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Abstract— This paper proposes a new class of real-time
optimization schemes to overcome system-model mismatch of
uncertain processes. This work’s novelty lies on integrating
derivative-free optimization schemes and multi-fidelity Gaus-
sian processes within a Bayesian optimization framework. The
proposed scheme uses two Gaussian processes for the stochastic
system, one emulates the (known) process model, and another,
the true system though measurements. In this way, low fidelity
samples can be obtained via a model, while high fidelity
samples are obtained through measurements of the system. This
framework captures the system’s behavior in a non-parametric
fashion, while driving exploration through acquisition functions.
The benefit of using a Gaussian process to represent the system
is the ability to perform uncertainty quantification in real-
time and allow for chance constraints to be satisfied with
high confidence. This results in a practical approach that is
illustrated in numerical case studies, including a semi-batch
photobioreactor optimization problem.

I. INTRODUCTION

The advantages of real-time optimization (RTO) in indus-
trial processes are well known[1], [2], however, currently,
most implementations rely on heuristics and trial and error
to reach optimality[2]. The fact that complex phenomena
cannot be modelled exactly is the biggest challenge in real-
time optimization, in this context we refer to the ’plant’ as the
’true’ system, and therefore refer to ’plant-model mismatch’
as the error of our model with respect to the real system (the
plant). Real-time optimization relies on the development of
models that are utilized to conduct optimization [3], these
(imperfect) models are usually updated in real-time when
measurements are available. With the updated models, the
optimization is repeated, and an iterative procedure between
model refinement and optimization ensues. This two-step
procedure in RTO schemes is called the model-adaptation
strategy. Despite being the most widely used method in
industry, this model-adaptation strategy does not converge
to the systems’s optimal operating conditions. This has led
research into different methods in RTO [4], [5], [6], [7]. One
approach that has shown particular promise in the literature
is that of modifier adaptation [6]. Modifier adaptation relies
on adding linear functions to the optimization model’s cost
and constraint functions while keeping a nominal process
model. This approach has shown to be very efficient in
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some scenarios, nevertheless, function gradients from process
measurements are needed, which are difficult to estimate
in practice. Variants of modifier adaptation to resolve this
issue include recursive update schemes [8], [9], directional
derivatives [10], transient process measurements [11].

The use of derivative-free approaches can lift the issues
with the estimation of gradients. The use of quadratic sur-
rogates is proposed in [12] fitted on available plant data.
Similarly, data-driven models are investigated in [13] based
on quadratic surrogates as modifiers for the predicted cost
and constraint functions. The natural extension of such
surrogates is Gaussian processes (GPs) that were first used in
RTO [14]. Subsequently, GPs were employed in RTO using
Bayesian optimization ideas [15]. Recently, the convergence
certificates for such schemes were verified [16]. The idea
of correcting the mismatch of a knowledge-driven model
with a data-driven model is akin to hybrid semi-parametric
modelling [17], specifically a parallel hybrid model structure.
The consideration of non-parametric models, whereby the
nature and number of parameter areas not determined by
a priori knowledge but tailored to the data at hand, makes
perfect sense to capture the structural plant-model mismatch
in RTO applications. In principle, this approach is even
amenable to a completely model-free RTO scheme by simply
discarding the first-principles model component.

The utilization of non-parametric models such as GPs,
where the number of parameters is not determined a priori
but rely on the available data, is the most natural approach
to capture the structural plant-model mismatch of a system.
In fact, a completely model-free RTO scheme could be used
by discarding the mechanistic model component; however,
relying on knowing information about the system in the form
of a model increases performance [15], [18], [19].

