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Abstract

Bayesian regression games are a special class of two-player general-sum Bayesian games in which
the learner is partially informed about the adversary’s objective through a Bayesian prior. This
formulation captures the uncertainty in regard to the adversary, and is useful in problems where
the learner and adversary may have conflicting, but not necessarily perfectly antagonistic objectives.
Although the Bayesian approach is a more general alternative to the standard minimax formulation,
the applications of Bayesian regression games have been limited due to computational difficulties, and
the existence and uniqueness of a Bayesian equilibrium are only known for quadratic cost functions.
First, we prove the existence and uniqueness of a Bayesian equilibrium for a class of convex and
smooth Bayesian games by regarding it as a solution of an infinite-dimensional variational inequality
(VI) in Hilbert space. We consider two special cases in which the infinite-dimensional VI reduces to
a high-dimensional VI or a nonconvex stochastic optimization, and provide two simple algorithms of
solving them with strong convergence guarantees. Numerical results on real datasets demonstrate
the promise of this approach.

1 Introduction

Adversarially robust models have seen a tremendous surge in research activity by various communities
over the past decades, including statistics [Huber, 2004], optimization [Ben-Tal et al., 2009], and ma-
chine learning [Globerson and Roweis, 2006, Biggio and Roli, 2018]. In machine learning, there has been
renewed interest in the topic driven by work on adversarial methods in deep learning [Bruna et al., 2014,
Goodfellow et al., 2015]. There are two main considerations underlying this line of work: (1) real-world
deployments of machine-learning methods require robustness to malicious data and it is an ongoing
challenge to provide such robustness [Madry et al., 2018, Wong et al., 2020]; (2) adversarially robust
models may generalize better [Zhu et al., 2020] and have better interpretability properties than non-
robust methods [Tsipras et al., 2019, Santurkar et al., 2019]. To this end, adversarially robust models
are often preferred by practitioners in real-world applications.
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From a game-theoretic point of view, adversarially robust models naturally form a two-player game
between a learner and an adversary. Both players choose actions simultaneously, and their interacting
dynamics constitute a noncooperative game [Nash, 1951]. The learner’s action is to select the best set of
model parameters while maximizing the test accuracy; the adversary’s action is to impose a perturbation
on the input data distribution while paying a perturbation cost. Based on this general framework, exist-
ing approaches have mostly been restricted to the zero-sum case, in which the learner and adversary have
fully conflicting goals. In this case, the learner is best off by choosing a minimax strategy; i.e., minimiz-
ing the worst-case cost over the action space of the adversary. For classification and regression problems,
properties of the minimax solutions have been derived under a variety of assumptions [Lanckriet et al.,
2002, EL Ghaoui et al., 2003, Globerson and Roweis, 2006, Sayed and Chen, 2002, Teo et al., 2008].

On the positive side, the minimax solutions are computationally tractable in several specific set-
tings [Sayed and Chen, 2002], or can be approximated through a convex relaxation [Teo et al., 2008].
However, they come with a few limitations. First, zero-sum games are not flexible enough to capture
cases in which the learner and the adversary do not have perfectly antagonistic goals [Briickner et al.,
2012]. For example, a credit card defrauder’s goal of maximizing the illicit profit made from exploiting
phished account information via spam emails is not the exact inverse of an email service provider’s goal
of achieving a close-to-zero false positives rate at spam recognition. In these cases, a minimax strategy
can make overly pessimistic assumptions about the adversary’s behavior and lead to an optimal out-
come. One approach to filling this gap is by relaxing the zero-sum assumption to general-sum games,
in which the learner is fully aware of the costs of the adversary [Briickner et al., 2012].

Moreover, in many practical applications, the cost function of the adversary is simply unknown
to the learner. For instance, it is hard for an internet security service provider to know exactly the
profit of the attackers. Therefore, the standard minimax solutions, which require complete information
of the game, become infeasible to compute. This strong assumption of complete information can be
lifted via a Bayesian game-theoretic framework [Harsanyi, 1967]. This has been pursued, for example,
by GroBhans et al. [2013], who propose Bayesian regression games. In this class of games, the learner’s
uncertainty regarding the adversary’s costs is reflected in a Bayesian prior over the parameters of the
cost function. These authors derive sufficient conditions for the existence and uniqueness of a Bayesian
equilibrium, as well as a graduated optimization algorithm to compute the equilibrium.

Despite the appealing conceptual framework, the sufficient conditions for the equilibrium uniqueness
for Bayesian regression games that are known to date [Grofihans et al., 2013, Theorem 2] are designed
for quadratic cost functions. This excludes other common choices, e.g., logistic or smooth hinge func-
tions, which are widely used in practice. Moreover, the algorithms studied in this line of work are
heuristic, providing no theoretical guarantee of convergence. Thus we are motivated to tackle the fol-
lowing important open questions: Can we generalize existing sufficient conditions for the existence and
uniqueness of a Bayesian equilibrium in Bayesian regression games to more general cost functions? Can
we develop efficient algorithms to compute the equilibrium?

Contributions. We present an affirmative answer to these questions in this paper. First, we prove
sufficient conditions for the existence and uniqueness of a Bayesian equilibrium in a general class of con-
vex and smooth Bayesian games using a variational inequality (VI) approach. In particular, we show
that computing a Bayesian equilibrium amounts to solving an infinite-dimensional VI in a Hilbert space
under certain conditions. This allows sufficient conditions to be derived using classical results from the
optimization literature. Second, we consider two special settings with either a finite Bayesian prior or
a quadratic adversarial loss and show that the infinite-dimensional VI reduces to a high-dimensional



Euclidean VI or a nonconvex Euclidean stochastic optimization problem in these two settings. Third,
we propose new algorithms to solve for the equilibrium with theoretical guarantees. The first algorithm
uses the idea of projected reflected gradient with inertial extrapolation and achieves the strong conver-
gence. The second algorithm uses the idea of randomized block coordinate descent, and is specialized
to the finite Bayesian prior setting. We provide an analysis of its iteration complexity and conver-
gence guarantee. Lastly, we empirically demonstrate the effectiveness of the proposed approach on real
dataset.

Organization. In Section 1.1, we overview related work on Bayesian games and the computation
of equilibria. In Section 2, we present background on Bayesian regression games and prove that the
computation of a Bayesian equilibrium amounts to solving an infinite-dimensional VI. We also treat the
existence and uniqueness of Bayesian equilibria and consider two special settings of a finite Bayesian
prior and a quadratic adversarial loss. We propose specific algorithms and analyze their convergence
and iteration complexity in Sections 3 and 4. Numerical results demonstrating the favorable practical
performance of our algorithms are presented in Section 5. We conclude in Section 6 and provide all the
missing proof details in the appendix.

Notation. We use bold lower-case letters such as x to denote vectors, upper-case letters such as X to
denote matrices, and calligraphic upper-case letters such as X’ to denote sets. The notation [n] refers
to {1,2,...,n} for some integer n > 0. The symbols 0,, and 0,,x,, refer to the vector and the matrix
in R” and R™*" whose entries are all zeroes. We let E[-] denote an expectation and use E,[-] to denote
an expectation over a distribution ¢. For a differentiable function f : R? — R, we let V f(x) denote the
gradient of f at x. For a vector x € R?, we denote ||x|| as its fo-norm. For a matrix X € R¥", we let
| X || denote its Frobenius norm. As an abuse of notation, we denote (x,y) = x 'y as the inner product
between two vectors x,y € R% and (X,Y) = Trace (X 'Y) as the inner product between two matrices
X,Y € R¥" where Trace(-) stands for the trace of a matrix. For X C R% we let Dy denote its
diameter: Dy = maxyx xex ||x —X'[|. Given € > 0, a = O(b(¢)) stands for the upper bound a < C'- b(e),
where C' > 0 is independent of . Similarly, a = O(b(e)) indicates that the inequality may depend on a
logarithmic function of 1/e, where C' > 0 is independent of .

1.1 Related Work

We refer to Kolter and Madry [2018] as a reference point for the burgeoning literature on adversari-
ally robust models. Despite the attention devoted to this topic, Groflhans et al. [2013] is one of very
few papers that models the general-sum nature and the uncertainty in the adversary via the classical
formalism of Bayesian games.

Bayesian games. Bayesian game has been a classical approach in game theory to model the situation
of asymmetric or incomplete information in games. In his seminal work, Harsanyi [1967] proved the
existence of a Bayesian Nash equilibrium in finite Bayesian games given a common prior and common
knowledge of that prior among all the players. Subsequently, Mertens and Zamir [1985] introduced
a relaxed notion of a “universal prior space”, which is a sufficiently large space that captures players’
higher-order beliefs. Further, Aghassi and Bertsimas [2006] considered the special case where the payoffs
are drawn from a bounded uncertainty set but the distribution is fully unknown.



More recently, the appealing formulation of Bayesian games which captures the players’ uncertainty
has led to many works in economics settings, in particular for auctions. Specifically, each bidder has a pri-
vate valuation function that expresses complex preferences over all subsets of items, and bidders have be-
liefs about the valuation functions of the other bidders, in the form of probability distributions [Myerson,
1985]. In this setting, a Bayesian equilibrium can be viewed as an approximation for the optimal social
welfare value. Unfortunately, most existing results on the complexity of finding a Bayesian equilib-
rium in various auctions are negative Christodoulou et al. [2008], Bhawalkar and Roughgarden [2011],
Feldman et al. [2013]. Computing a Bayesian equilibrium is in PP and even finding an e-approximate
Bayesian equilibrium is NP-hard when e > 0 is small [Cai and Papadimitriou, 2014].

