
Exponentially Converging Distributed Gradient

Descent with Intermittent Communication via

Hybrid Methods

Katherine R. Hendricksona, Dawn M. Hustig-Schultzb, Matthew T. Halea, and Ricardo G. Sanfeliceb

Abstract

We present a hybrid systems framework for multi-agent optimization in which agents execute computations in

continuous time and communicate in discrete time. The optimization algorithm is a hybrid version of parallelized

coordinate descent. Agents implement a sample-and-hold strategy in which gradients are computed at communication

times and held constant during flows between communications. Completeness of maximal solutions under these

hybrid dynamics is established. Under assumptions of smoothness and strong convexity, we show that this system

exponentially converges to the minimizer of an objective function. Simulation results illustrate this convergence rate.

I. INTRODUCTION

Convex optimization problems arise in many areas of engineering, including machine learning [1], communi-

cations [2], robotics [3], and others. Fundamentally, regardless of the application area, the goal is to design an

algorithm that will converge to a minimum of an objective function, possibly under some constraints. Recently,

there has been increased interest in studying optimization algorithms in continuous time using tools from dynamical

systems to establish convergence to minimizers; see [4]–[6].

In this paper, we develop a hybrid optimization algorithm for the analysis of multi-agent systems with continuous-

time updates and intermittent discrete-time communication events. This is motivated by two factors. First, we wish

to leverage the large collection of tools from dynamical systems to analyze multi-agent optimization. Second, there

exist many multi-agent controllers that operate in continuous time to minimize some objective function, e.g., in

consensus [7] and coverage control [8], and our analyses will apply to such systems. However, while individual

agents’ computations occur in continuous time, communication between them inherently occur in discrete time
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because communicated information arrives at isolated time instants. This mixture of continuous- and discrete-time

elements naturally leads us to a hybrid system model.

The algorithm we propose is essentially a hybrid version of parallelized block coordinate descent [9], in which

each agent updates only a small subset of all decision variables in continuous time, and agents communicate these

updates to others in discrete time. In the proposed model, communication between agents occurs when a decreasing

timer reaches zero, at which point the timer is reset to some value within a specified range. Agents use a sample-

and-hold strategy in which gradients are computed at the communication times and then held constant and used

continuously until the next communication event. This approach is inspired by recent work [10] that has successfully

applied it to synchronization problems. We consider objective functions that satisfy typical, mild assumptions for

distributed optimization, namely strongly convex objective functions with Lipschitz gradients.

We leverage the theory of hybrid systems to prove that the proposed hybrid algorithm has several desirable

properties. First, we define a hybrid system model for this algorithm and show that, under these hybrid dynamics,

every maximal solution is complete, with domain allowing arbitrarily large ordinary time. As a result, there are

no theoretical obstructions to running this algorithm for arbitrarily long periods of time. Second, we use Lyapunov

analysis to show that, even under intermittent information sharing, the hybrid optimization algorithm exponentially

converges to the minimizer of an objective function. Furthermore, we derive an explicit convergence rate in terms

of system parameters.

The developments in this paper can be regarded as continuous-time counterparts to “classical” discrete-time al-

gorithms in multi-agent optimization [9]. Related research in multi-agent continuous-time optimization includes [5],

[11], [12], though those works all use a consensus-based update law that executes computations and communications

both in continuous time. However, we avoid continuous-time communications to account for cases in which they

are not possible or simply undesirable, e.g., over long distances or when power is limited.

The most similar works are [10], [13], which also study continuous-time optimization with discrete-time com-

munication. However, those works also use consensus-based optimization algorithms in which each agent updates

all decision variables. In contrast, we consider agents with a common objective function and require that each agent

update only a small subset of decision variables. This has the advantage that an individual agent’s computational

burden can be small, even when solving high-dimensional problems.

The rest of the paper is organized as follows. Section II includes our problem statement, assumptions, and

algorithm. Section III provides background on hybrid systems. We present our hybrid system model in Section IV and

establish the existence of complete solutions. Section V proves that the hybrid multi-agent update law exponentially

converges to the minimizer of an objective function. We include numerical results as validation in Section VI.

II. PROBLEM STATEMENT AND ALGORITHM OVERVIEW

In this section, we state the class of problems that we consider and give an overview of the proposed hybrid

optimization algorithm.

A. Problem Formulation

We consider a group of N agents jointly solving an optimization problem of the following form:
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Problem 1. Given an objective function L : Rn → R,

minimize L(x), x ∈ Rn

using N distributed agents while requiring that (i) only one agent updates any entry of the decision variable x,

and (ii) agents require only intermittent information sharing from others.

Each agent executes computations locally and then shares the results of those computations. Criterion (i) is

there for scalability, only a single agent will update each decision variable. This reduces the computation load on

agents and removes duplicated efforts. Criterion (ii) ensures that the algorithm performs even in environments where

communications may be limited. In many practical settings, we expect bandwidth to be limited and/or agents to

have limited onboard power available, which means communications should not be constant.

We assume the following about the objective function L.

Assumption 1. The function L is twice continuously differentiable, β-strongly convex for some β > 0, and K-

smooth (namely, ∇L is K-Lipschitz). 4

Assumption 1 allows a large number of convex problems to be considered, such as strongly convex quadratic

programs. It is a standard assumption in multi-agent optimization [9]. It implies that K ≥ β.

We solve Problem 1 by applying gradient descent in continuous time using data received intermittently in discrete

time. The proposed hybrid optimization algorithm uses jumps to characterize the discrete-time communication events

and flows to represent the continuous-time dynamics. Analogously to past research that has developed distributed

versions of the discrete-time gradient descent law, our update law during flows is based on the following (centralized)

first-order dynamical system:

ẋ+∇L(x) = 0. (1)

This is motivated by the use of gradient-based controllers in multi-agent systems, e.g., in consensus [7], as well

as the simplicity of distributing gradient-based updates and the robustness to asynchrony that results from doing

so [9]. Next, we distribute this across a team of agents.

