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Abstract— This paper presents a time-coordination algorithm
for multiple UAVs executing cooperative missions. Unlike pre-
vious algorithms, it does not rely on the assumption that
the communication between UAVs is bidirectional. Thus, the
topology of the inter-UAV information flow can be characterized
by digraphs. To achieve coordination with weak connectivity,
we design a switching law that orchestrates switching between
jointly connected digraph topologies. In accordance with the
law, the UAVs with a transmitter switch the topology of their
coordination information flow. A Lyapunov analysis shows that
a decentralized coordination controller steers coordination er-
rors to a neighborhood of zero. Simulation results illustrate that
the algorithm attains coordination objectives with significantly
reduced inter-UAV communication compared to previous work.

I. INTRODUCTION

In recent years, the field of multi-vehicle control has
undergone extensive research and development in order to
address a variety of challenging problems. Relevant exam-
ples include cooperative payload transportation with UAVs
[1], [2]; cooperative simultaneous localization and mapping
(SLAM), where a team of UAVs cooperatively constructs or
updates a map of an unknown large area [3], [4]; rescue and
surveillance missions [5], [6].

Of the diverse topics in cooperative multi-UAV systems,
time coordination of multiple UAVs has been an area of
increasing importance because it determines the safety and
efficacy of a cooperative mission. Its representative appli-
cations are sequential auto-landing and simultaneous sup-
pression of multiple ground targets. At the planning stage
of a cooperative mission, a trajectory generation algorithm
[7], [8] designs a set of desired collision-free trajectories
together with a set of desired speed profiles. A path-following
controller [9]–[11] allows each UAV to follow its virtual
target which defines the desired position of it and slides along
the trajectory in accordance with the speed profile. However,
when the mission unfolds, disturbances such as wind gusts
and temporary hardware failure may put some UAVs behind
or ahead of their virtual targets, thereby causing inter-UAV
discoordination and jeopardizing the success of the mission.
To restore coordination, a coordination algorithm adjusts the
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progression of the virtual targets using coordination infor-
mation exchanged between the UAVs over a time-varying
bidirectional network [12], [13]. The research in [14] addi-
tionally studies absolute temporal requirements, e.g., arrival
of the UAVs within a prescribed time range. In [15], [16],
the authors present time-coordination algorithms which can
achieve obstacle avoidance as well. However, the time-
coordination algorithms in these studies restrict the topolo-
gies of the dynamic communication network to bidirectional
graphs, a special class of directed graphs. In other words, the
algorithms require the communication between two UAVs
to be bidirectional. This is because the stability analysis of
these algorithms relies on the symmetricity of the Laplacian.
Thus, they cannot be applied to dynamic directional inter-
UAV communication cases, where the symmetricity of the
Laplacian is no longer guaranteed. A different approach
has to be taken to address the time-coordination problem
over a dynamic directional communication network, which
motivates our present work.

Recent studies show that strategic switching of the net-
work topology plays an important role in solving control
problems of networked multi-agent systems. For example,
[17] presents a centralized topology switching algorithm to
achieve consensus for the first-order multi-agent systems.
Active topology switching algorithms proposed in [18], [19]
achieve consensus for the second-order multi-agent systems.
In [20], a dynamic network topology control problem in
adversarial environments is presented, where the network
designer strategically changes the topology to yield desirable
network properties, while an adversary tries to damage the
network functionality. Also, considerable advances in wire-
less communication technology have made it more feasible
to set the topology of the inter-UAV communication network
as a control variable [21].

The contributions of this paper can be summarized as fol-
lows. 1) Inspired by state-feedback switched system theory
in [22], we design a switching law for the directional inter-
UAV communication network, over which a decentralized
coordination controller solves the time-coordination problem.
The law does not require the network to be connected via a
directed spanning tree at any time instant. With Jointly con-
nected communication, a small number of communication
edges are activated at each time instant consuming a short
portion of the limited bandwidth. 2) Since the information
flow between UAVs is directional, not all the UAVs need
to be equipped with both a transmitter and a receiver. For
the same reason, the amount of inter-UAV communication
required to solve the problem can be significantly reduced
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compared to the bidirectional case [13]. Thus, one can cut
costs on communication devices and save consumption of
the bandwidth and energy for communication.