Equilibrium existence and computation. The existence of a mixed strategy Nash equilibrium is
well known in finite games with complete information [Nash, 1950]. Such existence results are derived
via the Brouwder fixed-point theorem [Kakutani, 1941], which suggests intuitively that a fixed-point
iteration might be an efficient approach for computing a Nash equilibrium. Similar existence and
uniqueness results are derived for concave games with complete information [Rosen, 1965]. However,
computation of the equilibrium has been a challenging problem. Chen et al. [2009] recently proved
that the problem of finding a Nash equilibrium for even the simplest two-player general-sum games is
PPAD-complete [Papadimitriou, 1994]. Further complexity results have been established for equilib-
rium computation in games with complete information under various assumptions [Gilboa and Zemel,
1989, Megiddo and Papadimitriou, 1991, Conitzer and Sandholm, 2003, 2008, Daskalakis et al., 2009,
Rubinstein, 2018]. In Bayesian games, the complexity of deciding the existence of a pure Bayesian equi-
librium is in general NP-hard [Conitzer and Sandholm, 2003, Gottlob et al., 2007]. Nonetheless, a few
Bayesian games are computationally tractable. Two canonical examples are: (i) tree-games [Singh et al.,
2004], where the cost function depends only on the actions/types of neighboring players and the interac-
tion formed by the neighborhood relation is a tree; (ii) two-player zero-sum Bayesian games with finite
prior. The counterfactual regret minimization (CFR) algorithm was proposed with solid theoretical
guarantee [Zinkevich et al., 2007].

2 Bayesian Regression Games

In this section, we first present the setup and equilibrium concepts for Bayesian regression games with
general cost functions. We then prove existence and uniqueness results by a variational inequality (VI)
formulation.

2.1 Basic setup

We consider a general-sum game between a learner of a regression model and a data generator who is
able to perturb the data distribution. Let (X,y) € R™™ x R™ be a pair of data matrix and target
vector, which are generated by the data generator at training time. Denote each row of X as x;, each
entry of y as y; for i € [n]. We assume that all pairs of instances {(x;,y;)}; are drawn from an
unknown distribution p over X x ). At testing time, the data generator provides new instances drawn
from another distribution i defined on X x ), but might not be . These instances are generally not
available at the training time.

For the learner, we denote the action space as YW C R™, which is the space of the regression
parameters. We denote an instance-specific weight by ¢;(x,y) > 0. Then, the learner’s cost at testing



time is the weighted average loss, i.e. 6/(w,,¢;) = [c(x,y)fi(w,x,y) dii(x,y), where w € W is a
parameter of the prediction model and f; is the cost function.

For the data generator, intuitively, the goal is to manipulate the input data in order to achieve certain
targeted predictions. Therefore, the costs of the data generator contain two parts. The first part is a
cost of performing the manipulation, and the second part is a cost which quantifies the loss between
the actual predictions and the data generator’s targeted predictions. For the cost of manipulation, the
manipulation of the input data is reflected in the difference between the distributions g and . We
denote the cost of such manipulation for the data generator as Q4(u, ft). For the cost on the predictions,
we denote the vector of target values for n data points as z(x,y) € Z C R", and f; as the cost function.
Similarly to the learner, we also allow the data generator to have a instance-specific weight cg(x,y).
Then, the data generator’s costs are defined by 04(w,ji,cq) = [ca(x,y)fa(w,x,2(x,y)) di(x,y) +
Qd(lua ﬂ) :

Note that the theoretical costs of both players depend on the unknown distributions g and . Thus,
we focus on the regularized empirical counterparts of the theoretical costs based on the training samples
(X,y,z), wherey € R" and z € R” are the empirical versions of y and z(x, y) respectively. The empirical
counterpart of the term Qg(p, i) is represented by the difference between the training matrix X and
a perturbed matrix X that would be the outcome of applying the transformation which translates
into i to X. For simplicity, we denote this by Q4(X, X). We also denote the empirical instance-specific
weights for the two players by ¢; € R™ and ¢g € R™. Then, the empirical costs of the learner and the
data generator are given by

él(wwf{a Cl) = Z?:l Cl,ifl(waiiayi) +Ql(w)a B (1)
Oa(w, X, cq) = > i caifa(W,Xq, z;) + Qq(X, X),

where Q;(w) is a regularization term. With a focus on machine-learning applications, we illustrate the
above setup with a few common loss functions, regularization terms and constraint sets. Besides the
quadratic case [GroBhans et al., 2013], we provide a motivating example using logistic function and the
unit ball constraint sets. This is encouraged by the fact that the logistic loss functions are more suitable
than quadratic ones for the binary classification/regression problems, such as the email spam filtering
and network security detection.

Example 2.1 (quadratic) fi(w,x,y) = (x'w — )%, Q(w) = |[w|?, fa(w,x,2) = (x"w — 2)? and

(X, X) = |X = X|[2; W=R™, X =R™™ gnd Y = Z = R".

Example 2.2 (logistic) fw,x,y) = log(l + exp(—yx w)), Q(w) = [w|2, fa(w,x,2) = log(1 +
exp(—szW)) and Qq(X, X) = || X — XH%; W={weR"||w|| <1}, X ={X e R | | X||r <1}
and Y = Z ={-1,1}".

2.2 Bayesian regression game

The previous basic setup describes a general-sum two-player regression game. Now we present the
formulation of the Bayesian regression game based on it. First, note that the cost functions (see
Eq (1)) depend on the actions of both players—the parameters w and the transformation manifested
in X. Further, the cost function of the data generator depends on the instance-specific weight c;. We
are interested in a setting where these weights are private information of the data generator, and are

unknown to the learner. Instead, the learner is only informed about the instance-specific weight cy



through a Bayesian prior ¢(cg). As argued by Grofihans et al. [2013], this asymmetry of uncertainty
is crucial. By modeling the learner’s lack of information about the data generator, we intend to make
the learner more robust to new adversarial examples. Thus, this setting is naturally formulated as a
two-player general-sum Bayesian game.

We denote this Bayesian regression game by the tuple G = (W, 3, @\l,é\d,cl, q). From the learner’s
viewpoint, ¢y is a random variable that is drawn from a Bayesian prior ¢ at testing time. During
training, the data generator commits to a parametric strategy, o : R — X', which maps a value of cy4
(unknown to the learner) to a transformation reflected in X. In other words, the action space of the
data generator ¥ contains all the functions from R™ to X. We also define Bayesian Equilibrium and
its approximation. We denote the best responses of the learner and the data generator as: w*[o] =
argming cyy Eq[0;(w, 0(cq), ¢;)] and o*[w](cq) = argmin gy 04(w, X, cq).

Definition 2.1 (Bayesian Equilibrium) The strategy profile (w4, 04) € W x ¥ is a Bayesian equi-
librium for the Bayesian regression game G = (W,Z,é\l,gd,cl,q) if, for a.e., w € Q) the following
statement holds true: (Wi,o.(cq)) = (W*[ou],0"[Wi](cq)), or equivalently, E,[60;(w,,o0.(cq),c1)] <
Eq[@(w,a*(cd), c;)| for all w € W and §d(w*,a*(cd),cd) < gd(w*,f(, cq) for all X € X.

Definition 2.2 (e-Bayesian Equilibrium) The strategy profile (w,0) € W x ¥ is an e-Bayesian
equilibrium for the Bayesian regression game G = (W,Z,é\l,gd,cl,q) if, for a.e., w € Q, the following
statement holds true: |w — wy||? + Ey[||o(cq) — 0x(ca)||%] < €, where the strategy profile (Wy,04) is a
Bayesian equilibrium.

When the distribution ¢ is a point mass, it is clear that no uncertainty exists and a Bayesian
equilibrium is a Nash equilibrium. This corresponds to a two-player general-sum game which is still
more general than the minimax strategy.

2.3 Infinite-dimensional variational inequality model

We show that we can regard a Bayesian equilibrium as a solution of an infinite-dimensional VI [Kinderlehrer and Sta
2000] (Eq. (3)). This characterization is not only necessary but sufficient under certain assumptions.

We adapt a proof technique in Ui [2016], and specialized the VI model to Bayesian regression games.

We make the following assumption throughout this paper.

Assumption 2.1 The Bayesian regression game G = (W, X §l,§d,cl, q) is convex and smooth: (1)
The cost function 51( X,¢;) : W — R is convex and continuously differentiable for each X e X, and
IVwli(w, X, ¢))||2 < 400 for each (w,X) € W x X; (2) The cost function 0u(w,cq) : X = R is
convex and continuously differentiable for each w € W, and E [HVXHd(W X,cq)|%] < +oc for each
(w,X) € W x X; (8) The action spaces W and X are both closed and convez.

We provide some intuitions for these assumptions. First, note that a Bayesian equilibrium is charac-
terized by the coordinate-wise minimization of the cost functions é\l and /H\d over the action spaces W
and X. Thus, it is necessary to impose convexity conditions on the cost functions and a few moment
conditions on the Bayesian prior q. Furthermore, our moment conditions are implied by the assumptions
Eqlcqi] < +oo for all i € [n] made in GroBhans et al. [2013, Theorem 1 and 2] and are thus slightly
weaker. Finally, even if the Bayesian regression game G = (W,AZ,/H\l,é\d,cl,q) is not smooth, we can
derive a similar first-order condition using the subgradients of 8;(-, X,c;) and 64(w, -, cg) and regard
a Bayesian equilibrium as a solution of a multi-valued VI [Kinderlehrer and Stampacchia, 2000]; see
Eq. (3) for the details.



Lemma 2.2 Under Assumption 2.1, the stmtggyApmﬁle (Wa,0x) € W X 3 is a Bayesian equilibrium
for the Bayesian regression game G = (W, %,0;,04,¢1,q) if and only if, for a.e. w € Q, the following
statement holds true:

Eq[(w — Wi, Vabi(Wa, 0u(ca), 1))
(X = 0u(cq), Vgba(Wy, 0x(ca), ca))

0, VweWw,

_ 2
0, VX e X. @)

>
>

Theorem 2.3 Under Assumption 2.1, the strategy profile (Wy,04) €W X X is a Bayesian equilibrium
for the Bayesian regression game G = (W, %,0;,04,¢,q) iff for V(w,o) € W x X, we have

Ey[(w — Wi, Vabi(Ws, 04(ca), €1)) + (o(ca) = 0u(Ca), V x0a(Ws, 04 (ca), €a))] > 0. (3)

For a game with complete information, it is common to study the existence, uniqueness and compu-
tation of a Nash equilibrium by regarding it as a solution of a VI in a finite-dimensional space. This
approach dates back to Lions and Stampacchia [1967] and has been thoroughly studied in the opti-
mization literature [Facchinei and Pang, 2007]. While the VI approach can be formally extended to an
infinite-dimensional space [Kinderlehrer and Stampacchia, 2000], it has not been recognized as a useful
analytical tool to study games with incomplete information. The only work that we are aware of in this
vein is Ui [2016], who gives a sufficient condition for the existence and uniqueness of a Bayesian equilib-
rium by regarding it as a solution of an infinite-dimensional VI. The focus in that work is, however, a
general setting without any consideration of the computation of an equilibrium.