B. Algorithmic Framework

We seek to distribute (1) across a team of agents in accordance with the parallelization requirement in Problem 1.

We consider N agents indexed over i ∈ [N ] := {1, . . . , N} and divide x ∈ Rn into N blocks. Then agent i is

responsible for updating and communicating values of the i-th block, xi ∈ Rni , where ni ∈ N and
∑
i∈[N ] ni = n.

Thus, the variable x may be written as the vertical concatenation of all agents’ blocks. Each agent performs gradient

descent on their own block during flows but does not update any others.

Agents’ updates occur in continuous time while communication of these updates occurs in discrete time. Com-

munications are coordinated using a decreasing timer, τ , that is shared by all agents. When the timer reaches zero,

all agents communicate their current values to all of the other agents and the timer resets to a value within a

specified interval [τmin, τmax]. We assume that communicated data are received at the same time they are sent.

These communicated blocks are gathered into the vector η ∈ Rn with the current value of xi being assigned to ηi at
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communication events. The value of η is used in each agent’s continuous-time computations in a sample-and-hold

manner between communication events. That is, each agent uses the previously communicated data in their updates

rather than the continuously evolving values of the other agents. Formally, we write ∇iL = ∂L
∂xi

, and during flows

agent i executes

ẋi = −∇iL(η).

This sample-and-hold method is common in the literature [10] and is used to demonstrate the feasibility of the

hybrid approach in multi-agent optimization.

The complete algorithm is summarized in Algorithm 1.

Algorithm 1: Distributed Hybrid Gradient Descent

Initialization: set xo, ηo ∈ Rn and τo ∈ [0, τmax];

while τ ≥ 0 do

ẋi = −∇iL(η), for all i ∈ {1, . . . , N};

τ̇ = −1;

if τ = 0 then

reset ηi to xi, for all i ∈ {1, . . . , N};

reset τ to a value in [τmin, τmax];

end

end

The next section provides the tools that will be used to analyze Algorithm 1.

III. HYBRID SYSTEM PRELIMINARIES

In this section, we recount the background material necessary for the hybrid system modeling and analysis in

the remainder of the paper.

A. Preliminaries on Hybrid Systems

For the purposes of this paper, a hybrid system H has data (C, f,D,G) that takes the general form

H =

ẋ = f(x) x ∈ C

x+ ∈ G(x) x ∈ D
, (2)

where x ∈ Rn is the system’s state, and f defines the flow map and continuous dynamics for which C is the flow

set. The set-valued jump map G captures the system’s discrete behavior for the jump set D. More information on

this definition and hybrid systems can be found in [14].

Definition 1 (Hybrid Basic Conditions, [14]). A hybrid system H as in (2) with data (C, f,D,G) satisfies the hybrid

basic conditions if

• C and D are closed subsets of Rn;
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• f is a continuous function from Rn → Rn;

• G : Rn ⇒ Rn is outer semicontinuous and locally bounded relative to D, and D ⊂ dom G.

If a hybrid system meets the hybrid basic conditions, then we say that the system is well-posed (Theorem

6.30, [14]).

We denote solutions to H by φ, which we parameterize by (t, j) ∈ R≥0 × N, where t denotes the ordinary

(continuous) time, and j denotes the jump (discrete) time. Per Definition 2.3 in [14], dom φ ⊂ R≥0×N is a hybrid

time domain if for all (T, J) ∈ dom φ, the dom φ∩ ([0, T ]×{0, 1, . . . , J} can be written as
⋃J−1
j=0 ([tj , tj+1], j) for

some finite sequence of times 0 = t0 ≤ t1 ≤ · · · ≤ tJ . We say that a solution φ is complete if dom φ is unbounded.

A solution φ to H is called maximal if it cannot be extended further.

IV. HYBRID SYSTEM MODEL

In this section, we define a hybrid system model that encompasses all agents’ current states and their most

recently communicated state values. Towards defining this model, we first formally define the timer that governs

communication events. This allows us to define the hybrid subsystems that are distributed across the agents. Building

on this, we present a definition of the hybrid system modelling the N agents, their algorithm, and the mechanism

governing the communication events. Finally, we show the existence of solutions and conclude that all maximal

solutions are complete.

A. Mechanism Governing the Communication Events

We seek to account for intermittent communication events that occur only at some time instances tj , for j ∈ N,

that are not known a priori. We assume that the sequence {tj}∞j=1 is strictly increasing and unbounded. Between

consecutive time events, some amount of time elapses which we upper and lower bound with positive scalars τmin

and τmax:

0 < τmin ≤ tj+1 − tj ≤ τmax ∀j ∈ N \ {0}. (3)

The upper bound τmax prevents infinitely long communication delays and ensures convergence, while the lower

bound τmin rules out Zeno behavior.

To generate events at times tj satisfying (3), let τ be the timer that governs when agents exchange data, where τ

is defined by

τ̇ = −1 τ ∈ [0, τmax],

τ+ ∈ [τmin, τmax] τ = 0,

for τmin, τmax ∈ R>0. The timer τ steadily decreases until it reaches zero. At this point, it is reset to a value

within [τmin, τmax].