The rest of the paper is organized as follows. In Section II,
basic definitions and an algebraic digraph theory are given.
Section III introduces the time-coordinated path-following
framework that lays the basis for the problem formulation.
Section IV provides key assumptions on the inter-UAV com-
munication and describes the time-coordination problem. In
section V, we propose a decentralized coordination controller
and design a switching law for the communication network,
followed by a presentation of the main results of this paper.
Section VI reports simulation results. Finally, Section VII
summarizes the paper.

II. PRELIMINARIES
A. Graph Theory

A digraph of order n is defined as D = (V, E ,A), where
V = {1, . . . , n} is the set of nodes, E ⊂ V × V is the
set of edges of D, and A is the adjacency matrix of D.
A directed edge (i, j) ∈ E means that information can be
transmitted from node j to node i. The adjacency matrix
A is defined as [A]ij = 1, if (i, j) ∈ E and [A]ij = 0,
otherwise. The neighborhood of node i is the set Ni = {j ∈
V : (i, j) ∈ E}. The Laplacian of D is L = ∆−A, where
∆ = diag{d1, d2, . . . , dn} and di =

∑
j∈Ni [A]ij is the in-

degree of node i. Based on the structure of L, at least one
of its eigenvalues is located at 0 and the rest of them lie in
the right half plane. A directed path from node is to i0 is a
sequence of directed edges (i0, i1), (i1, i2), . . . , (is−1, is).
If there exists a node such that every other node is reachable
along a directed path from it, the digraph is said to contain
a directed spanning tree or to be connected via a directed
spanning tree. If a digraph D contains a directed spanning
tree, L has a simple eigenvalue 0 with the corresponding
eigenvector 1n. Otherwise, the multiplicity of the eigenvalue
0 of L is greater than one.

III. TIME-COORDINATED PATH-FOLLOWING
FRAMEWORK

This section provides a brief overview of the trajectory
generation and the path-following control, which lays the ba-
sis for formulation of the time-coordination problem, Fig. 1.

A. Trajectory Generation
At the trajectory-generation level, for n UAVs involved

in a cooperative mission, the trajectory generation algorithm
produces a set of n desired collision-free trajectories

pd,i(td) : [0, tf ]→ R3, i ∈ {1, . . . , n} (1)

parameterized by the mission time td. Here, tf denotes
the mission duration. Considering the specifications of each
UAV, the algorithm has to ensure that∥∥∥∥dpd,i(td)dtd

∥∥∥∥ ≤ vdi,max < vi,max,∥∥∥∥d2pd,i(td)dt2d

∥∥∥∥ ≤ adi,max < ai,max,

Fig. 1: Time-coordinated path following of multiple UAVs.
The time-coordination module governs the evolution of the
virtual time γi(t), thereby adjusting the progression of the
UAVs along the desired trajectories to achieve intervehicle
coordination in combination with a path-following controller.

where vi,max and ai,max are the maximum speed and
acceleration that the ith UAV can achieve. On the other
hand, vdi,max and adi,max are conservative design values.
The difference between the actual dynamic limits and the
conservative design values is needed to allow for variations
in the pace of the mission, which will become clear in the
subsequent discussion.
The mission time td is different from the actual time t. In
fact, the time-coordination problem can be formulated using
a mapping of t to td. Let γi(t), referred to as the virtual time,
define a map between the actual time t and the mission time
td as follows:

γi : [0,∞)→ [0, tf ], i ∈ {1, . . . , n}.

Then, the position of the virtual target to be followed by
the ith UAV is expressed as pd,i(γi(t)). From the expression∥∥∥dpd,i(γi(t))dt

∥∥∥ =
∥∥∥dpd,i(γi(t))dγi(t)

· dγi(t)dt

∥∥∥ =
∥∥∥dpd,i(td)dtd

· γ̇i(t)
∥∥∥,

if γ̇i(t) = 1, then the commanded speed
∥∥∥dpd,i(γi(t))dt

∥∥∥ is the

same as the speed profile
∥∥∥dpd,i(td)dtd

∥∥∥ designed by the tra-
jectory generation algorithm. On the other hand, γ̇i(t) >
1 (γ̇i(t) < 1) implies a faster (slower) execution of the
mission. The above discussion makes it clear that γi(t)
represents the progression of the ith UAV along its desired
trajectory pd,i(·), and γ̇i(t) the progression rate of it.
The physical constraints on the speed and acceleration of
each UAV lead to the following inequalities:∥∥∥∥dpd,i(γi(t))dt