A. Multi-fidelity modelling via Gaussian processes

A process model with low predictive capabilities combined
with the real system’s samples (or a high fidelity model) has
gained a lot of attention in multi-fidelity modelling. Notice
that most industrially relevant models are not analytical.
They are often complex black-box simulators and legacy
code, e.g. systems of ordinary or partial differential equations
or a set of ‘if/else if’ rules. We can evaluate the models, but
their derivatives with respect to the optimization variables
cannot be trivially found. For this reason, a multi-fidelity
Gaussian process is proposed to account for plant-model
mismatch and the low fidelity black-box models. Popular
techniques to perform such a multi-fidelity approach include
classical Auto-Regressive (AR) schemes [20]. The linear
autoregressive information scheme introduced by Kennedy
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and O’Hagan [21] has been widely used due to its ease in im-
plementation. Recently, non-linear autoregressive techniques
[22], and deep GPs [23] have been proposed to improve
multi-fidelity predictive capabilities. Ideas of Multi-fidelity
GP have also been used for Bayesian optimization [24].

In the high model mismatch context, three main frame-
works have been proposed in model predictive control (MPC)
[25]; Learning the dynamics of the system, learning the
controller, and safe learning-based MPC. Most techniques
cannot easily ensure that safety constraints are met, par-
ticularly during learning iterations. In the context of only
parametric uncertainty, it is common to use Polynomial chaos
expansions and reformulate the chance constraints using a
deterministic surrogate [26], [27]. Under the presence of
structural mismatch, it is common to use non-parametric
models like GPs and incorporates the chance constraint
satisfaction in a similar manner [28]. Similarly, safe Bayesian
optimization techniques have been proposed in [29], where
the GP’s variance is employed to help the safe exploration.
Such approaches are sensible. However, there is no free
lunch, in safe exploration; the GP’s confidence intervals may
not include the true system, especially under the presence of
limited data, resulting in the violation of constraints.

In this paper, we propose the use of multi-fidelity GPs
to combine available models (low-fidelity) and noisy mea-
surements from the true plant (high-fidelity). Additionally,
chance constraints are reformulated using the Chebyshev-
Cantelli theorem [30] to guarantee constraint satisfaction
with high confidence. A trust-region is implemented to
restrict the design space and avoid aggressive extrapolations
on the predictions and the risky implementation of such an
approach. The trust-regions have an added benefit in terms
of online computational costs during the multi-fidelity GP
training, as there is no need for many samples from the
low fidelity model to be computed due to a restricted design
space.

The rest of the paper provides background on real-time
optimization and GPs in Section II, and presents convenient
background in Section III. In Section IV, the proposed
framework is presented. Then, this algorithm is illustrated
with practical case studies in Section V, before drawing final
remarks in Section VI.

II. PROBLEM STATEMENT

The optimization of a given plant subject to operational
or safety constraints under a stochastic environment can be
formulated as:

min
u∈U

Gp
0 (u) := E(g0 (u,yp(u))) (1)

s.t. Gp
c (u) := P(gi (u,yp(u))≤ 0, i = 1 . . .ng)≥ 1−α

where u ∈ Rnu and yp ∈ Rny are vectors of the plant input
(design) and output (measured) variables, respectively. No-
tice that the objective is minimized in expectation and the
constraints are satisfied with a pre-defined probability, as the
plant is assumed to be affected by Gaussian disturbance and
noise. Additionally, gi : Rnu ×Rny → R, i = 0...,ng, denote

the cost and inequality constraint functions; and U ⊆ Rnu

is the control domain, e.g. lower and upper bounds on the
input variables, uL ≤ u≤ uU. The superscript (·)p is used to
indicate plant-related quantities. Additionally, here (1−α)∈
(0,1) is a user-defined parameter representing probability of
constraint satisfaction with values close to 1.

The challenge in RTO is that the exact mapping yp(·) is
unknown, and the output yp(u) can only be measured for a
given input variable u, under the presence of noise and distur-
bance. It is common to have an available model (low fidelity)
of the plant’s input-output behavior y(u, ·). Nevertheless, the
available model may not have a closed-form expression, as
they may be complex black-box simulators or a legacy code.

In the presence of plant-model mismatch and process
disturbances, the optimal solution of Problem (1) could be
significantly different from the optimization that utilizes only
the model.