2.4 Equilibrium existence and uniqueness

Based on the infinite-dimensional VI formulation (see Eq. (3)), we prove a set of sufficient conditions
for the existence and uniqueness of a Bayesian equilibrium. Our results generalize the existing work to
Bayesian regression games with general convex cost functions.

For the Bayesian regression game G with its equilibrium defined by Eq. (3), we define a Hilbert
space H consisting of (an equivalence class of) functions 5 : R™ — R™ x R™™ with the inner product
by (w,0), (W', o))y = Eq[(w(cq), W' (cq))+(o(cq), 0’ (cq))] < +oo. Note that each element in W C R™
can be regarded as a constant function from R"™ to R™ whose value is this element. We denote the set
of these constant functions by 3y (an equivalence class of VW) and define a mapping 7' : ¥yy x ¥ — H

by
T< w > _ vwe/l\(w7o-(')7cl) c H. (4)
o) Vba(w,o(-),")
Thus, the computation of a Bayesian equilibrium is equivalent to solving a VI in the space H. This
allows us to analyze the existence and uniqueness of a Bayesian equilibrium under the VI framework.

For example, the existence of a Bayesian equilibrium is guaranteed by the continuity and monotonicity
of T" as well as some additional conditions on W x 3.

Definition 2.3 Let H be a Hilbert space with the inner product (-,-)3, we define S C H as a closed
and conver set and T : S — H as a mapping. Then, T is monotone if (TS — TS, — ')y > 0 for
each B, € 8; T is strictly monotone if (TS —Tp',8— 'Yy > 0 for each 8,5 € S with 8 # 3'; T
is A\-strongly monotone (A >0) if (T8 —TB,B— By > \|B— 5|3, for each 8,8 € S.

We summarize the existence and uniqueness results in the following two theorems.



Theorem 2.4 (Existence) Suppose that the mapping T defined by Eq. (4) is continuous and mono-
tone, and the action space VW X ¥ is nonempty, closed and convexr. If W x ¥ is compact, or there exists
(Wo,00) € WX X such that, for all (w,a) € W x X satisfying ||w||* +Ey[||o(cq)||%] — 400, the following
statement holds true:

Ey[(w — wo, Viwbi(w, o(ca), 1)) + (o(ca) — 00(ca), V x0a(W, o(ca), ca))]
VIWIZ + Egflor(ea) 3]

Then, the VI in Eq. (3) has at least one solution.

— +00. (5)

Corollary 2.5 Under Assumption 2.1, if T' defined by Eq. (4) is monotone and there exists (wo,0p) €
W x ¥ such that, for all (w,0) € W x X satisfying |w|? + Eq[||o(ca)||%] — +oo, Eq. (5) holds. Then,
the Bayesian regression game G has at least one Bayesian equilibrium.

Corollary 2.6 Under Assumption 2.1, we assume that T defined by Eq. (4) is monotone and the action
space W x ¥ is compact. Then, the Bayesian regression game G has at least one Bayesian equilibrium.

Theorem 2.7 (Existence and Uniqueness) Suppose that T defined by Eq. (4) is continuous and
strictly monotone, and YW x X is nonempty, closed and convexr. If W X ¥ is compact, or there exists
(Wo,00) € W x ¥ such that, for all (w,0) € W x ¥ satisfying |w|> + E,[|lo(ca)||%] — +oo, Eg. (5)
holds true. The VI in Eq. (3) has a unique solution.

Corollary 2.8 Under Assumption 2.1, if T defined by Eq. (4) is A-strongly monotone. Then, the
Bayesian regression game G has a unique Bayesian equilibrium.

Corollary 2.9 Under Assumption 2.1, if the mapping T defined by Eq. (4) is strictly monotone and
the action space YW x X is compact. Then, the Bayesian regression game G has a unique Bayesian
equilibrium.

The monotonicity condition in Corollary 2.9 generalizes [Grofhans et al., 2013, Theorem 2|, which is
a special case with quadratic loss functions. Our VI approach also supplies an intuitive yet rigorous
justification for Eq. (5), demonstrating that it arises from the strict monotonicity of the mapping 7.

2.5 Two special settings

For practical purposes, we consider two special settings where the computation of a Bayesian equilibrium
reduces to solving a high-dimensional VI or solving a nonconvex stochastic optimization problem, both
in Euclidean space.

Case I: Finite Bayesian prior. Let K > 0 be an integer, assume that the Bayesian prior ¢ is a
distribution with support {vi,...,vi}; ie., g(cg = vi) = pr > 0 for all k € [K], Zfil pr, = 1. Then,
the VI in Eq. (3) becomes

K

Y orlw = W, Vabi(Wa, 0. (Vi) €2)) + (0(vi) = 0u(Ve), VieBa(Wa, 0u(vie), vie))] 2 0, (6)
k=1



for all (w,0) € W x X. By definition, 0,0, € ¥ are both mappings from R"” to X in an infinite-
dimensional space. When the Bayesian prior is finite, Eq. (7) implies that o can be fully represented by
(o(v1),0(v2),...,0(vk)) where the range {vy,Vva,..., v} is finite and known. For simplicity, define
0% = o(vy) and o = 0, (v},) for all k € [K]. Then, the VI in Eq. (6) can be reformulated as follows:

> oW — W, Vabi(w,, 0¥ ) + (0% — o, VxBa(we, 0¥, )] > 0, (7)

for all w € W and o* € X for all k € [K]. Note that the VI in Eq. (7) is a high-dimensional VI in
Euclidean space. Indeed, w € R™ and o* € R™*™ for all k € [K], implying that the total number of
unknown variables is m + mnkK.

Case II: Quadratic adversarial loss. Consider fy(w,x,2) = (x'w — 2)?, Qq(X, X) = HX X|%,
where x € R™, and X, X € X = R""™ we have 0*[w](cy) = argmin gcgnxm lel cdz(chT —2)?+]| X -
X||%. By [GroBhans et al., 2013, Lemma 1], 0*[w](cy) = X — (diag(cq)™ + |w|?L,) H(Xw —z)w .
Equivalently, we have

cdﬂ-(xiTw - z)

e R™. 8
L wlPeqs ¥

[o*[w](ca)li = xi —
Putting these pieces together with the best response of the learner yields the following stochastic opti-
mization problem:

Cdi (X;rW — ZZ')

mln E, [ch i <W x; — Ww,(m) + Q(w). (9)
The computation of a Bayesian equilibrium thus reduces to the solution of a nonconvex stochastic
optimization problem. Standard gradient descent approaches can not be applied for solving the opti-
mization problem in Eq. (9) since the integration with respect to a Bayesian prior ¢ does not have a
closed-form expression in general. Nonetheless, the Bayesian prior ¢ is known and accessible through
drawing samples, a stochastic-gradient-based algorithm can be applied and particular examples include
stochastic gradient descent (SGD) [Robbins and Monro, 1951, Bottou, 1998] or its adaptive variants
AdaGrad and ADAM [Duchi et al., 2011, Kingma and Ba, 2015].

3 Projected Reflected Gradient with Inertial Extrapolation

We present the projected reflected gradient with inertial extrapolation (PRG-IE) algorithm for solving
Eq. (3). We make the following assumption throughout this section and we discuss the intuitions of
them afterwards.

Assumption 3.1 The Bayesian regression game G satisfies the following: (i) W and X are both com-
pact with Op, € W and Opxm € X; (ii) Given that ¢; € R™ is fized, we have
Eq[<VW§l(W7 O'(Cd), Cl) - VWé\l(W/7 J/(Cd)7 Cl)7 w = W/>

H(V g0a(w,0(cq), ca) — V gha(w', 0’ (ca), ca), o(ca) — o' (cq))]
> 0, V(w,0) # (W, o',



Algorithm 1 Projected Reflected Gradient with Inertial Extrapolation (PRG-IE)
: Input: smoothness parameter L > 0; Bayesian prior ¢; weight ¢; € R".

. Initialize: wo,wi,wy; € W, 5¢,01,01 € ¥ and 0 < v < min{1, ﬁ}.
:fort=1,2,...,T do

Compute d; < 1/t.

Compute (Wiy1,0¢41) by

Wil < Pw(wy — Vw0, (2w, — Wi_1,20¢ — 04—1,¢;)),

51&—1—1 < PE(O't — ’va—ed(Q\X/t — \f7th_1, 251& — 51&—1, Cd)).

6:  Compute (Wyi1,0441) by

<Wt+1> <_ ﬁ <Wt> + (1 _5t) <‘E’t+1> '
Ot+1 2 \ oy Ot+1

7. end for

(iii) There exists a constant L > 0 such that ngl(', ¢r) WX X — R™ is L-Lipschitz for each ¢, € R"
and V 504(-,-,¢cq) : W x X — R"™™™ s L-Lipschitz for each cqg € R™, i.e. for each (w,X),(w', X') €
W x X, we have

IVwbi(w, X, ¢;) — Vubi(w', X', ¢))]|
||VX9d(W7X7 Cd) - VXed(W/,X/, cd)HF

< L(w = w| + [|X = X'[|F),

< Lilw =W+ X ~ X'|p)

Assumption 3.1 is standard in optimization and game theory. The second condition can be interpreted
as the strict monotonicity of 7' defined by Eq. (4) in terms of the inner product A(', Yyt HxXH—=R.
The third condition imposes a weak Lipschitz condition on V(- -, ¢;) and V g64(-,-,c4). The third
condition is necessary for the existence of at least one Bayesian equilibrium and the feasibility of the
sequence {(w¢, 0¢)}+>1 generated by Algorithm 1. Note that 0,, € W and 0,,x,, € X are not restrictive
since W and X are commonly taken to be the ball of a norm.