There is indeterminacy built into the timer in that the reset map is only confined to a compact interval, [τmin, τmax],

where τmin and τmax are both positive real numbers.
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B. Hybrid Subsystems

Recall that agent i stores and updates its own state variable xi ∈ Rni , and the variable x is the vertical

concatenation of all agents’ states. Data from all agents are collectively stored in η ∈ Rn at communication

events. We define the state of agent i’s hybrid system as ξi = (xi, η, τ), where xi is agent i’s state (the one it is

responsible for updating), η is the memory state storing the states of the agents measured at communication events,

and τ is defined as above. This leads to the hybrid subsystem given by

ξ̇i =


−∇iL(η)

0

−1

 ξi ∈ Rni × Rn × [0, τmax]

ξ+i ∈


xi

x

[τmin, τmax]

 ξi ∈ Rni × Rn × {0},

where x = (xT1 , . . . , x
T
N )T .

C. Combined Hybrid System

We are now ready to combine the distributed subsystems into one hybrid system for analysis. First, we define a

variable z = (z1, z2) ∈ Rn × Rn such that

z1 = col(x1, . . . , xN )

z2 = η,

where col(x1, . . . , xN ) = (xT1 , . . . , x
T
N )T .

We define the state of the combined hybrid system as ξ = (z1, z2, τ) ∈ X , where z1, z2, and τ are defined as

above, and X := Rn × Rn × [0, τmax]. This leads to the combined hybrid system H = (C, f,D,G) given by

ξ̇ =


−∇L(z2)

0

−1

 := f(ξ) ξ ∈ C, (4)

ξ+ ∈


z1

z1

[τmin, τmax]

 := G(ξ) ξ ∈ D, (5)

where C := X and D := Rn × Rn × {0}.

D. Hybrid Basic Conditions

We now demonstrate that H meets the hybrid basic conditions and is well-posed.

Lemma 1. Let L satisfy Assumption 1. Then, the hybrid system given by H with data (C, f,D,G) defined in (4)–(5)

satisfies the hybrid basic conditions from Definition 1 and is nominally well-posed as a result.
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Proof: The sets C and D are closed subsets of Rn × Rn × R by definition. Due to our assumption that ∇L is

continuous, f is a continuous function from Rn×Rn×R to Rn×Rn×R. By construction, G is outer semicontinuous

and locally bounded relative to D. Finally, D ⊂ dom G because dom G is Rn × Rn × R. �

E. Existence of Solutions

In addition to being well-posed, there exists a nontrivial solution to H from each point in C∪D, and all maximal

solutions are complete and not Zeno under mild conditions on problem parameters. Complete solutions cannot be

extended further and their domains are unbounded. Practically, this means that the proposed algorithm may run for

an arbitrarily long period of time and does not reach a point where it can neither flow nor jump.

Lemma 2 (Existence of Solutions). Let Assumption 1 hold. Let τmin and τmax be such that 0 < τmin ≤ τmax <
β2

3K3 , where β is the strong convexity constant of L and K is the Lipschitz constant of ∇L. Then there exists a

nontrivial solution to H = (C, f,D,G) from every initial point in C ∪D. Additionally, every maximal solution φ

to the hybrid system H is complete and not Zeno.

Proof: See the appendix. �

V. CONVERGENCE ANALYSIS

In this section, we define the set for solutions to converge to and present some useful properties of the hybrid

system H in Lemmas 3 and 4. We then propose a Lyapunov function in Lemma 5. As an interim result, we show

that for a solution φ = (φz1 , φz2 , φτ ) to H in (4)–(5), if φz1(0, 0) = φz2(0, 0), we are able to bound the distance

from the minimizer of L for all (t, j) ∈ dom φ. Finally, we present our main result, exponential convergence to

the minimizer of L, in Theorem 1.

A. Convergence Set

Let 0n be the vector of zeros in Rn; similarly, let 0ni
be the vector of zeros in Rni . Convergence using gradient

descent occurs when the gradient of L is 0n. Given a complete solution φ = (φz1 , φz2 , φτ ) to the hybrid system H,

we seek to assure that limt+j→∞∇iL(φz2(t, j)) = 0ni , for i = 1, . . . , N . This is equivalent to a set convergence

problem where the set to converge to for the hybrid system H is given by

A := {ξ = (z1, z2, τ) ∈ X : ∇L(z2) = 0n, z2 = z1, τ ∈ [0, τmax]}

= {x∗} × {x∗} × [0, τmax], (6)

where x∗ is the unique fixed point of ∇L. Equivalence of the expression for A stems from Assumption 1: because L

is strongly convex, it has a unique minimum (denoted by x∗) and this unique minimum is the unique stationary

point of ∇L. Given a vector ξ = (z1, z2, τ) ∈ X , the squared distance from A is given by |ξ|2A := ‖z − z∗‖2 =

‖z1 − x∗‖2 + ‖z2 − x∗‖2, where ‖ · ‖ denotes the Euclidean norm throughout this paper.
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B. Useful Properties of H

Combining gradient descent with a bound on τmax allows us to establish relationships that prove useful during

Lyapunov analysis.

Lemma 3. Let Assumption 1 hold. Consider the hybrid system given by H with data (C, f,D,G) defined in (4)–(5).

Let τmin and τmax be such that 0 < τmin ≤ τmax < β2

3K3 , where β is the strong convexity constant of L and K is

the Lipschitz constant of ∇L. Denote the unique fixed point of ∇L by x∗. Pick a solution φ = (φz1 , φz2 , φτ ) to H

such that φz1(0, 0) = φz2(0, 0). For each Ij := {t : (t, j) ∈ dom φ} with nonempty interior and with tj+1 > tj

such that [tj , tj+1] = Ij , we have

φz1(t, j) = φz2(tj , j)− (t− tj)∇L(φz2(tj , j)) (7)

φz2(t, j) = φz2(tj , j), (8)

for all t ∈ (tj , tj+1). Additionally, for all (t, j) ∈ dom φ, the following are satisfied:

‖φz1(t, j)− x∗‖2 ≤ q(t, tj)‖φz2(tj , j)− x∗‖2; (9)

‖φz1(t, j)− φz2(t, j)‖ ≤ τmax‖∇L(φz2(tj , j))‖; (10)

‖φz1(t, j)− x∗‖2 ≥ B‖φz2(tj , j)− x∗‖2; (11)

where q(t, tj) := (1− 2(t− tj)β + (t− tj)2K2) ∈ (0, 1) and B := (1− 2τmaxK) ∈ (0, 1).