III. BACKGROUND

A. Gaussian Process

In this section, Gaussian processes (GPs) are introduced,
as one of the key components of the methodology that
follows. The Gaussian process generalizes the multivari-
ate Gaussian distribution to a distribution over an infinite-
dimensional vector of functions, such that every finite sample
of function values are jointly Gaussian distributed. Due
to the Bayesian nature, GPs can consider both epistemic
(limited data) and aleatoric (stochasticity of the true model)
uncertainty. A GP is fully specified with the prior mean
function µ(·) and the positive semi-definite kernel function
k(·, ·). The GP regression aims to model an unknown set
of functions g : Rnu → Rny given some noisy observations
y = g(u)+ ε . For g =

[
g1, . . . ,gny

]
, this could be expressed

as:
gi ∼ GP(µi(·),ki(·, ·)), (2)

where the prior mean µi function provides knowledge of
the mean of a test point prior to observing data, the kernel
function ki expresses the covariance between points. Let a
number of data points be available, the posterior distribution
at a test point u∗ is then found by the conditional distribution
given the available N noisy data for each output i: {U,yi},
with U = [u1, . . . ,uN ] ∈ Rnu×N and yi = [yi1, . . . ,yiN ]

T ∈ RN .
Then, the posterior mean mi(u∗) and variance Σi(u∗) of the
test point u∗ are

mi(u∗) = k∗i
[
Ki +σ

2
i I
]−1

(yi−1µi(u∗))+µi(u∗)

Σi(u∗) = ki(u∗,u∗)−k∗i
[
Ki +σ

2
i I
]−1 k∗Ti ,

(3)

where the posterior mean is mi(u∗) = E( f ∗i |u∗,U,yi), the
posterior variance is Σi(u∗) =V( f ∗i |u∗,U,yi), k∗i = ki(u∗,U)
is the covariance between training and test cases vector, Ki =
ki(U,U) is covariance (or Gram) matrix. Notice that Σi is the
variance of the noise-free prediction, if the noise is taken
into consideration then variance should be Σi +σ2

i , and σ2
i

is many times treated as a hyperparameter for the GP. The



predicted distribution of g(u∗) follows a normal distribution:

g(u∗)∼N (m(u∗),ΣΣΣ(u∗)), (4)

with m(u∗) =
[
m1, . . . ,mny

]
and ΣΣΣ(u∗) =

diag(
[
Σ1(u∗), . . . ,Σny(u∗)

]
). Notice, that multi-output

formulation of the GP could be use instead to compute
the non-diagonal terms of the covariance [31]. Common
choices for the kernel ki(·, ·) is the squared-exponential
(SE) covariance function and Matérn class of covariance
functions, with special cases the Matérn 3/2 and Matérn
5/2 [32] with the hyperparamters and the noise level being
estimated using maximum likelihood estimation.

B. Multi-fidelity Gaussian process
The GP regression framework can be systematically ex-

tended to formulate probabilistic models that enable different
fidelity information sources (see [22], [20]), i.e. a low-fidelity
model for which many data points can be generated and
a high-fidelity model/system for which only a few data-
points can be obtained. Generally, numerous levels of fidelity
models can be included, in this work, 2 levels of fidelity are
considered, i.e. the low fidelity (known model) and the high
fidelity (plant measurements).

Suppose that we have data points for the low ym and
high fidelity yp system at locations um ∈ Dm and up ∈ Dp,
respectively. The collected data can be organized as pairs
by increasing fidelity as Dt = {ut}, Y t = {yt}, t = {m,p}.
The prediction model can be written as an auto-regressive
scheme:

gp(u) = εgm(u)+δ (u) (5)

where gm and gp are GPs modelling the data at low and high
fidelity respectively. Additionally, ε is a scaling constant that
can be estimated and δ (·) is a GP with mean µδ (·) and
covariance kδ (·, ·) functions , i.e. δ ∼ GP(µδ (·),kδ (·, ·)).