This approach combines Malitsky’s projected reflected gradient algorithm [Malitsky, 2015] with
Halpern-type inertial extrapolation [Halpern, 1967]. Such an integration has the following advantages:
(i) it only performs one projection at each iteration; (ii) it achieves the strong convergence to one
Bayesian equilibrium thanks to the extrapolation step. At each iteration, the projections Py (-) and
Px(+) are required and these operations are based on the inner product (-,-)y : H x H — R, which
necessities the expectation with respect to a Bayesian prior ¢. In applications, variational inference or
Markov chain Monte Carlo can be used to approximate this expectation.

Theorem 3.2 Under Assumption 2.1 and 3.1, the sequence {(w¢,0¢)} >0 € W x X generated by Al-
gorithm 1 satisfies |[wi — wy||? + Ey[||ov(cq) — ox(ca)||%] — 0, where the point (wy,04) € W x X is a
unique Bayesian equilibrium.

We make some comments in the sequel. First, the sequence &; = 1/t in Algorithm 1 is one specific
choice and more general choices can be considered, as long as they satisfy 6; — 0 and Z:;of 0 = +00.
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Algorithm 2 Projected Gradient with Randomized Block Coordinate (PG-RBC)

1: Input: strongly monotone parameter A > 0; finite Bayesian prior {(p, Vk}szl; weight ¢; € R™.
2: Initialize: wyg € W, of € X for all k € [K] and v > 55.
3: fort=0,1,2,...,T—1do
4:  Randomly pick up an index j; € [K] according to P(j; = k) = py, for all k € [K].
5. Compute (Wt+1,0't1+1, . ,afil) by

Wil ¢ Pu(we — %Vl (wi, 0]’ c))),

k Px(at — 4V ba(wy, o, vi), i k= i,
Oty1 < .
oF, otherwise.

6:  Compute yi41 < v/(t+ 1).
7: end for

The formula for updating the sequence {(w¢,0¢)}>1 can also be generalized as follows:

<Wt+1> . 5t g <Wt> + (1 - 5t) <Yt+l> 7
Ot4+1 o Ot+1

where g : H — H is a contraction with the parameter x € (0,1). We set g(x) = x/2 for simplicity.
Second, the strict monotonicity can be relaxed to monotonicity and it can be shown that the sequence
{(wy, 04) }1>1 strongly converges to a particular Bayesian equilibrium.

4 Projected Gradient with Randomized Block Coordinate

We present a projected gradient with randomized block coordinate (PG-RBC) algorithm for solving
Eq. (7). To ease the analysis, we make the following assumption throughout this section before providing
more intuitions for them.

Assumption 4.1 The Bayesian regression game G = (W, % 61,64, ¢, q) satisfies: (i) W and X are
both compact such that there exists a positive constant G such that ||Vy bi(w,X,c))| < G for each
(w,X) € WX X and each ¢; € R" fized, and ||V x04(w, X,v)||r < G for each (w,X) € W x X and

each v € {v1,...,vi}; (ii) Given a fived c;, there exists a positive constant \ such that'
~ - —~ — K ~ — ~ — — —
<VWGI(W,X, Cl) — VWGI(W/,X,, Cl),W — W,> + Zpk<VX9d(W,X, Vk) — VX—@d(W,,X/,Vk),X — X/>
k=1
Allw = w'[I* + | X = X[I7), V(w, X), (W, X') € Wx X.

In Assumption 4.1, the first condition can be interpreted as the strong monotonicity of 7" defined by
Eq. (4) when the Bayesian prior g is finite. The second condition naturally holds true if Vw0,(-,,¢;)
and V $04(-, -, v) are continuous for each ¢; € R" fixed and each v € {vy,...,vi}.

The proposed approach combines projected gradient algorithm with randomized block coordinate
update [Nesterov, 2012, Wright, 2015]. This design is more efficient than deterministic VI algorithms

'The constant A can depend on ¢; but is independent of the choice of (w, X) and (w’, X').

11



since the per iteration cost is O(nm) which does not depend on K. Thus, our approach is favorable in
application problems when the parameter K is large.

Theorem 4.2 Under Assumption 2.1 and j.1, the iterates {(w¢,0f,...,0F) >0 generated by Algo-
rithm 2 satisfy E[||w; — w2+ S5, |lof —o¥[|2] = O(1/t) where (wy, o), ..., oK) is a unique Bayesian
equilibrium.

We make some further comments. Since we do not assume any smoothness condition in Assumption 4.1,
the iteration complexity of O(1/t) is the best possible we can hope for all the deterministic and stochastic
algorithms in general?; see Nemirovsky [1983] for the reference. To this end, Theorem 4.2 demonstrates
that the complexity bound of Algorithm 2 is tight in terms of the iteration number.

5 Experiments

We consider a spam email classification with quadratic cost functions on a real dataset, where the fixed-
point approximation approach (denoted as Bayes-FP) proposed in Grofhans et al. [2013, Algorithm 1]
can be implemented. We provide numerical evidences which demonstrate the advantage of the proposed
stochastic optimization approach (denoted as Bayes-sADAM) in Eq. (9) over Bayes-FP. We also compare
with two other baseline approaches, including a standard Ridge regression and a Nash equilibrium
strategy. The Nash equilibrium strategy is simply the special case when the Bayesian prior is taken
to be a point mass at its mean. Since Algorithm 1 and 2 are either more general or specialized to
other settings, we believe it is unfair to compare them with Bayes-ADAM and Bayes-FP which can
only be applied when the adversarial loss is quadratic. Thus, we exclude them here and leave further
experimental investigations to future work.

Dataset. We use the Spambase dataset [Dua and Graff, 2017], which contains 4601 examples. The pre-
diction task is to identify if an email is spam, and the binary label for each sample denotes whether it was
considered spam (1) or not (0). Most of the attributes indicate whether a particular word or character
was frequently occuring in the e-mail. The run-length attributes measure the length of sequences of con-
secutive capital letters. We refer the interested reader to http://archive.ics.uci.edu/ml/datasets/Spambase/
for more details.

Experimental setup. We study how Bayes-ADAM and Bayes-FP perform against an adversary that
chooses a strategy according to a Bayesian equilibrium for different parameters of the Bayesian prior.
We also compare these two algorithms to two baselines, including a standard Ridge regression, and a
strategy at a Nash equilibrium when the prior is set to be a point mass. For the Bayesian regression
setting, we adopt a similar setup as in Groflhans et al. [2013]. In each repetition, we construct a pair
of disjoint train and test sets drawn from the whole dataset at random. Both the train and test sets
contain 500 datapoints. We then compute two Bayesian equilibrium points on each set. We extract the
learner’s model from the trainset’s equilibrium point, and transform the data points from the testset’s
equilibrium point after drawing actual costs from the prior. We then test the model on the transformed
test data. We draw 500 random samples of ¢4 in testing. We use root mean squared error (RMSE) to
evaluate the predictions, computed using scikit-learn [Pedregosa et al., 2011]. We set the loss functions

2Convex optimization problems are a special class of the monotone VI problems. Thus, the problem complexity of
(strongly) convex optimization implies that of (strongly) monotone VIs.
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Figure 1: RMSE comparisons for all algorithms with a Gaussian Bayesian prior and varying means
and variances (left), or a Gamma Bayesian prior and varying shape and scale (middle), or a lognormal
Bayesian prior and varying mean and normal variance (right). The z-axis is on log scale with base=10.
The RMSE are computed over 10 random train/test splits.

of the learner and adversary to be fi(w,%,y) = (X'w—y)2, Q(w) = |w||? and f4(w,x,2) = (x"w—2)2,
Qu(X, X) = || X — X||% with ¢7; = 0.1.

For the implementation of Grofhans et al. [2013, Algorithm 1], we perform the fixed point update
for 20 iterations and use a first order Taylor expansion to approximate the adversary’s best response.
We also use this same procedure to compute a Nash equilibrium, where the Bayesian prior is set to
be a point mass at its mean. We then compare it to our method (Bayes-ADAM), which solves a
stochastic nonconvex optimization problem. Specifically, we solve for Eq (9) using random samples
of ¢4. During the training for the stochastic optimization, we draw a batch of random samples in
each round and compute the gradients using these samples. All gradient steps were implemented using
PyTorch’s Adam optimizer?. The total number of random ¢4 samples used is 1000. We run the algorithm
Bayes-ADAM for 20 epochs, where the learning rate is tuned within {0.001,0.01,0.1}, and the batch
size is tuned over {32,64,128}. We implemented the ridge regression algorithm with the scikit-learn
package [Pedregosa et al., 2011], where the regularization hyperparameter is tuned over {0.01,0.1,1}.
Results for all algorithms are averaged over ten random train/test splits.

Experimental results. We compare Algorithm 1 in Groflhans et al. [2013] (denoted as Bayes-FP)
with our proposed stochastic optimization procedure (denoted as Bayes-ADAM), in the settings of three
continuous or discrete Bayesian prior types, including the multivariate Gaussian distribution, Gamma

Shttps://pytorch.org/docs/stable/optim.html
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distribution, and lognormal distribution. For each type of prior distribution, we vary the mean and
standard deviation for the Gaussian prior; scale and shape for the Gamma prior; mean and standard
deviation parameter for the lognormal prior’s corresponding normal distribution. When not varied,
the corresponding parameter is set to 1. Figure 1 presents the performance of four algorithms for the
Bayesian regression games with three different types of priors. Bayes-ADAM outperforms the Bayes-FP
algorithm as well as the other two baselines including the Ridge regression and the Nash strategy. In
particular, Bayes-ADAM is able to achieve lower RMSE when the Gaussian prior or the lognormal prior
has a larger mean or variance, and when the Gamma prior has a larger shape or scale. On the other
hand, the Nash strategy and ridge regression can achieve relatively low RMSE when the Bayesian prior
has a lower variance, but fails to achieve low RMSE when the variance becomes large.