Proof: Given t ∈ (tj , tj+1), the solution φ has flowed some distance given by (t− tj)φ̇ where φ̇ is constant due

to the sample-and-hold methodology. Applying our definition of f in (4) gives (7) and (8).

Proof of (9): Using (7) and the fact that ∇L(x∗) = 0, we can rewrite ‖φz1(t, j)− x∗‖2 as

‖φz1(t, j)− x∗‖2 = ‖φz2(tj , j)− (t− tj)∇L(φz2(tj , j))− x∗ + (t− tj)∇L(x∗)‖2

= ‖φz2(tj , j)− x∗‖2 − 2(t−tj)(∇L(φz2(tj , j))−∇L(x∗))T (φz2(tj , j)−x∗)

+ (t− tj)2‖∇L(φz2(tj , j))−∇L(x∗)‖2,

where the second equality follows from expanding the norm squared. Using the β-strong convexity of L and the

Lipschitz property of ∇L, we upper bound this with

‖φz1(t, j)− x∗‖2 ≤ ‖φz2(tj , j)− x∗‖2−2(t−tj)β‖φz2(tj , j)− x∗‖2 + (t− tj)2K2‖φz2(tj , j)− x∗‖2

= (1−2(t−tj)β+(t−tj)2K2)‖φz2(tj , j)−x∗‖2.

For contraction, we must show (1−2(t−tj)β+(t−tj)2K2) < 1. To derive a sufficient condition for this, note

that (1−2(t−tj)β+(t−tj)2K2) < 1 may be rewritten as (t − tj)K2 < 2β by subtracting 1 from both sides,

dividing by t − tj , and then adding 2β to both sides. Using β ≤ K and τmax < β2

3K3 , we have (t − tj) ≤

τmax <
β2

3K3 < 2β
K2 , and therefore (1−2(t−tj)β+(t−tj)2K2) < 1. To show that this term is also positive, it

is sufficient to show that (1 − 2(t − tj)β) ≥ 1 − 2τmaxK > 0. This is satisfied for τmax < β2

3K3 ≤ 1
3K < 1

K .

Thus, q(t, tj) = (1− 2(t− tj)β + (t− tj)2K2) ∈ (0, 1).
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Proof of (10): From (7)–(8), we have ‖φz1(t, j)−φz2(t, j)‖ = ‖φz2(tj , j)−(t−tj)∇L(φz2(tj , j))−φz2(tj , j)‖.

Simplifying and bounding t− tj above by τmax gives the final result.

Proof of (11): Using (7) and the fact that ∇L(x∗) = 0, we can rewrite ‖φz1(t, j) − x∗‖2 as ‖φz2(tj , j)−(t−

tj)∇L(φz2(tj , j))−x∗+(t−tj)∇L(x∗)‖2. Expanding the norm squared gives

‖φz1(t, j)− x∗‖2 = ‖φz2(tj , j)−x∗‖2+ (t−tj)2‖∇L(φz2(tj , j))−∇L(x∗)‖2

−2(t−tj)(φz2(tj , j)−x∗)T (∇L(φz2(tj , j))−∇L(x∗)).

Dropping the middle term (which is positive) and using (φz2(tj , j)−x∗)T (∇L(φz2(tj , j))−∇L(x∗)) ≤ K‖φz2(tj , j)−

x∗‖2, which follows from ∇L being K-Lipschitz, we can derive a lower bound:

‖φz1(t, j)− x∗‖2 ≥ (1− 2(t− tj)K)‖φz2(tj , j)− x∗‖2

≥ (1− 2τmaxK)‖φz2(tj , j)− x∗‖2.

Let B := 1− 2τmaxK. Then using β ≤ K, we have τmax < β2

6K3 <
1

2K . Therefore, B ∈ (0, 1). �

In preparation for establishing the convergence properties of H, we also show that the angle between the gradient

of the current state and the gradient of the previously communicated state is never greater than 90 degrees as a

result of the bound on τmax. This is formally stated in Lemma 4.

Lemma 4. Let Assumption 1 hold. Consider the hybrid system given by H with data (C, f,D,G) defined in (4)–

(5). Let τmin and τmax be such that 0 < τmin ≤ τmax <
β2

3K3 , where β is the strong convexity constant of L

and K is the Lipschitz constant of ∇L. Denote the unique fixed point of ∇L by x∗. Pick a solution φ such

that φz1(0, 0) = φz2(0, 0). For each Ij := {t : (t, j) ∈ dom φ} with nonempty interior and with tj+1 > tj such

that [tj , tj+1] = Ij , we have

∇L(φz1(t, j))T∇L(φz2(t, j)) ≥ A‖φz2(tj , j)− x∗‖2,

for all t ∈ (tj , tj+1), where A := β2(1− 2τmaxK)− τmaxK3 > 0.