∥∥∥∥ ≤ vdi,maxγ̇i ≤ vi,max, (2)∥∥∥∥d2pd,i(γi(t))dt2

∥∥∥∥ ≤ adi,maxγ̇i + vdi,maxγ̈i ≤ ai,max. (3)



Here, we can find some positive constants γ̇max and γ̈max
such that the following constraints

0 < 1− γ̇max ≤γ̇i(t) ≤ 1 + γ̇max, (4)
|γ̈i(t)| ≤ γ̈max (5)

imply (2) and (3), respectively.

B. Path Following

In the path-following control, the path-following error is
defined by ePF,i(t) , pd,i(γi(t)) − pi(t), where pd,i(γi(t))
is the position of the ith virtual target and pi(t) is the actual
position of the ith UAV. The Lyapunov-based path-following
algorithm in [23] makes sure that

‖ePF (t)‖ ≤ ρ, ∀t ≥ 0, (6)

where ePF (t) = [ePF,1(t)>, . . . , ePF,n(t)>]>, and ρ > 0
characterizes the performance of the algorithm.

IV. PROBLEM FORMULATION: TIME
COORDINATION

In this section, we provide rigorous descriptions of the
time-coordination objectives and characterize the information
flow among UAVs. Finally, we formally state the problem at
hand.

As mentioned in the previous section, γi(t) and γ̇i(t) char-
acterize the progression of the ith UAV along the trajectory
pd,i(·). It is said that all the UAVs involved in a cooperative
mission are coordinated at time t, if

γi(t) = γj(t), ∀i, j ∈ {1, . . . , n}. (7)

Furthermore, for some desired mission rate γ̇d(t) > 0, if

γ̇i(t) = γ̇d(t), ∀i ∈ {1, . . . , n}, (8)

then all the UAVs are considered to be progressing with the
desired mission rate. Here, γ̇d(t) satisfies 0 < 1− γ̇d,max ≤
γ̇d(t) ≤ 1+ γ̇d,max and |γ̈d(t)| ≤ γ̈d,max for some constants
γ̇d,max > 0 and γ̈d,max > 0 to be defined in Theorem 1.

To achieve the time-coordination objectives, the UAVs
are required to communicate their coordination information
among themselves. The dynamic information flow is well
modeled by a digraph D(t), whose Laplacian is denoted by
L(t). The following assumptions are made on the inter-UAV
communication.

Assumption 1. The communication between two UAVs is
directional with no time delays.

Assumption 2. The ith UAV receives coordination informa-
tion γj(t) only from UAVs in its neighborhood set Ni(t).

The UAVs equipped with a transmitter can change the in-
formation flow among UAVs by changing their transmission
targets. Based on this fact, we can formulate the following
assumptions.

Assumption 3. The information flow D(t) is switched by the
UAVs equipped with a transmitter between Di = (V, Ei,Ai),
i ∈ {1, . . . ,m}, where ∪mi=1Di , (V,∪mi=1Ei,

∑m
i=1Ai)

contains a directed spanning tree.

In this case, it is said that D1, . . . ,Dm are jointly connected.
An example of such Di’s is given in Fig. 2. The Laplacian
of ∪mi=1Di is represented by L∪ ,

∑m
i=1 Li, where Li is the

Laplacian of Di, i ∈ {1, . . . ,m}.

Assumption 4. A switching law for D(t) is available to the
UAVs equipped with a transmitter.

For example, in Fig. 2, UAVs 2, 3 equipped with a transmitter
can switch the network topology according to a switching
law.

(a) D1 (b) D2 (c) D3 (d) ∪3
i=1Di

Fig. 2: Network topologies with digraphs.