6 Conclusions

We have presented a computational theory of Bayesian regression games, making links to general
Bayesian games and variational inequalities while focusing on an algorithm viewpoint. We provide
sufficient conditions for the existence and uniqueness of equilibria by using an infinite-dimensional VI
model, generalizing Grofhans et al. [2013, Theorem 2]. We also discuss two special cases in which
the infinite-dimensional VI reduces to a high-dimensional VI or a stochastic optimization in Euclidean
space. We propose the algorithms for the computation of equilibria and provide numerical results to
demonstrate the effectiveness of our framework in a classification setting.
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A Further Background Material

In this section, we provide the basic ideas and some additional background materials for the development
of our PRG-IE and PG-RBC algorithms. Some discussions on the relevant algorithms are also included.

PRG-IE: We start with a brief overview of the projected reflected gradient algorithm for solving the
variational inequality (VI) in Hilbert space. Let S be a nonempty, closed and convex set of a Hilbert
space H with the inner product (-,-)y, and T : H — H be strictly monotone and f-smooth for some
constant £ > 0: for Vx,x' € H, [|[T(x) — T(X')||% < ¢||x — x'||%. Then, we consider the problem of
finding a point x, € S such that

(x =%, T(x4))r > 0, forallxeS. (10)

A projected reflected gradient algorithm x;,1 < Ps(x; — v - T(2x; — x;—1)) can be applied for solving
this problem where the stepsize A € (0, (v/2—1)/f), and Ps(-) is the orthogonal projection onto a closed
set §. From the update formula, we see that this algorithm has a very simple and elegant structure,
which only requires evaluating 7'(-) and Ps(-) once at each iteration. Thus, it is more computationally
appealing than the Korpelevich’s extragradient algorithm Korpelevich [1976], Popov’s modified Arrow-
Hurwicz algorithm Popov [1980], Tseng’s forward-backward splitting algorithm Tseng [2000] and some
other algorithms Solodov and Svaiter [1999], Malitsky and Semenov [2014].

Note that the VI in Eq. (3) is in the form of Eq. (10) with a Hilbert space H consisting of (an
equivalence class of) a function  : R" — R™ x R™ " with the inner product (-,-)3 : H x H — R
defined by Eq. (14) and the mapping T defined by Eq. (15). Under Assumption 2.1, we assume that T’
is strictly monotone and W x ¥ is compact. Then, [Malitsky, 2015, Theorem 3.2] guarantees that the
sequence generated by projected reflected gradient algorithm weakly converges to a unique Bayesian
equilibrium. However, in the infinite-dimensional setting, strong convergence (or norm convergence)
is often much more desirable than weak convergence, since it guarantees that the physically tangible
property, the error [x; — x,||3, eventually become arbitrarily small Bauschke and Combettes [2001].
The importance of strong convergence is also demonstrated by Giiler [1991] for convex optimization
that the convergence rate of the sequence of objectives {f(x:)}+>0 is better when {x;};>0 with strong
convergence than weak convergence. This encourages the strong convergence theorems for various
algorithms in Hilbert space Solodov and Svaiter [2000], Nadezhkina and Takahashi [2006].

PG-RBC: The variational inequality (VI) in Eq. (7) is the problem of finding a point (w,, o}, ...,0X) €
S=WxX x...x X such that

ipk Kw — W*,VW@(W*,Jf,cl)> + <0k — af,VX@l(W*,af,vk)ﬂ > 0,
k=1

for all w € W and o € X for all k € [K]. Then, by defining the variable x € R™ x R™*™ x .., x R"X™
and a mapping T : R™ x R™*™ x ... x R™ i R™ x R™™ x ... x R™"™ as follows,

w Zlf:l vwé\l(w7 Ukv Cl)

ol V<0, w,ob, v
|7 - x0a( ‘ 1)

ot Vba(w, 0", vi),
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we can reformulate the above problem in the compact form as follows,
(x =%, T(x4))1 >0, forallxeS=WxX x...xX.

A projected gradient algorithm x;11 < Ps(x; — v - T(x;)) can be applied but becomes problematic
when the problem dimension m, the number of data samples n and the range of a Bayesian prior K are
huge. Indeed, the algorithm require performing arithmetic operations of order nmK per iteration and
the projection step is another source of inefficiency for huge-size problem. The coordinate update and
more generally block coordinate update, which are commonly used to address this issue and improve
the computational efficiency, are rooted in the optimization community Bertsekas and Tsitsiklis [1989].
During the past decade, the randomized coordinate update has emerged as one of the most popular
coordinate update schemes and were extensively studied Nesterov [2012], Richtérik and Takac¢ [2014],
Fercoq and Richtarik [2015].

B Postponed Proofs in Section 2

This section lays out the detailed proofs for Lemma 2.2, Theorem 2.3, 2.4 and 2.7, and Corollary 2.5, 2.6, 2.8
and 2.9.

Proof of Lemma 2.2. Note that @(-,X ,¢;) : W — R is convex and continuously differentiable for
each X € X. By the Lebesgue monotone convergence theorem, we have

Vg 01(We, 04 (Ca), €1)] = Eg[ Vi 0i(Wi, 0 (Ca), 1)) (11)
For w € W, we let g(t) = E [Gl(w* + t(w — wy),04(cq),c;)]. Since (wy,04) € W x X is a Bayesian
equilibrium, we have g(t) > ¢(0) for all ¢ € R. This implies that ¢’(0) > 0. By definition,
g0 = (wow {VuE (w4 tw = w.), 0(ca) )]0 )
= (w — W*,Vqu[@(w*,a*(cd),cl»
LY W = Wl B [VaBi(was 0o e)l) = El(w = Wi, Vali(wa, 0 (ca), )]

Putting these pieces together yields the first inequality in Eq. (2). In addition, notice that the cost func-
tion 04(w,-,cq) : X — R is convex and continuously differentiable for each w € W and no expectation
is involved now: By the similar argument, we obtain the second inequality in Eq. (2).

Conversely, we show that Eq. (2) guarantees that the strategy profile (Wi, 04) E WX X is a Bayesian
equilibrium. Note that the function g(t) = E,[0;(w, + t(w — W), 0x(cq), ¢;)] is convex since 6;(, X, ¢;) :
W — R is convex for each X € X. Thus, g(t) > g(0) + tg'(0) for each ¢ € R. By definition, we have

By [0,(w, 04 (ca), e1)] = g(1) > g(0) +tg'(0) = Ey[0i(w,, 0 (ca), )] + Eq[(w — Wi, Viubi(wy, 04 (ca), e1)].
Combining the above inequality with the first inequality in Eq. (2), we have
E,01(w,0.(ca), )] > Eylbi(w,,00(cq),c))], for all w e W.
Using a similar argument and the second inequality in Eq. (2), we have
ad(w*,f(, cq) > gd(w*,a*(cd),cd), for all X € X.

This completes the proof.
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Proof of Theorem 2.3. We first show the “only if” direction. Indeed, let (wy,04) € W x X
be a Bayesian equilibrium for the Bayesian regression game G = (W, X, 0;,04,¢;,q), we derive from
Lemma 2.2 that Eq. (2) holds true. This implies that, for all (w,o) € W x ¥ and for a.e. w € ,

EQKW — Wy, Vwé\l(w*, U*(Cd)a Cl)>]

(o(ca) — u(ca), V5 0a(We, 04(ca), €a))

0,

AVARAV]

Summing up the above two inequalities and taking the expectation over the distribution ¢ yields the
desired inequality in Eq. (3). Then it suffices to show the “if” direction. Specifically, we show that if
(Wy, 04) € W x X is not a Bayesian equilibrium for the Bayesian regression game G = (W, %, 0;,04, ¢, q),
then Eq. (2) does not hold true. By Lemma 2.2, if (w,,0,) € W x X is not a Bayesian equilibrium, we
have R

Ey[(w — wy, Vb (W, 0x(cq), c))] <0 for some w € W, (12)

or there exists F C Q with P(E) > 0 such that, for each w € E,
(X — J*(cd),ngd(w*,a*(cd),cd» <0 for some X € X. (13)
Let (w,0’) € W x X be defined by

, { w  if Eq. (12) holds true,
w = .
w, otherwise.

X if Eq. (13) holds true and w € E,
ox(cg(w)) otherwise.

e = {
By simple calculations, we have
/ 7 / 0
Ey [(W' = W, VbW 0.(ca),00) ) + (0 (0a) = 0(ca), VxDalWa, 04 (ca), ea) )| < 0.

This completes the proof.

Proof of Theorem 2.4. We provide a key notion of monotonicity which is pivotal in the classical VI
literature and summarize in Proposition B.1 the celebrated existence theorem for an infinite-dimensional
VI.

Definition B.1 (Monotonicity) Let H be a Hilbert space with the inner product (-,-)3, we define
S CH as a closed and convex set and T : S — H as a mapping. Then,

1. T is monotone if (T3 —Tp',5— ")y >0 for each 5,5 € S.
2. T is strictly monotone if (TS —Tp',8 — 'Yy > 0 for each 8,5 € S with B # 3.
8. T is A-strongly monotone (A >0) if (TB —TB',8— ) > N8B — B'|3, for each B, € S.

Proposition B.1 (Browder-Hartman-Stampacchia) Let H be a Hilbert space with the inner prod-
uct (-,-)3. Define S C H as a nonempty, closed and convez set, and T : S — H as a monotone mapping.
If the following conditions hold true:

1. The mapping t — (T'((1—t)5+tS"),a)y from [0,1] to R is continuous for all 3,8 € S and a € H.
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2. The set S is compact, or there exists By € S such that % — +00 as ||B|lx — +oo.

Then, there exists f € S such that (TS,5 — B >0 for all B € S.