Proof: We begin by expanding ‖∇L(φz1(t, j))‖2:

‖∇L(φz1(t, j))‖2 = ∇L(φz1(t, j))T
(
∇L(φz2(t, j)) +∇L(φz1(t, j))−∇L(φz2(t, j))

)
≤ ∇L(φz1(t, j))T∇L(φz2(t, j)) + ‖∇L(φz1(t, j))‖‖∇L(φz1(t, j))−∇L(φz2(t, j))‖

≤ ∇L(φz1(t, j))T∇L(φz2(t, j)) +K‖∇L(φz1(t, j))‖‖φz1(t, j)− φz2(t, j)‖

≤ ∇L(φz1(t, j))T∇L(φz2(t, j)) + τmaxK‖∇L(φz1(t, j))‖‖∇L(φz2(tj , j))‖, (12)

where the last two inequalities are from the K-Lipschitz property of ∇L which states ‖∇L(x) − ∇L(y)‖ ≤

K‖x − y‖, for all x, y ∈ Rn and (10) in Lemma 3. Note that the K-Lipschitz property also gives the inequal-

October 4, 2021 DRAFT



ities ‖∇L(φz1(t, j))‖ ≤ K‖φz1(t, j) − x∗‖ and ‖∇L(φz2(tj , j))‖ ≤ K‖φz2(tj , j) − x∗‖ because ∇L(x∗) = 0.

Thus, (12) becomes

‖∇L(φz1(t, j))‖2 ≤ ∇L(φz1(t, j))T∇L(φz2(tj , j)) + τmaxK
3‖φz1(t, j)− x∗‖‖φz2(tj , j)− x∗‖

≤ ∇L(φz1(t, j))T∇L(φz2(tj , j)) + τmaxK
3‖φz2(tj , j)− x∗‖2, (13)

where the last inequality follows from (9) in Lemma 3. Because L is β-strongly convex, we have ‖∇L(φz1(t, j))−

∇L(x∗)‖2 ≥ β2‖φz1(t, j)−z∗‖2. To lower bound (13) in terms of ‖φz2(tj , j)−x∗‖2, we combine this with∇L(x∗) =

0 and (11) in Lemma 3. This gives the inequality

‖∇L(φz1(t, j))‖2 ≥ β2‖φz1(t, j)− x∗‖2

≥ β2B‖φz2(tj , j)− x∗‖2, (14)

where B := (1−2τmaxK). Then using (14) in conjunction with (13) allows us to lower bound∇L(φz1(t, j))T∇L(φz2(t, j)):

∇L(φz1(t, j))T∇L(φz2(t, j)) ≥ β2B‖φz2(tj , j)− x∗‖2 − τmaxK3‖φz2(tj , j)− x∗‖2

= (β2(1− 2τmaxK)− τmaxK3)‖φz2(tj , j)− x∗‖2.

This lower bound is positive for τmax < β2

2β2K+K3 . Because β ≤ K, the denominator 2β2K +K3 ≤ 3K3. This

lower bound is positive since τmax < β2

3K3 ≤ β2

2β2K+K3 . �

C. Bound on the Lyapunov Function

Central to proving our main result is a Lyapunov function that is bounded above and below by K∞ comparison

functions α1, α2 given in Lemma 5.

Lemma 5. Let Assumption 1 hold. Let τmin and τmax be such that 0 < τmin ≤ τmax <
β2

3K3 , where β is the

strong convexity constant of L and K is the Lipschitz constant of ∇L. Let V : X → R≥0 be a Lyapunov function

candidate for the hybrid system H = (C, f,D,G) defined in (4)–(5), given by

V (ξ) = (L(z1)− L(x∗))2 + (L(z2)− L(x∗))2,

for all ξ = (z1, z2, τ) ∈ X , where L is the objective function and x∗ is the unique fixed point of ∇L. Then there

exist α1, α2 ∈ K∞ such that

α1(|ξ|A) ≤ V (ξ) ≤ α2(|ξ|A)

for all ξ ∈ C ∪D ∪G(D). In particular, α1 and α2 may be given by, for each s ≥ 0,

α1(s) =
β2

16
s4 and α2(s) =

K2

2
s4.

Proof: The minimizer of L is ξ∗ = (z∗1 , z
∗
2 , τ) = (x∗, x∗, τ) for any τ , and, by construction, V (ξ) is zero only

for ξ = ξ∗ and is positive otherwise.

Because ∇L is K-Lipschitz, L(x)−L(x∗) ≤ ∇L(x∗)T (x− x∗) + K
2 ‖x− x

∗‖2 = K
2 ‖x− x

∗‖2, for all x ∈ Rn.

Thus, V (ξ) may be bounded as

V (ξ) ≤ K2

4
‖z1 − x∗‖4 +

K2

4
‖z2 − x∗‖4. (15)
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First consider the case where ‖z1 − x∗‖ ≤ ‖z2 − x∗‖. Then (15) becomes

V (ξ) ≤ K2

2
‖z2 − x∗‖4 ≤

K2

2
|ξ|4A, (16)

where the last inequality follows from ‖z2 − x∗‖2 ≤ |ξ|2A by definition of |ξ|A. If ‖z1 − x∗‖ > ‖z2 − x∗‖ instead,

then (15) is bounded above by

V (ξ) <
K2

2
‖z1 − x∗‖4 ≤

K2

2
|ξ|4A,

where the definition of |ξ|A is again used in the last inequality. Thus, V (ξ) ≤ K2

2 |ξ|
4
A for all ξ ∈ X and we

set α2(s) =
K2

2 s
4 ∈ K∞ for all s ≥ 0.