Problem (Time-Coordination Problem): Consider a set of n
UAVs assigned to the desired trajectories (1). Let the UAVs
be equipped with path-following controllers that satisfy (6).
Then, the objective is to design a decentralized coordination
controller and a switching law for the inter-UAV information
flow such that γi(t) and γ̇i(t) converge towards the consen-
sus (7) and (8), respectively, without violating the feasibility
constraints (4) and (5).

V. MAIN RESULT

In this section, we introduce a coordination controller that
governs the evolution of the virtual time γi(t), and we design
a switching law for the communication network to solve the
time-coordination problem.

Under Assumptions 1 and 2, the following decentralized
control law as in [13] can be considered

γ̈i(t) = −b(γ̇i(t)− γ̇d(t))

− a
∑

j∈Ni(t)

(γi(t)− γj(t))− ᾱi(ePF,i(t)), (9)

γi(0) = 0, γ̇i(0) = 1,

where a and b are positive coordination control gains and
ᾱi(ePF,i(t)) is defined as

ᾱi(ePF,i(t)) =
ṗd,i(γi(t))

>ePF,i(t)

‖ṗd,i(γi(t))‖+ δ

with δ being a positive design parameter.
For ease of analysis, let us introduce the coordination error
state ξTC(t) = [ξ1(t)> ξ2(t)>]> with

ξ1(t) = Qγ(t) ∈ Rn−1,
ξ2(t) = γ̇(t)− γ̇d(t)1n ∈ Rn,

(10)

where γ(t) = [γ1(t), . . . , γn(t)]> and Q ∈ R(n−1)×n is a
matrix that satisfies Q1n = 0n−1, QQ> = In−1 and Q>Q =

In− 1n1
>
n

n . From the fact that the nullspace of Q is spanned
by 1n (Lemma 7 in [24]), if ξ1(t) = 0n−1, then γi(t) =
γj(t), ∀i, j ∈ {1, . . . , n}. Further, ξ2(t) = 0n implies that
γ̇i(t) = γ̇d(t), ∀i ∈ {1, . . . , n}. Thus, ξTC(t) = 02n−1 is



equivalent to (7) and (8).
The dynamics of γ(t) is concisely rewritten as

γ̈(t) = −bξ2(t)− aL(t)γ(t)− ᾱ(ePF (t)), (11)
γ(0) = 0n, γ̇(0) = 1n,

where ᾱ(ePF (t)) = [ᾱ1(ePF,1(t)), . . . , ᾱn(ePF,n(t))]>.

Remark 1. If the ith UAV is preceding its virtual target due to
a disturbance such as tailwinds, ᾱi(ePF,i(t)) in (9) becomes
negative, thereby accelerating γi(t). It allows the UAV to
fast approach the virtual target saving path-following control
efforts. However, as a result, the intervehicle coordination
is likely to be ruined. To resolve this situation, the second
term in (9) adjusts the evolution of γi(t) in a way that the
intervehicle coordination (7) is recovered. In the other case,
where the ith UAV is falling behind its virtual target, the fleet
restores the coordination in a similar manner. The third term
in (9) ensures that the fleet of UAVs progresses in accordance
with the desired mission pace γ̇d(t).

Next, we design a switching law for the inter-UAV com-
munication network using the following lemma and a state-
feedback switching law design method from [22]. Under this
law, the dynamics in (9) can solve the time-coordination
problem.

Lemma 1. Define L̄(t) , QL(t)Q> ∈ R(n−1)×(n−1). Then,
the following hold at any time t.
a) The spectrum of L̄(t) is the same as that of L(t) without
the eigenvalue 0 whose corresponding eigenvector is 1n.
b) If D(t) contains a directed spanning tree, −L̄(t) is Hur-
witz stable. Otherwise, −L̄(t) is marginally stable.

Proof. a) Given L(t)x = λx (x 6= 0), one has QL(t)x =
λQx. The left hand side of the latter equation is QL(t)x =

QL(t)
(
In − 1n1

>
n

n

)
x = QL(t)Q>Qx = L̄(t)Qx. Further,

b) is deduced from a) and the algebraic connectivity of
digraphs presented in section II.