Let us consider the Bayesian regression game G = (W, Z,é\l,gd, c,q) and its Bayesian equilibrium in
terms of Eq. (3). Then, we can define a Hilbert space H consisting of (an equivalence class of ) a function
B R™ = R™ x R™™ with the inner product (-, )3 : H x H — R by

<<w> ; (W//>>H = E,[(w(ca), W (cq)) + (o(cq), 0’ (cq))]. (14)

(o g

Note that each element in YW C R™ can be regarded as a constant function from R™ to R whose value
equal to this element. Then, we denote the set of these constant function by ¥y (an equivalence class
of W) and define the mapping 7" : ¥y x X — H as follows,

T < i ) = (Vetiwol)a)) o gy (15)
o)) = \ Vxbaw,o(),"
To this end, the computation of a Bayesian equilibrium is equivalent to solving a VI in the space H.
This allows us to analyze the existence and uniqueness of a Bayesian equilibrium under the Browder-
Hartman-Stampacchia’s VI framework (cf. Proposition B.1). For example, the existence of a Bayesian
equilibrium is guaranteed by the continuity and monotonicity of 1" as well as some additional conditions
on W x X.

To prove the existence of a solution, we show that Eq. (3) is a special case of the Browder-Hartman-
Stampacchia VIs. Indeed, we set a Hilbert space H consisting of (an equivalence class of) a function
B R™ = R™ x R"™ ™ with the inner product (-,-)3 : H X H — R defined by Eq. (14). By abuse of
notation, any element w € W define a constant function w(-) € ¥yy and vice versa. This implies that
Y is an equivalent class of W. Thus, § = ¥y, x X is a nonempty, closed and convex subset of H.
In addition, a mapping T : S — H defined by Eq. (15) is continuous and monotone. Putting these
pieces together with either the compactness of S or the ccertain ondition with Eq. (5) yields that all
the assumptions in Proposition B.1 hold true and Eq. (3) is a special case of the Browder-Hartman-
Stampacchia VIs. Therefore, we conclude from Proposition B.1 that the VI in Eq. (3) has at least one
solution. This completes the proof.

Proof of Corollary 2.5. Under Assumption 2.1, Theorem 2.3 implies that a Bayesian equilibrium
must be a solution of the VI in Eq. (3), Thus, it suffices to verify the assumptions in Theorem 2.4. Indeed,
Assumption 2.1 guarantees that T defined by Eq. (15) is continuous. In addition, 7" is monotone and
there exists (wo,00) € W x ¥ such that, for all (w,0) € W x X satisfying ||w||> + Ey[||o(cq)||%] — +o0,
Eq. (5) holds true. Therefore, we conclude the desired result.

Proof of Corollary 2.6. The proof is nearly the same as that of Corollary 2.5 and the only difference
is that, we assume the compactness of the action space W x X2, which is another condition of Theorem 2.4.
Thus, by using Theorem 2.4 again, we conclude the desired result.
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Proof of Theorem 2.7. Theorem 2.4 guarantees the existence of at least one solution of the VI in
Eq. (3). Thus, it suffices to show that at most one solution exists if 7" defined by Eq. (15) is strictly
monotone. Using the proof by contradiction, suppose that the VI in Eq. (3) has two different solutions.
Given the inner product (-, ) is defined by Eq. (14), we have

(o)), = (o) (), =0

Summing up the above two inequalities yields:

(o) G- C), = o

Since a mapping 17" : Xy X ¥ — R™ Xx Y is strictly monotone, we have wi; = wy and o1 = 09 almost
everywhere. This leads to a contradiction and completes the proof.

Proof of Corollary 2.8. Under Assumption 2.1, Theorem 2.3 implies that a Bayesian equilibrium
must be a solution of the VI in Eq. (3), Thus, it suffices to verify the assumptions in Theorem 2.7.
Note that T defined by Eq. (15) is A-strongly monotone and thus strictly monotone. In order to
prove the uniqueness of a Bayesian equilibrium using Theorem 2.7, it remains to show that there exists
(Wo,00) € W x ¥ such that, for all (w,0) € W x ¥ satisfying |w|? + Ey[||lo(ca)||%] — +o0, Eq. (5)
holds true. Since T is A-strongly monotone, we have

Ea. (14) <<"; - jf) T (:) >H

> (U (M) A (lw — woll? + Eqfllo(ca) — ou(ea)lF]) -
(G2) ),

g0

Let (w,0) € W x ¥ satisfy [|[w]||? + Ey[||o(cq)||%] = 400 and (wo,09) € W x X be fixed, we have

) (),

VW12 + Eqlllo(ca) 3]

> —(, for some universal constant C' > 0,

and ) 9
[w — wol* + Eg[llo(ca) — oo(ca)||7]

VI + Egflor(ea) 3]

This implies that Eq. (5) holds true, which completes the proof.

— +00.

Proof of Corollary 2.9 The proof is nearly the same as that of Corollary 2.8 and we need to verify
the assumptions in Theorem 2.7. Note that T" defined by Eq. (15) is strictly monotone and W x ¥ is
compact. Thus, by using Theorem 2.7, we conclude the desired result.
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C Postponed Proofs in Section 3

In this section, we provide the detailed proof for Theorem 3.2. We start by reviewing two preliminary
results in the literature which are established as [Saejung and Yotkaew, 2012, Lemma 2.6] and the
Minty’s lemma in Bauschke and Combettes [2011] respectively.

Lemma C.1 Let {s:}i>0 be a sequence of nonnegative real numbers, {a:}i>0 be a sequence in (0,1)
such that Z:;og ar = +0o and {bi}+>0 be a sequence of real numbers. Suppose that si+1 < (1 — ar)s +
aiby for all t > 0. If limsup;_, by, < 0 for every subsequence {s;}j>0 of {st}i>0 satisfying that
liminf; 1 oo(s¢,41 — s¢;) > 0, then sy — 0 as t — +oo.

Lemma C.2 (Minty) LetT : H — H be a continuous and monotone mapping on a closed and convex
subset S. Then X is a solution of the VI in Eq. (10) if and only if (x — X, T(x))y > 0 for allx € S.

First, we show that the sequences {(w¢,0¢)}¢>1 and {(wy, 0¢)}+>1 generated by Algorithm 1 are both
bounded in the following lemma.

Lemma C.3 Under Assumption 2.1 and 3.1, there exists a constant M > 0 such that the sequences
{(W¢,0¢) }e>0 and {(w¢, 00) }i>1 generated by Algorithm 1 satisfies that

IWell* + Eqll[oe(ca)[F] < M and  [[w* + Eq[[lov(cq)[7] < M for all ¢ > 1.

Proof. By the compactness of actions spaces W and X, it suffices to show that (wy,0y) € W x X for all
t > 0and (wy,01) € Wx 3 for all t > 1. Indeed, the initialization step implies that wq, w1, w; € W and
00,01,01 € X. Then, by the updating formula for {(w;, o) }+>2, it is clear that for (wy, o) € W x X for
all £ > 0. It remains to show that (w;,0y) € W x X for all t > 2. Since 0,,xy, € X', we have Oy« () € X
where 0, (+) is a constant function from R"™ to R™*™ with value 0, x,,. By the convexity of W and X,
we have the convexity of W x ¥. By the updating formula for {(wy, o) }i>2, we find that (w1, 0441)
is a convex combination of (W¢i1,0¢41), (W, 0¢) and (0, 0% (+)). This together with the convexity
of W x ¥ implies the desired result. This completes the proof. O

We then present an important descent inequality for the sequences {(W¢,0¢)}i>0 and {(wy, o¢) b1
generated by Algorithm 1. Note that our result can not be derived from [Malitsky, 2015, Lemma 3.1]
due to the Halpern-type inertial extrapolation.

Lemma C.4 Under Assumption 2.1 and 3.1, the sequences {(W¢,0¢) >0 and {(w,0¢)}e>1 generated
by Algorithm 1 satisfies that

IWer1 = well® + Eqllloer1(ca) — oxlca)lE] < [lwe = wall* + Eqgllloe(ca) — oulea)ll7]

- <% - 2’YL> (W1 = Wel|* + Eqll[Fr41 (ca) — Te(ca)|F]) + 6L (Wi — We1|® + Eq[l5¢(ca) — Te—1(ca)l7])
+(4+67L) ([we — Wil® +Eqlllor(ca) = de(ca)|F]) + 4 ([IWem1 — We1|® + Eq[llor-1(ca) — Gr-1(ca) 7))
—4vE, [(Vwél(w*, ox(cq),¢r), Wy — wy) + <V)-(§d(w*, o+(cq),¢q),0¢(cqg) — 0*(cd)>}

+29E, [(ngl(w*, ox(Cq),Cr), W1 — Wy) + (VX@[(W*, o+(cq),¢q),0t-1(cq) — a*(cd)>]

— (1= 69L) (Wt — will* + Eqg[loe(ca) — oe(ca)lF]) ,

where the point (Wy,0,) € W X X is a unique Bayesian equilibrium, and the auxiliary sequence (Wy, G¢)

18 deﬁned by (Wt,a't) = (2{?(/}5 — {Avlt_l, 25}/ — 5t—1)-
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Proof. Under Assumption 2.1 and 3.1, a unique Bayesian equilibrium (w,,o,) € W x ¥ exists. Given
that the sequence (W, 7;) = (2Wy — Wy—1, 26, —0,—1) is defined, we derive from the optimality condition
of updating (Wyy1,044+1) and the definition of Py and Ps that,

0 < E; [{(W— W1, Wi — Wy + VVW@(V’Vt,&t(cd),cl)) for each (w,0) € W x X, (16)
+{o(cq) — Fer1(Ca)s Fer1(ca) — or(ca) + vV £0a(Wi, 5e(ca), ca)) | .