A numerically efficient inference and hyper-parameter
learning scheme can be employed by assuming that the
experimental design sets Dm and Dp have a nested structure,
i.e. Dp ⊆ Dm [33]. This assumption means that the lower
fidelity’s training inputs should include the data of the
higher fidelity level. The inference problem is now decoupled
into 2 standard GP regression problems, resulting in the
multi-fidelity posterior distribution with predictive mean and
variance at each level for a given u∗ given by

mgp(u∗) = k∗
δ

[
Kδ +σ

2
δ

I
]−1

(yp−1(εmgm(u∗)
+µδ (u∗)))+ εmgm(u∗)+µδ (u∗)

Σ
p(u∗) = ε

2
Σ

m(u∗)+ kδ (u∗,u∗)−k∗
δ

[
Kδ +σ

2
δ

I
]−1 k∗T

δ
.
(6)

The training of the lower fidelity model includes the training
data points of the plant (higher fidelity) up∗ , as the result the
posterior prediction of the low fidelity at up∗ is by construc-
tion a deterministic quantity, the model training points are
assumed to be noiseless. Hence, due to the nested training
sets (i.e.Dp ⊆Dm), the training of gp given the available data
reduces to a straightforward maximum-likelihood estimation
problem.

C. Chance Constraints

Given the problem definition (1), we wish to satisfy the
constraints with a given probability. These chance constraints
can be reformulated using the multi-fidelity GPs. To satisfy
the chance constraints, a distributionally robust reformulation
is employed via the Chebyshev-Cantelli theorem [30], (The-
orem 3.1) using the mean and variance of the constraints.

Theorem 3.1: ([30]) Consider a chance constraint of the
form.

P(q≤ 0)≥ 1− γ, γ ∈ (0,1) (7)

where q ∈ Rnq is some random variable. Let Q be a family
of distributions with mean µq and variance Σq. Then for any
ε ∈ (0,1), the distributionally robust probabilistic constraint

inf
q∼Q

P(q≤ 0)≥ 1− γ (8)

is equivalent to the following constraint:

µq + r
√

Σq ≤ 0, (9)

with r =
√

1− γ

γ
.

This theorem provides a conservative estimate for the con-
straints and it holds for the whole family distribution Q.

Remark 1: The parameter r is often used as a design
parameter to reduce the inherent conservatism; however, this
makes any guarantees void.
This reformulation highly relies on the accuracy of the
mean and variance computed via a GP, hence the initial
small amount of data points may significantly affect the
result. Notice that even though the result in Theorem 3.1
is conservative for all the family of distributions with mean
µq and Σq, the wrong estimation of mean and variance may
lead to infeasible designs.

To overcome this limitation, trust-regions are employed,
where the design space of the optimization variables u is
further restricted.

IV. PROPOSED FRAMEWORK

A. Trust Regions

The use of GPs has gained a lot of attention due to their
ability to provide a close form expression for both the mean
and variance; however, their use far from collected data
(global use of the GP) may be naive. To avoid this, trust re-
gions are utilized to update the GPs for the model-mismatch
locally and not globally. This is particularly important in
safety-critical scenarios, such as in real-time optimization
and many engineering applications.

To motivate the reader on the use of trust regions, we
introduce the assumptions that are usually utilized for GPs
as global surrogates; then, we show that even for a simple
example, such an approach may not be reliable for a global
prediction.

It is common to achieve bounds for the unknown function,
assuming that the unknown function gi has bounded norm
in reproducing kernel Hilbert space (RKHS) [34]. This
assumption[35] can lead to reliable confidence intervals.



Due to the generic nature of the systems, the assumption
and confidence interval from [35] may not globally hold
and invalidate the use of GPs globally. To further indicate
the importance of the trust-region, a motivating example is
presented next.

1) Importance of Trust Regions: A motivating example :
Let a simple function f (x) = xsin(x) be assumed as the
‘true’ system, with x ∈ R and the collected data being
corrupted by a Gaussian noise ε f with standard deviation
0.01, y = f (x)+ ε f . A GP is used to approximate the data;
a squared-exponential (SE) covariance function is used and
its hyperparameters are fitted using maximum likelihood
estimation (with multi-starts to avoid highw laying local
optima). The mean m and variance Σ of the GP for each
x are illustrated in Fig 1.