First, we construct matrices used to design the switching
law. Since ∪mi=1Di contains a directed spanning tree (As-
sumption 3), for the Laplacian L∪ =

∑m
i=1 Li of ∪mi=1Di,

−L̄∪ , −QL∪Q> = −
m∑
i=1

QLiQ
> , −

m∑
i=1

L̄i

is Hurwitz stable due to Lemma 1-b). Solving the Lyapunov
equation

(−L̄∪)>P + P (−L̄∪) = −mIn−1

gives a unique symmetric positive definite matrix P . Define

Hi , (−L̄i)>P + P (−L̄i), i ∈ {1, . . . ,m}. (12)

With Hi’s at hand, we formulate a state-feedback switching
law for the communication network. Consider an auxiliary
system whose state vector is used for designing the switching
law

φ̇(t) = −a
b
L̄σ(t)φ(t), φ(0) = φ0 6= 0, (13)

where a and b are the coordination control gains in (9), and
σ(t) : [0,∞) → {1, . . . ,m} denotes the switching law to
be designed, under which L(t) and L̄(t) are equivalently
rewritten as Lσ(t) and L̄σ(t), respectively.
For the given initial condition φ(0) = φ0, the initial com-
munication network topology is determined by

σ(t0) = argmin
i∈{1,...,m}

{φ>0 Hiφ0}. (14)

If there are more than one such index, simply the smallest
one is chosen. Now, the switching time/index sequences are
recursively defined by

tk+1 = inf{t > tk : φ(t)>Hσ(tk)φ(t) >

− µσ(tk)λmax(P )φ(t)>φ(t)},
(15)

σ(tk+1) = argmin
i∈{1,...,m}

{φ(tk+1)>Hiφ(tk+1)}, (16)

where µi ∈ (0, 1/λmax(P )) and k = 0, 1, 2, . . . .
By virtue of (15), it is evident that the following inequality
holds

φ(t)>Hσ(tk)φ(t) ≤ −µσ(tk)λmax(P )φ(t)>φ(t) (17)

for t ∈ (tk, tk+1), k = 0, 1, 2, . . . .

Lemma 2. The switching law σ(t) is well defined, i.e., the
dwell time tk+1− tk is lower bounded by a positive constant
η defined by

η , sup
ϑ>1

min
i∈{1,...,m}

(
1− µiλmax(P )

a
bϑ

2νi
,

lnϑ
a
b ‖L̄i‖

)
,

where νi , ‖L̄>i (Hi + In−1) + (Hi + In−1)L̄i‖.

Proof. The proof is similar to the proof of Lemma 3.26 in
[22].

Remark 2. The switching law designed above strategically
switch the topology between D1, . . . ,Dm which are jointly
connected. This law allows UAVs to economically use the
limited communication bandwidth. For example, as can be
seen in Fig. 2a–2c, at most two communication edges are
activated to coordinate five UAVs consuming a short portion
of the bandwidth.

Remark 3. As mentioned in the previous section, the UAVs
can have communication devices with different specifica-
tions. Figure 2d clearly illustrates this point: UAVs 1, 4, 5
need a receiver; UAV 3 needs a transmitter; UAV 2 needs
both a transmitter and a receiver. This is a clear difference
from the previous work in [13], where every UAV has to be
equipped with both a transmitter and a receiver. Thus, one
can cut costs on communication devices with our algorithm.
Also, the information flow can be more efficiently switched
as compared to the bidirectional communication case because
only UAVs with a transmitter (e.g., UAVs 2, 3 in Fig. 2)
need to change their transmission targets. In the bidirectional
communication case (e.g., Fig. 8), every UAV involved in a
change of topology has to change its transmission targets.



The following theorem provides the main results of this
paper.

Theorem 1. Consider a cooperative mission where a fleet of
n UAVs are assigned to the desired trajectories given in (1).
Assume that path-following controllers implemented onboard
the UAVs satisfy the bound (6). Let the evolution of γi(t) be
governed by (9) over the information flow D(t) switched in
accordance with σ(t) in (13)–(16). Finally, let ‖ξTC(0)‖, ρ,
γ̇d,max, and γ̈d,max satisfy

γ̇d,max < γ̇max (18)

and

max{‖ξTC(0)‖, ρ, γ̈d,max}

≤ min

{
γ̇max − γ̇d,max
κ1 + 2κ2

,
γ̈max

2bκ1 + 4bκ2 + 1

}
(19)

for κ1 and κ2 defined in (27) and (28), respectively.
Then, there exist time coordination gains

a > 0 and b ≥
√(
M+ 4M2k2φ/µ+ µ/(4k2φ)