By rearranging the terms in the above inequality with (w,0) = (w,,04) € W x X and the equality
(a,b) = (1/2)(|la +bl[* — [[a]|* — [[]|*), we have

1041 — Wal? + By [[Fr11(ca) — oulca)llZ] < [[wi — wiul® + Eyllloe(ca) — oulca)|2] (17)
—[Wes1 — we||2 = Eq[||G111(ca) — oe(ca)||F] — 20E, [(ngz(v_vt,&t(ccz), Cl), Wil — Wy)
(Y 0a(Wi, 31(ca),a), G (€a) — o(ca))]

Moreover, we have

E, [(Vw@(‘?vt,c?t(Cd),Cz),VNVm — W) + (V04(W¢, 5(cq), e (cq) — 0*(Cd)>}
=Eq, {(ngl(v_vt, G1(Ca), 1), Wer1 — We) + (V 5 0a(Wr, 5(€q), €4), 11 (ca) — 5t(cd)>}

B, | (Vali(¥1, 5tlca)s e0), Wt = W) + (V 0a(Wi, 51(ca), €a), 5 (ca) — ou(ca))]
Using the first condition in Assumption 3.1 with (w, o) = (W¢,5¢) and (W', o) = (wy, 04), we have

B, [ (Vi (%0, 50(ca). e2), W1 = )+ (VBa(0,31(ca), ca), 7e(ea) — oulea))|
> By [(Vubi(Wa, 04(ca), @0), W0 = W) + (V x0a(Wa, u(€a), €a), Gi(ea) — 7al(ca))]
= 2B, [(VaBi(Wa,oul(ca), ), W = W) + (V g0a(Ws, 02 (ca), ca). Filea) — oxlea)]
By [(VuBi(We, 04(Ca), €0), Wiy = W) + (VxBa(w, 04(Ca). €a), 51 (ca) = ou(ea))]
Putting these two inequalities together with Eq. (17) yields that

IWer1 = Wl + Eqll[gt41(ca) — oulea)[F] < [we = Wal* + Eqll|oe(ca) — ou(ea)llZ] (18)
~[Wer1 = well? = Eqll[g141(ca) — o(ea)ll7]

—27E, Vol (Wi, 54(ca), ¢r) — ngl(V_Vt—l, gi—1(cq),€1), Wig1 — V_Vt>]

(

—29E, :<VX§d(v’vt, Gi(cq), ca) — Vx0a(Wi1,51-1(cq), €a), G141 (ca) — 5’t(cd)>]

—27E, :<Vw@(wt—175t—l(cd)vcl) Wi1 — W) + (V0a(Wi1,61-1(Ca), €a), Gri1(ca) - 5t(¢d)>}
(
(

~

—4nE, Vel (Wi, 04(Ca), 1), Wi — W) + (V 5 0a(Wr, 00 (Ca), €a), 5 () — a*(cd)ﬂ

+27Eq Vwé\l(vv*v U*(cd)7 Cl)7 Wi-1— W*> + <VX'§d(W*7 J*(Cd)7 Cd)7 Jt—l(cd) - U*(Cd)>:| :
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Then, we obtain two inequalities by changing the index ¢ in Eq. (16) to ¢ — 1 and letting (w,0) =
(Wi—1,0¢—1) and (w,0) = (Wyy1,041) and add them to obtain that

0 < Eq|[(Wip1 — Wi, Wy — Wy + YVl (Wi_1,5¢1(cq), ¢1))
(G141 (ca) — Fel(ca), Ge(ca) — gr—1(ca) + 7V gBa(Wi_1,7¢—1(ca), Cd)>] :

By the definition of the sequence (Wy,d;), we further have

~29Eq (Vi (W11, 51-1(Ca), €1), Wes1 — W) + (V 5 0a(Ft—1, 511 (ca), €a), Te41(ca) — at<cd)>]
< 2(Wep1 — W, Wy — W) + 2Eg[(0141(ca) — Ge(ca), 0e(ca) — oi—1(cq))]
= 2(Wip1 — Wi, Wy — Wy) + 2(Wip1 — Wi, Wy — Wy1) + 2B [(0441(cq) — G4(cq), T¢(ca) — o¢(ca))]
+2Eq[(01+1(ca) — t(ca), 01—1(ca) — o1-1(ca))]
= 2{Wp1 — Wi, W — wy) + 2By [(0141(ca) — Gi(ca), 01(ca) — or(ca))] + 2(Wip1 — Wi, Wi — Wy)
+2E4[(0141(ca) — Ge(cq), oe(ca) — ge(ca))] + 2(Wep1 — Wi, W1 — Wi1)
+2Eq [(0t+1(cq) — t(ca), 0t—1(ca) — or-1(ca))] -
Using the equality (a,b) = (1/2)(||a + b||*> — [|a]|> — ||b]|*) for the first two terms, and the Young’s
inequality (a,b) < (1/8)]|al|? + 2||b||? for the last four terms, we have

—27E, [<Vw§l("_\’t—1,5t—1(cd), 1), Wir1 — Wi) + (Vg 0a(Wi_1,:-1(Ca), €a), o1 (Ca) — 5't(cd)>]

~ ~ T~ _ ~ _
< W = will* + EfllGe (ea) — or(ca)llF] = 5 (Wi = Wil + Bql1G11(ca) — F1(ca)ll])

— (IWe = wil* + Eqg[ll6¢(ca) — ov(ca)|F]) + 4 ([ we — Wel|* + Eqllloe(ca) — Te(ca)|I7])
+4 (w1 = Wil + Eyllloi-1(ca) — 5-1(ca)lZ]) - (19)

By using the second condition in Assumption 3.1, we have

~2Ey [(Vabi(W,51(Ca), 1) = Vabi(Wi-1,51-1(Ca), €0), Wit — W)

(Y £0a(W, 51(Ca), €a) — Vg0a(Wi1,31(ca), €a), 5141(Ca) — F1(ca)) (20)
2vL ([[wy — Wi || + Eg[lloe(ca) — ae—1(ca)llF]) ([Wir1 — Wil + Eqlllot11(ca) — ae(ca)llF])

2vL (|[Wy — Wia|® + Bqll|oe(ca) — Te—1(ca) 7] + [Wir1 — Wil + B [|5e41(ca) — Ge(ca)||7])
2vL (Wi — Wil|* + Eq[||Ge41(ca) — Ge(ca)l|F]) + 6vL ([ We — wel|* + Eq[||5¢(ca) — ov(ca)||F])
+67L (||wi — Wil + Eglllov(ca) — au(ca) [7] + 1We — Wit ||* + Eg[ll5e(ca) — G1—1(ca) || F]) -

ININ A

Combining Eq. (18), Eq. (19) and Eq. (20) yields the desired inequality. O
Based on the boundedness results in Lemma C.3 and the descent inequality in Lemma C.4, we provide

two additional inequalities for the sequences {(W¢,d¢) }i>0 and {(wy, 04)}+>1 generated by Algorithm 1
in the following lemma.
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Lemma C.5 Under Assumption 2.1 and 3.1, the sequences {(W¢,0¢) }i>0 and {(w,0¢)}e>1 generated
by Algorithm 1 satisfies that

reyr < 1t 61 My — (% - 87L> (W e1 = Wel|* + Eq[[[Ge41(ca) — Te(ca)l|F]) (21)
— (1 =67L) (|lwe — we|l* + Eq[[|7e(ca) — ov(ca)llF])
< (1= 5 v B0 = 2w Wi = wi) 2yl (e ova(ea) e (2
for all ¢ > 2 and some constant M; > 0.
The residue sequence {r:}+>0 is defined as:
re = Wi = wl® + Eglllov(ca) — ow(ca) |F] + 6vL (Wi — W [|* + Eq[l5e(ca) — Te-1(ca) 7))

+27Eq <VW§1(W*7 U*(Cd)7 Cl)7 {7‘71‘/—1 - W*> + <VX§d(W*7 U*(Cd)7 Cd)7 5t—1(cd) - O-*(Cd)>:| 5

where (Wi, 04) € W X 3 is a unique Bayesian equilibrium, and the auziliary sequence (W, dy) is defined
i Lemma C.4.

Proof. By the updating formula for the sequence {(wy¢, 0¢)}+>1 and the Jensen’s inequality, we have
Wit — Wil * + Eg[lloeri (ca) — oulca) 7] (23)
< % (lwe = walP + Ellov(ea) — on(ea) 1) + 2 (Wl + Eqlllo (ea) )
+ (1= ) (IWerr = Wil |* + Eg[|Ger1(ca) — owlea)lF]) -
Recall that the residue sequence r; > 0 is defined by
re = we =Wl + Eglllor(ca) — onlca)llz] + 6vL ([We — Wi || + Eq[[|5e(ca) — Ge-1(ca)lF])

+29E, [<vw§l<w*, 4(€a), 1), Wit — W) + (V 0a(w,, 0u(ca), €a), Fr—1(ca) — a*<cd>>} .

Combining this with Eq. (23) and Lemma C.4, we have

i < n (5= 89L) (s = wilP + EyllFin(ed) - anlealH) + 5 (lwal? + B flow (ca )
+(4+6vL) ([lwe — Wil + Eqllov(ca) — Ge(ca)lF]) + 4 ([wie1 — Wi l]” + Eylllov-1(ca) — 5e-1(ca) 7))
2B (VbW 04(a), 1), Wi = W) + (V5 Ba(W, 0u(ca), €a),5r(ca) — ox(ca))]
= (1= 69L) ([%e — will* + Eg[loe(ca) — oel(ca)lF]) - (24)

Since (Wy,0,) € W X 3 is a unique solution of the VI in Eq. (3) under Assumption 2.1 and 3.1, we have

Ey [(Vali(W, 0.(ca), €)% = W) + (V5 Ba(Wa, 0u(ca), ea), Gr(ea) — 0x(ea))| = 0.