Fig. 1: The ground truth (red dashed line) is the function
that the GP approximates given the available data. The GP
predictions for the mean (µ) is the green line with variance
Σ, and the shaded areas represents the area between m±√

Σ,m±
√

Σ,µ±3
√

Σ,m±4
√

Σ and m±10
√

Σ.

The shaded areas show the m+ r
√

Σ for r = 1,2,3,4 and
10. If we were to use Theorem 3.1, we would expect the
‘true’ model (red dashed line) to lie within these shaded
areas. The Chebyshev-Cantelli theorem states that for r =
9.94, x should lie within the shaded area with a probability
of 99%. However, due to the shape of the ‘true’ model and
the collected data, the predictions are poor. This example
motivates the restriction of the proposed optimization prob-
lem. Although this is a well know fact for practitioners, it
not generally taken into account, and it is a particular pitfall
of any approach that wishes to satisfy constraints with high
probability.

Remark 2 (Trust-regions for multi-fidelity GPs): The ad-
vantages of the trust-region are not limited to the ability of
the GP to accurately represent the system and the reformula-
tion of the chance constraints. The construction of the GP for
the low fidelity model requires the acquisition of data from a
simulator, which is generally expensive in large and complex
processes. Without trust regions, the whole design space must
be explored, which means that either i) the number of data

points is not enough to provide a good approximation, and
the posterior variance is high, significantly affecting both the
acquisition function and the reformulated chance constraints
or ii) a large amount of data points is drawn, incurring in
high computational costs for the sampling, training of the
hyperparameters and prediction, which is intractable in many
instances. Variational methods [36] could be used to mitigate
this issue; however, the problem remains as the number of
design variables increases.

This issue is accommodated with the use of the trust-
region, as only data in the trust-region’s neighbourhood in
needed.

B. Proposed framework

Herein, we introduce the concept of trust-regions from the
field of derivative-free optimization together with acquisition
functions from Bayesian optimization and chance constraints
for safe exploration. Let gp

i be the plant’s cost (i = 0)
and inequality constraints (i = 1, . . . ,ng), gm

i be the model’s
cost and inequality constraints, and mgp

i
,Σ

p
i ,mgm

i
,Σm

i their
corresponding GP’s posterior mean and variance. Then, the
modified optimization problem that is solved at each RTO
iteration becomes:

dk+1 ∈ argmin
d

A[mgp
0
,Σ

p
0](u

k +d)

s.t. [mgp
i
+ r
√

Σ
p
i ](u

k +d)≤ 0,

‖d‖ ≤ ∆
k, uk +d ∈ U

r =

√
1−α

α
, i = 1 . . .ng

(10)

where ∆k>0 is the trust-region radius for the predicted step
dk+1 ∈ Rnu ; and A is an acquisition function for the cost
associated with the its posterior mean and variance (mgp

i
,Σ

p
i ),

leading to, for example, the Lower Confidence Bound (LCB)
or Expected Improvement (EI) function[37], [15] .

The solution of Problem (10) coincides with a constrained
Bayesian optimization within a trust-region. The trust-region
is adapted when a new sample becomes available according
to an adaptation mechanism (see next section IV-B.1 and
Algorithm 1).

1) Adaptation Mechanisms: As stated in section IV-A,
the trust region’s role is to restrict the step size of the next
design, so that cost and constraints are accurate predictions
of the true system. The trust region is updated according to
classical update rules in trust-region algorithms [38], which
relies on the ratio of the actual cost reduction versus the
predicted cost reduction:

ρ
k+1 :=

gp
0

(
uk
)
−gp

0

(
uk +dk+1

)
mgp

0
(uk)−mgp

0
(uk +dk+1)

(11)

The trust-region radius ∆k+1 is reduced whenever the ac-
curacy ratio ρk+1 is too low. Conversely, ∆k+1 is increased
if the solution of (10) takes a full step and the prediction
of the plant cost is good around this point. In a different
scenario, the trust-region radius stays unchanged. Similarly,
the new design point uk + dk+1 is accepted if the step



dk+1 produces an accuracy ratio ρk+1 which is sufficiently
large. Otherwise, the operating point remains unchanged. In
practical situations this would trigger a back-tracking from
uk + dk+1 to uk during the RTO cycle. Any infeasibility
trigger a rejection of the current step dk+1 as well and,
result in backtracking to point uk. Notice that our approach
considers a chance constraint formulation which means that
the constraint violation does not occur often.