)
a,

whereM , maxi∈{1,...,m} ‖Li‖, kφ ,
√

λmax(P )
λmin(P ) , and µ ,

mini∈{1,...,m} µi such that

‖ξTC(t)‖ ≤ κ1‖ξTC(0)‖e−λTCt

+ κ2 sup
t≥0

(‖ePF (t)‖+ |γ̈d(t)|) (20)

with rate of convergence

λTC ≤
a

6b

µ

k2φ
. (21)

Moreover, the feasibility constraints (4) and (5) are satisfied.

Proof. To analyze the convergence properties of (9), moti-
vated by [13], we reformulate it into a stabilization problem
by introducing a variable

χ(t) = bξ1(t) +Qξ2(t).

The coordination error state ξTC(t) = [ξ1(t)> ξ2(t)>]> can
be redefined by ξ̄TC(t) = [χ(t)> ξ2(t)>]> with dynamics

χ̇ = −a
b
L̄(t)χ+

a

b
QL(t)ξ2 −Qᾱ(ePF )

ξ̇2 = −a
b
L(t)Q>χ−

(
bIn −

a

b
L(t)

)
ξ2 − ᾱ(ePF )− γ̈d1n.

(22)
As a step towards constructing a Lyapunov function can-
didate for (22), we show that the auxiliary system (13) is
globally uniformly exponentially stable (GUES). Consider
V (t) = φ(t)>Pφ(t). Its time derivative along the trajectory
of (13) is

V̇ (t) = −a
b
φ>
(
L̄>σ(t)P + PL̄σ(t)

)
φ =

a

b
φ>Hσ(t)φ

≤ −a
b
µσ(t)λmax(P )φ>φ ≤ −a

b
µV (t),

where the second equality is from (12); the first inequality
is from (17), and σ(t) = σ(tk) for t ∈ [tk, tk+1); the second

inequality is from µ = mini∈{1,...,m} µi. Application of the
comparison lemma (Lemma 3.4 in [25]) yields

V (t) ≤ V (0)e−
a
b µt.

The system (13) is GUES :

‖φ(t)‖ ≤ kφ‖φ(0)‖e−γφt,

where kφ =
√

λmax(P )
λmin(P ) and γφ , a

2bµ.
Since L̄(t) is continuous for almost all t ≥ 0, uniformly
bounded (‖L̄(t)‖ ≤ ‖L(t)‖ ≤ maxi∈{1,...,m} ‖Li‖ = M),
and the system (13) is GUES, a similar argument as the one
in Theorem 4.12 in [25] implies that for any constants c3
and c4 satisfying 0 < c3 ≤ c4, there exists a continuously
differentiable, symmetric, positive definite matrix Ψ(t) such
that

c1In−1 ,
bc3

2aM
In−1 ≤ Ψ(t) ≤

k2φc4

2γφ
In−1 , c2In−1, (23)

Ψ̇(t)− a

b
L̄>(t)Ψ(t)− a

b
Ψ(t)L̄(t) ≤ −c3In−1. (24)

Now, we construct a Lyapunov function candidate for (22)
using Ψ(t) introduced above:

VTC(t) = χ>Ψ(t)χ+
β

2
‖ξ2‖2 = ξ̄>TCW (t)ξ̄TC , (25)

where β > 0 and W (t) ,

[
Ψ(t) 0

0 β
2 In

]
.

The time derivative of (25) along the trajectory of (22) is

V̇TC = χ>
(

Ψ̇(t)− a

b
L̄>(t)Ψ(t)− a

b
Ψ(t)L̄(t)

)
χ

− βξ>2
(
bIn −

a

b
L(t)

)
ξ2

+ χ>
(

2
a

b
Ψ(t)QL(t)− β a

b
QL>(t)