The β-strong convexity of L and∇L(x∗) = 0 allow us to write L(z1)−L(x∗) ≥ β
2 ‖z1−x

∗‖2 and L(z2)−L(x∗) ≥
β
2 ‖z2 − x

∗‖2. Applying both inequalities to the definition of V gives

V (ξ) ≥ β2

4
‖z1 − x∗‖4 +

β2

4
‖z2 − x∗‖4. (17)

First, consider the case where ‖z1 − x∗‖ ≥ ‖z2 − x∗‖. Then dropping the second term in (17) and using |ξ|2A =

‖z1 − x∗‖2 + ‖z2 − x∗‖2 ≤ 2‖z1 − x∗‖2,

V (ξ) ≥ β2

4
‖z1 − x∗‖4 ≥

β2

16
|ξ|4A. (18)

Now consider the case that ‖z1− x∗‖ < ‖z2− x∗‖. Then the same steps apply and V (ξ) > β2

16 |ξ|
4
A. Thus, V (ξ) ≥

β2

16 |ξ|
4
A for all ξ ∈ X . Accordingly, α1(s) =

β2

16 s
4 for all s ≥ 0. �

D. Exponential Convergence

Using Lemmas 3, 4, and 5, we are able to bound the distance to the minimizer of L over time for a class of

initial conditions in Proposition 1. This result will then be expanded to include all possible solutions and initial

conditions in Theorem 1, thus showing exponential convergence to the minimizer of L.

Proposition 1. Let Assumption 1 hold and consider the hybrid systemH defined in (4)-(5). Let A be as defined in (6)

and let τmin and τmax be such that 0 < τmin ≤ τmax < β2

3K3 , where β is the strong convexity constant of L and K

is the Lipschitz constant of ∇L. For each solution φ to H such that φz1(0, 0) = φz2(0, 0), for all (t, j) ∈ dom φ,

the following is satisfied:

|φ(t, j)|A ≤

√
K

β
4
√
8 exp

(
− βAB

8K2
t
)
|φ(0, 0)|A,

where A = β2(1− 2τmaxK)− τmaxK3 > 0 and B = (1− 2τmaxK) ∈ (0, 1).

Proof: We first consider ξ ∈ C and the Lyapunov function V defined in Lemma 5. The partial derivatives of V

with respect to zi are given by ∇ziV (ξ) = 2∇L(zi)(L(zi) − L(x∗)) ∈ Rn, for i = 1, 2, where x∗ is the unique

fixed point of ∇L. This leads to

〈∇V (ξ), f(ξ)〉 =−2(L(z1)−L(x∗))∇L(z1)T∇L(z2). (19)

October 4, 2021 DRAFT



We now pick a solution φ such that φz1(0, 0) = φz2(0, 0). For each Ij := {t : (t, j) ∈ dom φ} with nonempty

interior and with tj+1 > tj such that [tj , tj+1] = Ij , we have from Lemma 4,

∇L(φz1(t, j))T∇L(φz2(t, j)) ≥ A‖φz2(tj , j)− x∗‖2,

where A = β2(1 − 2τmaxK) − τmaxK3 > 0. Combining this with (L(φz1(t, j)) − L(x∗)) ≥
β
2 ‖φz1(t, j) − x

∗‖2

from the β-strong convexity of L, and using (19) we can write

〈∇V (φ(t, j)), f(φ(t, j))〉 ≤ −β‖φz1(t, j)− x∗‖2∇L(φz1(t, j))T∇L(φz2(t, j))

≤ −βA‖φz1(t, j)− x∗‖2‖φz2(tj , j)− x∗‖2

≤ −βAB‖φz2(tj , j)− x∗‖4, (20)

where the last inequality is from applying (11) in Lemma 3. Additionally, for each (t, j) in the interval of

flow [tj , tj+1]×{j} in dom φ, we have ‖φz1(t, j)− x∗‖ ≤ ‖φz2(tj , j)− x∗‖ from (9) in Lemma 3. Applying this

to the definition of |φ(t, j)|2A gives the relationship |φ(t, j)|2A ≤ 2‖φz2(tj , j) − x∗‖2. Squaring both sides allows

us to rewrite (20) as

〈∇V (φ(t, j)), f(φ(t, j))〉 ≤ −βAB
4
|φ(t, j)|4A. (21)

This bound may be related back to V (φ(t, j)) using the comparison function α2 from Lemma 5, which leads to

〈∇V (φ(t, j)), f(φ(t, j))〉 ≤ −βAB
2K2

V (φ(t, j)). (22)

We now consider the change of V at jumps. For each ξ ∈ D, and g = (gz1 , gz2 , gτ ) ∈ G(ξ), V (g) = (L(gz1)−

L(x∗))2+(L(gz2)−L(x∗))2. Thus, we can write the change of V at jumps as V (g)−V (ξ) = (L(gz1)−L(x∗))2−

(L(z2)− L(x∗))2 because gz1 = z1 and gz2 = z1 from (5).

For a solution φ such that φz1(0, 0) = φz2(0, 0), this is equivalent to

V (G(φ(tj+1, j)))− V (φ(tj+1, j)) = (L(φz1(tj+1, j+1))−L(x∗))2−(L(φz2(tj+1, j))−L(x∗))2,

for all (tj+1, j), (tj+1, j+1) ∈ dom φ. For this quantity to be nonpositive, it is sufficient to show that L(φz1(tj+1, j+

1)) ≤ L(φz2(tj+1, j)).