Algorithm 1 RTO using multifidelity GPs

Input: initial data sets (U0,gp0
i ), i = 0 . . .ng; initial operating

point u0 ∈ U ; initial and maximal trust-region radii 0 < ∆0 <
∆max; trust-region parameters 0 < η1 < η2 < 1, 0 < γred <
1 < γinc, α > 0, the number of Nm extra simulations from
the black-box model.
I) Generate the nested set (i.e.Dp ⊆Dm), with Nm additional
simulations in the neighborhood of the trust-region.
II) Construct the GP posterior for the low and high fidelity
GP, B mgp

i
,Σ

p
i ,mgm

i
,Σm

i
Repeat: for k = 0,1, . . .

1) Solve modified optimization problem (Problem 10) B
dk+1

2) Get process cost and constraint measurements B
Gp

i (u
k +dk+1), i = 0 . . .ng

3) Check infeasibility
If either Problem (10) is infeasible, or if gp

i (u
k +

dk+1)> 0 for any i > 0:
∆k+1 ← [γred,1]∆k, uk+1 ← uk (reject), and

go to Step 7
4) Compute merit function (Equation 11) B ρk+1

5) Update trust region
If ρ

k+1 > η2 ∧ ‖dk+1‖= ∆
k:

∆
k+1 ← γinc∆

k, uk+1 ← uk +dk+1 (accept)

Else If ρ
k+1 < η1:

∆
k+1 ← γred∆

k, uk+1 ← uk (reject)

Else: ∆
k+1 ← ∆

k, uk+1 ← uk +dk+1 (accept)

6) Update data set for the plant B Dp = {Dp ∪
uk+1},Yp

i = {Y
p
i ∪gpk+1

i }i = 0 . . .ng
7) Generate the nested nested training set (i.e.Dp ⊆Dm),

with Nm additional simulations in the neighborhood of
the trust-region.

8) Update low and high fidelity GP, B mgp
i
,Σ

p
i ,mgm

i
,Σm

i

2) Algorithm: In steps I) and II) the training set from
the model and the low-fidelity GPs are constructed. The RTO
iterations begin, where the first optimization is solved in step
1. Then the new optimized variables are applied to the true
system and the corresponding measurements are sampled
in step 2. Then, steps 3-5 follow the adaptation procedure
described in section IV-B.1. Apart from updating the trust
region, both the data sets and the GPs are updated in Steps
6, 7 and 8 respectively, this is irrespective of whether the
step dk+1 is accepted or not. Specifically, at step 6, the
data points of the plant are generated, i.e. measurements

from the real system are collected. Then in step 7 the
nested set is constructed, where Nm random simulations are
performed using the black-box model in the neighborhood
of the trust-region. The black-box is also simulated at the
new operational point uk+1. Hence, the input training set of
the model Dm consists of the Nm as well as the set Dp.
The additional Nm samples are randomly generated inside
the trust-region, as it is important for the surrogate to be
accurate inside the trust region. The computational burden of
reconstructing the GPs at each iteration could be eased upon
updating the covariance matrix at certain iterations only [32].

