decreases the number of
(p-violating runs, and in many cases increases the number of
p-satisfying runs. Notably for the third initial state, m,g results
in a 35-65 split in violating and satisfying runs while the
online framework sees consistent drops in the percentage of
violating runs. When the sum of the fractions of violating and
satisfying runs is less than one, the remainder runs terminated
in a Zeno-like behavior as observed in Figure This may

be a beneficial behavior as it leads to collection of more data
and reduction in the regression error.

The three major columns of Table |I| compare the outcomes
using three types of GPs. In many cases, particularly for
the second initial state, local GPs with updates provides a
benefit to the number of -satisfying runs. The proportion
of p-violating runs is worse for the third initial state, but
the most successful runs are realized using the local GPs
and the combined tertiary metrics. The same benchmark was
run on the global GP with online updates (not included in
the table), but all the trials timed out after 24 hours with
no result clearly illustrating the advantage of local GPs for
online computations.

Constructing the local GPs without updating them or the
PIMDP is only marginally slower than using the global GP
directly. The additional time to update the local GP and
update the PIMDP transitions is significant compared to the
static methods, but are still reasonable for online scenarios.
Collecting data online and updating the PIMDP abstraction
takes time, but it results in improved transition intervals
between states. The additional data collected while using the
sink-state metric shows many intervals are improved due to
long trajectories that neither violate nor satisfy .

These evaluations exhibit the advantage of using the
proposed offline-online control framework. The framework
was able to increase the probability of satisfaction, in some
cases from 0% to 100%, and the use of local GPs enables us to
overcome computational limitations. Further investigation is
needed to address the aforementioned hyperparameter choices,
e.g., the value of ¢, and number of P states to update.

VI. CONCLUSION

In this work, we presented a synergistic offline-online
control framework for stochastic systems with an unknown
component via local GP regression. The offline module
provides a baseline controller and guarantees for the online
module. Online, the controller and its guarantees are itera-
tively refined as more data is collected. Evaluations illustrate
the advantage of the framework over just the offline method.
Future directions include investigation into hyperparatmeter
choices for the online method and experiments (deployments)
of actual physical platforms with this framework.
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