Towards doing this, we leverage L(x) ≤ L(y) +∇L(y)T (x− y) + K
2 ‖x− y‖

2, for all x, y ∈ Rn from the K-

Lipschitz property of ∇L. Applying this for x = φz1(tj+1, j + 1), y = φz2(tj+1, j), we have

L(φz1(tj+1, j + 1)) ≤ L(φz2(tj+1, j)) +∇L(φz2(tj+1, j))
T (φz1(tj+1, j + 1)−φz2(tj+1, j))

+
K

2
‖φz1(tj+1, j + 1)− φz2(tj+1, j)‖2

= L(φz2(tj+1, j))+∇L(φz2(tj+1, j))
T (φz2(tj , j)−(tj+1−tj)∇L(φz2(tj , j))−φz2(tj+1, j))

+
K

2
‖φz2(tj , j)−(tj+1−tj)∇L(φz2(tj , j))−φz2(tj , j)‖2

= L(φz2(tj+1, j))−
(
1− K

2
(tj+1 − tj)

)
(tj+1 − tj)‖∇L(φz2(tj , j))‖2,
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where the first equality uses φz1(tj+1, j + 1) = φz1(tj+1, j) = φz2(tj , j) − (tj+1 − tj)∇L(φz2(tj , j)) from (5)

and (7), and the last equality uses φz2(tj+1, j) = φz2(tj , j). Since tj+1−tj ≤ τmax ≤ β2

3K3 ≤ 1
3K ≤

2
K , we have

the desired property: L(φz1(tj+1, j + 1)) ≤ L(φz2(tj+1, j)). Thus,

V (G(φ(tj+1, j)))− V (φ(tj+1, j)) ≤ 0. (23)

Following the work done in [15] and [14], we are able to perform direct integration in order to upper bound V (φ(t, j))

in terms of V (φ(0, 0)) using (22) and (23) as bounds. Thus,

V (φ(t, j)) ≤ exp
(
− βAB

2K2
t
)
V (φ(0, 0)).

Using the comparison functions given in Lemma 5, we get a bound for |φ(t, j)|4:

|φ(t, j)|4A ≤
16

β2
exp

(
− βAB

2K2
t
)
V (φ(0, 0))

≤ 8K2

β2
exp

(
− βAB

2K2
t
)
|φ(0, 0)|4A.

Taking the fourth root gives the final answer. �

In practice, this preliminary result is useful when agreeing on initial values is easy to implement. However, it does

not show our desired result, namely, exponential convergence to the minimizer of L, regardless of initialization. By

examining all possible scenarios at the first jump, we show in Theorem 1 below that exponential convergence to

the minimizer of L still applies after the first jump.

Theorem 1 (Exponential Convergence). Let Assumption 1 hold and consider the hybrid system H defined in (4)-(5).

Let A be as defined in (6) and choose τmin and τmax such that 0 < τmin ≤ τmax <
β2

3K3 , where β is the strong

convexity constant of L and K is the Lipschitz constant of ∇L. For each solution φ and for all (t, j) ∈ dom φ

such that j ≥ 1, the following is satisfied:

|φ(t, j)|A ≤
8

3
4
√
2

√
K

β
exp

(
− βAB

8K2
t
)
|φ(0, 0)|A,

where A = β2(1− 2τmaxK)− τmaxK3 > 0 and B = (1− 2τmaxK) ∈ (0, 1).

Proof: Two initialization scenarios must be considered: φz1(0, 0) = φz2(0, 0) and φz1(0, 0) 6= φz2(0, 0).

For the first case, φz1(0, 0) = φz2(0, 0), Proposition 1 applies in its original form. This is the best-case scenario

that results in the smallest upper bound.

Now consider the second case, when φz1(0, 0) 6= φz2(0, 0). We note that after the first jump, all assumptions of

Proposition 1 hold. Thus, for any solution φ where (t, j) ∈ dom φ such that j ≥ 1, we have the following:

|φ(t, j)|A ≤

√
K

β
4
√
8 exp

(
− βAB

8K2
t
)
|φ(t1, 1)|A, (24)

where t1 denotes the time of the first jump.

We now seek to bound |φ(t1, 1)|A in terms of |φ(0, 0)|A. We begin by expanding and simplifying |φ(t1, 1)|2A
using that φz2(t1, 1) = φz1(t1, 1) after the first jump:

|φ(t1, 1)|2A = ‖φz1(t1, 1)− x∗‖2 + ‖φz2(t1, 1)− x∗‖2 = 2‖φz1(t1, 1)− x∗‖2, (25)
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where x∗ is the unique fixed point of ∇L. Applying the flow dynamics and using φz1(t1, 1) = φz1(t1, 0) allows

us to rewrite the distance of φz1 from the minimizer of L after the first jump as

‖φz1(t1, 1)− x∗‖2=‖φz1(0, 0)−t1∇L(φz2(0, 0))−x∗‖2

≤ ‖φz1(0,0)−x∗‖2+2t1‖φz1(0,0)−x∗‖‖∇L(φz2(0,0))‖+ t21‖∇L(φz2(0, 0))‖2

≤ ‖φz1(0,0)−x∗‖2+2t1K‖φz1(0,0)−x∗‖‖φz2(0,0)−x∗‖+ t21K
2‖φz2(0, 0)− x∗‖2, (26)

where the last inequality comes from the K-Lipschitz property of ∇L and the fact that ∇L(x∗) = 0. If ‖φz1(0, 0)−

x∗‖ ≤ ‖φz2(0, 0)− x∗‖, then (26) becomes

‖φz1(t1, 1)−x∗‖2 ≤ (1+2t1K+t21K
2)‖φz2(0, 0)−x∗‖2

≤ (1 + t1K)2|φ(0, 0)|2A.

Similarly, if ‖φz1(0, 0) − x∗‖ > ‖φz2(0, 0) − x∗‖, then (26) becomes ‖φz1(t1, 1)−x∗‖2 < (1 + t1K)2|φ(0, 0)|2A.