V. CASE STUDY: BATCH-TO-BATCH OPTIMIZATION

This case study investigates the performance of the pro-
posed methodology in a high-dimensional RTO problem. We
consider the batch-to-batch optimization of a photobiore-
actor for the production of phycocyanin (P) by the blue-
green cyanobacterium Arthrospira platensis (X) growing on
nitrates (N). A dynamic model describing the concentrations
CX [gL−1], CN [mgL−1] and CP [mgL−1] in the photobiore-
actor is given by [28]:

ĊX = um
I(t)

I(t)+ ks+ I(t)2/ki

CN(t)
CN(t)+KN

CX(t)−udCX(t)

(12)

ĊN = −YN/Xum
I(t)

I(t)+ ks+ I(t)2/ki

CN(t)
CN(t)+KN

CX+FN(t)

(13)

ĊP = km
I(t)

I(t)+ ksq+ I(t)2/kiq
CX(t)− kd

CP(t)
CN(t)+KNp

(14)

where the light intensity I(t) [µEm2 s1] and the nitrate inflow
rate FN(t) [mgL−1 h−1] are manipulated inputs; and the
values of the model parameters kd, km, ks, ki, ksq, kiq, KN,
KNp, ud, um, YN/X are the same as those reported by [28]. For
simplicity, the mass-balance equations (12)–(14) neglect the
change in volume due to the nitrate addition kinetic model
assumes nutrient-replete growth conditions.

The optimization problem seeks to maximize the end-
batch concentration of phycocyanin after 240 hours
of operation. Regarding constraints, the phycocyanin-to-
cyanobacterial-biomass ratio must be kept under 1.1 wt%
at all times; the nitrate concentration must be kept under
800 mgL−1 at all times and below 150 mgL−1 at the end
of the batch; and both manipulated inputs are bounded.
A mathematical formulation of this (dynamic) optimization
problem is as follows:

min
I(t),FN(t)

E(CP(240)) (15)

s.t. PBR model (12)–(14)
CX(0) = 1, CN(0) = 150, CP(0) = 0
P(CP(t)≤ 0.011CX(t))≥ 0.9, ∀t
P(CN(t)≤ 800)≥ 0.9, ∀t
120≤ I(t)≤ 400, ∀t
0≤ FN(t)≤ 40, ∀t



To recast it as a finite-dimensional optimization problem,
both control trajectories are discretized using a piecewise-
constant parameterization over 6 equidistant stages (of 60
hours each). The batch-to-batch optimization, therefore, com-
prises a total of 12 degrees of freedom. The state path
constraints are also discretized and enforced at the end of
each control stage.

The case study assumes that the concentrations CX, CN

and CP can all be measured during or at the end of the
batch as necessary. Process noise is simulated in this virtual
environment by adding white noise with zero mean and
standard deviation σCX

= 0.02 [gL−1], σCN
= 0.316 [mgL−1],

and σCP
= 0.001 [mgL−1]. However, no prior knowledge of

this measurement noise is assumed during the construction
of the GP surrogates for the cost and constraints.

Next, we implement several strategies to Problem (15),
including Algorithm 1 with the use of chance constraints and
satisfaction in expectation. The following dynamic model is
used for the latter, which presents a structural mismatch with
the plant model (12)–(14) regarding the light inhibition:

ĊX = um
I(t)

I(t)+ ks

CN(t)
CN(t)+KN

CX(t)−udCX(t) (16)

ĊN = −YN/Xum
I(t)

I(t)+ ks

CN(t)
CN(t)+KN

CX(t)+FN(t) (17)

ĊP = km
I(t)

I(t)+ ksq

cN
CN(t)+KN

CX(t)− kd
CP(t)

CN(t)+KNp
(18)

The Matérn kernel (with parameter ν = 3
2 ) is used for both

the model and physical system (low and high fidelity, respec-
tively) to construct the multi-fidelity model. Specifically, for
the model, 30 data points are used to tune the respective GP’s
hyperparameters. Notice that now there is no need to involve
discretized equations in the NLP problem, as a GP emulates
the ode’s solution. A multi-start initialization (20 random
starting points) is applied to overcome the NLP solver’s
numerical failures and reduce the likelihood of converging
to high laying local optima. The initial GPs are trained with
13 feasible data points, and the initial trust region encloses
all of these points.