Using Lemma C.3, the updating formula for the sequence {(wy¢, 0¢)}+>1 and the uniqueness of (w,, 0,) €
W x 3%, there exists a constant M; > 0 such that

Iwol® + Eqlllow(calF] < M,

67 1 M, - 0p—1 My

[we = We||* + Egllloe(ca) — G¢(ca)|F] < TS
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Putting these pieces together with Eq. (24) and the facts that 0 < v < min{1, ﬁ} and the sequence
{6¢}+>1 is non-increasing yields Eq. (21). Then, we proceed to prove Eq. (22). Using the inequality
la + B> < [|al|* + 2(a + b,b), together with the Jensen’s inequality and the updating formula for the
sequence {(wy, 0¢) bi>1 yields that

IWe1 — wil* + Eq[llowri(ca) — oulca)l7]
= [10e(we/2 = Wi /2) + (1= 6) (Werr — wi) — 0(w/2)|?
+Eq[[10¢(0¢(ca) /2 — 0u(€a) /2) + (1 = ) (Gr+1(ca) — oulca)) — e(ow(ca)/2) 7]

7 (Iwi = Wil 2 + Eqllloe(ca) — onlea)llF]) + (1= 8) (1Wer1 — wil® + Eq[l|Ger1(ca) — owlca) 7))

=01 ((Wa, W1 — Wa) + Eqg[(04(€a), ort1(ca) = ox(ca))]) -

IN

Note that 1 —d; > 1/2 for all t > 2 and 0 < y < min{1, ﬁ}. By combining the above inequality and
Lemma C.4, we have

i < (1230 e (lwawin - w) +Eyllo(e ol ~ale)) (29

1 - _ ~ _
~(§- L) (s = el + Bl o) - o—t<cd>u%1)
+ (44 6vL) (||lwi — We||? + Eq[|jow(ca) — Ge(ca) 7))
+4 (w1 — Wi ||? + Eg[l|lov—1(ca) — Fe—1(ca)||7])
1
— <§ - 37L> (W — we||* + Eq[||54(ca) — Ut(Cd)H%D for all t > 2.

Note that §; < §;_1 < 20, for all ¢ > 2 and there exists a constant M7 > 0 such that
81 M - 207 M,
8 - 9
Putting the above inequality and the fact that 0 < v < min{1, ﬁ} together with Eq. (25) yields that

[we — We||? + Eg[lloe(ca) — Ge(ca)||F] <

T < <1 - §5t> v+ 207 My = 8 (W, Wer1 — Wa) + Eql(0(ca), o41(ca) — 0u(ca))])

_ <1 - 3%) re + 34‘? (40; My — 2(Wy, Wi i1 — Wy) — 2By [(04(Ca), 0v11(cq) — 0x(ca))]) -

This completes the proof. O

Proof of Theorem 3.2. It suffices to prove that 7, — 0 as t — +o0. Suppose that {r; };>0 is any of
the subsequences of the whole sequence {r;};>¢ and satisfies that liminf; , (Tt 1Tt j) > 0. From
Eq. (21) in Lemma C.5, we have

. 1 ~ _ ~ _
imsup | (5 92 ) (0 4 Byl 1 (e0) - 1, <) )

Jj—+oo

+ (1= 6vL) (Iwe; — we, |I* + Eqlllor, (ca) — ov, (ca)llF])]

< lim sup (rt = T41 T+ 5tjM1) < limsup (rt — 1, _|_1) + lim sup 5t M,
Jj—+oo Jj—+oo Jj—+oo

—hmlnf (rt 41— ) +limsup é;; My < limsup d;; M.

J— j—too j—+o0
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Since & — 0 and 0 < v < min{1, 1557 }, we have

limsup ([|[We, 1 — Wy, |I* + Eq[[[51,41(ca) — 7, (ca)IF]) = 0,
J—+o0
limsup (H L_”tj - Wy, H2 + Eq[H5tj (cd) — Ot (Cd)”%]) = 0
J—+oo

By Lemma C.3, the sequence {(W¢,11,0¢,+1)};>0 is bounded. This implies that there exists a subse-
quence {(VNthiH,&tjiJrl)}izo such that (v~vtji+1,5tji+1) weakly converges to some point (w,5) € W X X,
and

ligiip (_2<W*, W41 — w.) — 2E,[(04(cq), Utj+1(cd) - U*(Cd)>]) (26)

= 1_132100 (_2<W*, Wi +1 — W) — 2Eq[<0*(cd)a Utji+1(cd) - U*(Cd)>]>

= —2(wy, W = wy) = 2Ey[(0x(ca), 7 (ca) — ax(ca))]-

It is also clear that (Wy; , &y, ) and (wy; , 01, ) both weakly converge to (W, ). Recall that the optimality
condition of updating (Wy11,0¢+1) in Eq. (16) is:

0 < E; [(W— W1, W1 — Wi+ ’vaé\l(ﬁvt,ét(cd),cl» for each (w,0) € W x X,
+{o(ca) = Fr1(ca), Frr1(ca) — or(ca) + 7V x0a(Wr, 5e(ca), Cd))} :
Equivalently, we have
0 < E,[{(w—W1,Wip1 — W) + (0(cq) — rr1(cq), 0tv1(cq) — ot(cq))] for each (w,0) € W x X
9B, (W — 0, Vudi(W,51(eq). @) + (o(ea) = Gu(ea), VxBu(¥1, 51(ca). 0)) |
+7Eq [(V_Vt — W1, Vwli(Wi,51(ca), 1)) + (G1(ca) — Fra1(ca), Vg Ba(wi, 5t(cd)7cd)>]
Using the first condition in Assumption 3.1 with (w’,¢’) = (W, ;) and the fact that v > 0, we have
VB [ (W = W1, Vb1, G1(ca), 1)) + {o(ea) = F1lea). V xBal¥er, 31(ca). ca))
< B, [(w = Wi, Vadi (Wi, ai(ea), @) + (o(ca) — Gilea), VsBa(wi, ou(ca), ea)) |
Putting these two inequalities together with ¢ = t;; yields that, for each (w,o) € W x X,
0 < By [{w = Wi, 40, Wi, 41— Wi, ) + (0(Ca) = G, 1(0a), 51, 41 (0a) — o, ()]
By [(W = Wi, , Vabi(w, 0(ca), ) + (o(ca) = 5, (¢a), V xDa(w, 0 (ca), ea)|
By (W1, = Wiy 11, Vi (W1, 31, (€a), €0)) + (0, (€a) = Gy 41(€a), V xBa(Wr,, 31, (€a),€a))]
Letting ¢ — +o0 in the above inequality, for each (w,0) € W x X, we have

E, [<w W, Vb (w, J(cd),cl)> n <J(cd) — G(cq), Vg0a(w, o(cq), cd)>] > 0, (27)
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Using Lemma C.2 and Eq. (27), the point (w, o) is the solution of the VI in Eq. (3). Under Assump-
tion 2.1 and 3.1, the VI in Eq. (3) has a unique solution. Thus, (w,) = (Wy,0,) is a unique Bayesian
equilibrium.

Finally, we consider Lemma C.1 with s; = r4, a; = 30;/4 and

bt = 4(5tM1 — 2<W*, Wit1 — W*> — 2Eq[(a*(cd), Ut+1(cd) — O'*(Cd)>].

More specifically, we have (i) the sequence {s;};>0 is nonnegative and {a;};>0 is a sequence in (0,1)
satisfying 3"/ a; = +o0; (ii) Eq. (22) implies that si11 < (1 — ag)s; + agby for all £ > 2; (iii) for every
subsequence {s¢, }j>0 of {s¢}>0 satisfying that liminf; , oo (s, 41 — 5¢;) > 0, Eq. (26) and the fact that
0; — 0 implies that

limsupb;;, = limsup (5t My = 2(wWy, Wi, 1 — Wy) — 2E4[(0x(ca), 01, 41(ca) — o.(cq))]) = 0.

Jj—+oo Jj—+oo

Therefore, we conclude that r; — 0 as ¢ — +o0o. This completes the proof.

D Postponed Proofs in Section 4

In this section, we provide the detailed proof for Theorem 4.2. We start by reviewing one preliminary
result in the literature which is a fact of sequences first established in Chung [1954] (although it does
not appear to be widely known).

Lemma D.1 Let {a;}i>0 be a non-negative sequence such that

P
app1 < (1 >at+ @

P +q’
where P> q¢>0,0<p<1and Q > 0. Then:

Q1 ;
QL fo<p<l,
CLtS { 5q1 . o

Proof of Theorem 4.2. By Corollary 2.8, the Bayesian regression game G = (W, Z,é\l,gd, c,q) has
a unique Bayesian equilibrium (w,,o},...,0X) under Assumption 2.1 and 4.1. Define E; = ||ws;1 —
wol? + 30, |oF, — o¥||%., we derive from the update formula in Algorithm 2 and the fact that two

orthogonal projection mappings Py and Py are nonexpansive that

E[Et-l-l | (Wt70-t7 O-tK)]
K
=" i |I1IPw(We = 1 Vwbi(we, of  e1)) = Wl + || Pr(of — %V 50a(we, 0F vi) — oF||%

<> m {Wt 1V wbi(Wi, 0f €1) = Wil P + [lof — 2V xBa(we, of ,vi) — oF |7+ Y llof — of |7
k=1 i#k
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Using the second condition in Assumption 4.1, we have

W — % Vwby (Wi, of, €1) — wi|? [wi — Wl — 27 (W — Wi, Vwbi(we, 0f, €1)) + 77 G2,

<
Haf - ’th)_(ed(wt7af7vk) - U*”F <

Haf - O'EH% - 2’Yt<0'f - va v)_(ed(wtv vavk» + 71&2G2'
Putting these pieces together with the fact that zgzl pr = 1 yields that

K

E [Et-l-l | (Wt7 O-tlv s 7O-tK)] < Et+2/7t2G2_2/7t Zpk |:<Wt - Wi, VWé\l(wtv O-fv Cl)> + <O-f - 0-1:7 VXé\d(wtv O-f7 Vk)>] .
k=1
(28)
Since the point (wy,ol,...,0X) is a Bayesian equilibrium, we have
K ~ o~
Zpk [<wt — w,, Vb (w,, ok, c1)> + <af —o¥, V ¢0q(wy, of,vk)>] > 0, (29)
k=1

Summing up Eq. (28) and Eq. (29) and using the first condition in Assumption 4.1, we have
E[Ei1 | (Wi 0p,.,08 )] < (1= 2M) By + 207G,
Taking the expectation of both sides and using the definition of 7, we have

2\ 2v2G?
E[E1] < (1-22%)E[E] + 29262 = (1 - %) E[E;] + 7§2 , forallt> 1.

Applying Lemma D.1 with P =2y > 1, Q = 273(}2 and p = ¢ = 1, we have

272G* 1 1
< —- = ~.
ElE] < 220 — 1t O3

This completes the proof.
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