Thus, in both cases,

‖φz1(t1, 1)−x∗‖2 ≤ (1 + t1K)2|φ(0, 0)|2A

Applying this to (25) and using t1 ≤ τmax < β2

3K3 <
1

3K , we get the bound

|φ(t1, 1)|2A ≤ 2

(
4

3

)2

|φ(0, 0)|2A. (27)

Taking the square root and applying to (24) gives the final result for any (t, j) ∈ dom φ such that j ≥ 1. �

VI. NUMERICAL VALIDATION

We consider N = n agents for various values of n. Each agent updates a scalar and they minimize

L(x) =
1

2
xTQx+ bTx,

where x ∈ Rn, Q is a n × n symmetric, positive definite matrix, and b ∈ Rn. To form Q, we decompose a

random n×n matrix into an unitary orthogonal matrix U and a matrix D that contains only our desired eigenvalues

on the diagonal. We use these two resulting matrices to set Q = UTDU . Our choice of eigenvalues varies by trial

(discussed below) with the minimum eigenvalue corresponding to β and the maximum eigenvalue corresponding

to K. The entries of b are set to random values between 1 and 5. Simulations used the HyEq Toolbox (Version

2.04) [16]1.

We first compare convergence results for different initial values of φz1 and φz2 for five agents. For the first

trial, we consider the case where φz1(0, 0) = φz2(0, 0) = (2, 2, 2, 2, 2)T . In Trial 2, we consider the “worst-case”

initialization scenario: when φz1(0, 0) = (2, 2, 2, 2, 2)T is some distance from the optimum but φz2(0, 0) = x∗,

resulting in an increase in the distance from the minimizer of L before the first jump. We consider β = K = 5 and

set τmax = β2

3K3+1 and τmin = 1
2τmax. Figure 1 shows the distance from optimum through the first twenty jumps

for both trials. There is a consistent decrease in the distance to the minimizer, even at jumps, for the first trial. In

1Simulation code for this section may be found at www.github.com/kathendrickson/DistrHybridGD.
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Fig. 1. Effect of initial values on convergence for two trials, where flows are denoted with solid lines and jumps with stars and dashed lines.

Trial 1 sets φz1 (0, 0) = φz2 (0, 0), while Trial 2 sets φz2 (0, 0) = x∗ instead. The first jump does not increase the distance from the minimizer

in Trial 1 but does increase this distance in Trial 2. However, after the first jump, progress continues toward the optimum and differences

between trials diminish.

Fig. 2. Effect of network size on convergence. Convergence results still hold even for very large network sizes, demonstrating the scalability

of our algorithm.

contrast, when initial values for φz1 and φz2 are not equal, there is an increase in distance to the minimizer after

the first jump in the second trial. However, as expected, distance to the optimum decreases exponentially thereafter,

with the difference between the two trials decreasing over time.

We then examined the effects of varying the network size from 5 agents to 100, 500, 1000, and 5000 agents.

We set β = 2 and K = 4 and chose to initialize φz1 and φz2 with vectors of twos in Rn. For each network size,

the matrix Q and vector b were randomly generated. As shown in Figure 2, drastically expanding the network size

does not have a significant impact on convergence. This demonstrates our algorithm’s scalability and convergence
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results that hold regardless of network size.

VII. CONCLUSION

This paper presented a hybrid systems framework for analyzing continuous-time multi-agent optimization with

discrete-time communications. Using this framework, we established that every maximal solution is complete, as

well as the exponential convergence of a block coordinate descent law to the minimizer of a strongly convex and

smooth objective function. Future work in this area includes the use of heterogeneous timers and exploration of

other update laws, as well as constrained problems.

APPENDIX

Proof of Lemma 2: Using Proposition 6.10 in [14] with U = C, let ξ = (z1, z2, τ) ∈ C\D. Then f(ξ) ⊂ TC(ξ).

Because G(D) ⊂ C, case (c) in Proposition 6.10 does not apply. We avoid case (b) of Proposition 6.10 by showing

that every solution lies entirely in a compact subset W ⊂ C. To do this, we verify is that there is no finite escape

time for any solution. Consider a solution φ. Then φz1(0, 0) and φz2(0, 0) denote the initial values of φz1 and φz2 ,

respectively. Let t1 denote the continuous-time at which the first jump occurs; then the value of φ after the first

jump may be written as φ(t1, 1). We first show that there is no finite escape time from initialization through the

first jump. Towards doing this, we use (27), |φ(t1, 1)|2A ≤ 2( 43 )
2|φ(0, 0)|2A, and apply the comparison functions in

Lemma 5. This gives the set of inequalities

V (φ(t1, 1)) ≤
K2

2
|φ(t1, 1)|4A

≤ K2

2
4

(
4

3

)4

|φ(0, 0)|4A

≤ K2

2
4

(
4

3

)4
16

β2
V (φ(0, 0)),

which follow from (16), (27), and (18), respectively. Thus, through the first jump, V (φ(t1, 1)) ≤ 8192K2

81β2 V (φ(0, 0)).

After this first jump, φz1(t1, 1) = φz2(t1, 1) then holds. By construction and Assumption 1, ∇L is Lipschitz and

thus the map f is Lipschitz as well. Applying (21) after hybrid time (t1, 1), we have

V̇ (φ(t, j)) = 〈∇V (φ(t, j)), f(φ(t, j))〉 ≤ 0, (28)

for all (t, j) ∈ dom φ such that j ≥ 1. Thus, for any solution φ, we see that

V (φ(t, j)) ≤ 8192K2

81β2
V (φ(0, 0)) (29)

for all (t, j) ∈ dom φ.

Now consider a solution to ξ̇ = f(ξ) that starts from some c-sublevel set W1 = {ξ ∈ X : V (ξ) ≤ c}.

Then, from (28) and (29), we see that all such solutions remain in the sub-level set W2 = {ξ ∈ X : V (ξ) ≤

max{c, 8192K
2

81β2 V
(
φ(0, 0

)
}}. Because V is continuous and radially unbounded by Lemma 5, W2 is compact.

From (28), W2 is forward invariant for H. Thus any trajectory that starts in the subset W1 remains in W2. Thus

by Theorem 3.3 in [17], there is no finite escape time from C. �
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