The performance of Algorithm 1 using the mulitfidelity
GPs and EI acquisition function is compared with three
alternative frameworks:
a) The use of constraint satisfaction in expectation using
trust-regions.
b) The use of chance constraints without using trust-regions.
c) The use of chance constraints using trust-regions and
without using a prior model (model-free RTO).
The results for the convergence of the objective are presented
in Figure 2 for multiple realizations of the process noise.
The circles represent an occurrence of a constraint violation.
The proposed framework appears to have the best trade-off
between convergence and satisfaction of constraints.

Fig. 2: Evolution of process cost with the RTO iterations.
Circles represents the violation of a constraint.

The use of constraint satisfaction in expectation (a), as an-
ticipated, results in increasing constraint violations (compare
to the proposed framework); this has a side-effect, it slows
down the algorithm as it cannot converge fast to an optimum
point as it backtracks often. On the other hand, the proposed
framework converges very fast as the chance constraint and
trust-region formulation allow the ’safe’ exploration with
high probability. Scenario (b) explores the performance of
the algorithm with the removal of the trust-region. Since the
trust region is not restricting the design space, the optimiza-
tion approaches high values very early in the RTO iterations.
However, the GPs are overly confident, and violation of
constraints occur often. The last scenario, where an a priori
model is ignored (c), violates much less constraints compared
to (a) and (b), as the optimization problem considers chance
constraints and the trust region. However, the absence of
prior model in (c) affects the convergence of the objective
function significantly. Notice that the proposed framework
managed to violate the least constraints compare to (a- c).

Fig. 3: RTO results for the case study (Problem 15) using
our proposed framework. The lines are plotted over the RTO
iterations, which are faded out towards earlier iterations



(a) Constraint satisfaction in expectation using trust-regions

(b) Chance constraint satisfaction without using trust-regions

(c) Chance constraint satisfaction without prior model using trust-
regions

Fig. 4: RTO results for the photobioreactor case study (Prob-
lem 15) using two alternative approaches: (a) The probabilis-
tic constraints in (10) are replaced with the satisfaction in
expectation. (b) The trust-regions are removed from (10).(c)
The prior model is removed from (10).

The constraint 1 (CN ≤ 800) for all the RTO iterations for

a single MC of our proposed framework is depicted in Fig.
3, where the lines are faded out towards earlier iterations. As
expected the plant converges fast to a solution that satisfies
the constraints and in the beginning the constraints are not
close to the bound of the constraint.

The corresponding figures for the constraint using the
expected value of the constraints (but with trust-regions),
chance constraints without trust regions and the absence
of prior model are depicted in Figure 4a - 4c respectively.
Notice that the constraint violation occur often in all cases,
where in Figure 4b, violates the constraints significantly for
the case of the trust-region’s absence. Such violation can
explain the fast increase in the objective function, as the
objective may obtain better values at infeasible regions.

As depicted in Fig. 3 and Fig. 4a - 4c, our proposed
frameworks is superior in terms of constraints satisfaction.
Therefore it is clear that the proposed framework can sig-
nificant beneficial real-time optimization, when stochastic
environments are present and safe exploration is needed.

VI. CONCLUSIONS

A new approach is proposed for real-time optimization
under plant-model mismatch using multi-fidelity GPs and
trust-regions to efficiently incorporate chance constraints
even when only low fidelity models are available. The low
fidelity model assumed to be a black-box is emulated using
a GP so that the optimization of the problem is solved
more efficiently. The trust region restricts the design space
which results in meaningful predictions for the mean and
variance of the GPs, and allows us to reformulate the chance
constraints with confidence.

The benefits are analyzed and illustrated with a numerical
case study: a challenging batch-to-batch optimization prob-
lem with a dozen inputs and constraints. Here we have shown
that our proposed framework is a good trade-off between
optimality and safe exploration. In practical applications, this
added reliability could outweigh the benefits of model-free
RTO, for instance, ease of design and maintainability. These
results reflect that using a nominal model in the manner of
a prior constitutes an effective de-risking strategy in higher-
dimensional RTO problems.
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