)
ξ2

−
(
2χ>Ψ(t)Q+ βξ>2

)
ᾱ(ePF )− βξ>2 γ̈d1n,

which leads to

V̇TC ≤ −c3‖χ‖2 − β
(
bIn −

a

b
M
)
‖ξ2‖2

+
(

2
a

b
M‖Ψ(t)‖+ β

a

b
M
)
‖χ‖‖ξ2‖

+ (2‖Ψ(t)‖‖χ‖+ β‖ξ2‖) (‖ᾱ(ePF )‖+ |γ̈d|) ,

where we used (24), ‖Q‖ = 1, and ‖L(t)‖ ≤ M.
Using ‖Ψ(t)‖ ≤ c2 =

k2φc4
2γφ

= b
a

k2φ
µ c4 in (23) and the

inequality ‖χ‖‖ξ2‖ ≤ ε‖χ‖2
2 + ‖ξ2‖2

2ε , ε > 0, we obtain

V̇TC ≤ −c3‖χ‖2 − β
(
bIn −

a

b
M
)
‖ξ2‖2

+

(
2Mk2φ
µ

c4 + β
a

b
M

)(
ε‖χ‖2

2
+
‖ξ2‖2

2ε

)

+

(
k2φc4

γφ
+ β

)
‖ξ̄TC‖

(
vmax

vmin + δ
‖ePF ‖+ |γ̈d|

)
,

where vmax = maxi{vi,max} and vmin = maxi{vi,min}.
Letting c3 = c4, ε = µ

4Mk2φ
, β = b

2aεMc4, and δ > vmax −



vmin, we get the matrix form

V̇TC ≤ −ξ̄>TCUξ̄TC +

(
k2φc4

γφ
+ β

)
‖ξ̄TC‖ (‖ePF ‖+ |γ̈d|) ,

where

U ,

[ c3
2 In−1 0

0 β
(
b− a

bM−
4M2k2φ

µ
a
b

)
In

]
.

We let b ≥
√(
M+

4M2k2φ
µ + µ

4k2φ

)
a and λTC ≤ c3

6c2
=

a
6b

µ
k2φ

so that the following inequality holds:

U − 3λTCW

≥

[(
c3
2 − 3λTCc2

)
In−1 0

0 β
(
b− a

bM−
4M2k2φ

µ
a
b −

3
2λTC

)
In

]
≥ 0.

The derivative of VTC is upper bounded by

V̇TC ≤ −3λTCVTC +

(
k2φc4

γφ
+ β

)
‖ξ̄TC‖ (‖ePF ‖+ |γ̈d|)

≤ −2λTCVTC − λTC min{c1, β/2}‖ξ̄TC‖2

+

(
k2φc4

γφ
+ β

)
‖ξ̄TC‖ (‖ePF ‖+ |γ̈d|) .

Applying Lemma 4.6 in [25] and the state transformation

ξ̄TC = SξTC ,

[
bIn−1 Q

0 In

]
ξTC , we can conclude that

‖ξTC(t)‖ ≤ κ1‖ξTC(0)‖e−λTCt

+ κ2 sup
t≥0

(‖ePF (t)‖+ |γ̈d(t)|) , (26)

where

κ1 , ‖S−1‖

√
max{c2, β/2}
min{c1, β/2}

‖S‖, (27)

κ2 , ‖S−1‖

√
max{c2, β/2}
min{c1, β/2}

k2φc4
γφ

+ β

λTC min{c1, β/2}
. (28)

Lastly, it can be shown that γ̇i(t) and γ̈i(t) ∀i ∈ {1, . . . , n}
satisfy the feasibility constraints (4) and (5) from the as-
sumptions (18) and (19). From the inequality |γ̇i(t) − 1| ≤
|γ̇d(t)− 1|+ |γ̇i(t)− γ̇d(t)| and (26), it follows that

|γ̇i(t)− 1| ≤ |γ̇d(t)− 1|+ κ1‖ξTC(0)‖e−λTCt

+ κ2 sup
t≥0

(‖ePF (t)‖+ |γ̈d(t)|) .

Recalling |γ̇d(t) − 1| < γ̇d,max, |γ̈d(t)| ≤ γ̈d,max and (6),
the inequality is written as

|γ̇i(t)− 1| ≤ γ̇d,max + κ1‖ξTC(0)‖+ κ2ρ+ κ2γ̈d.max

≤ γ̇d,max + (κ1 + 2κ2) max{‖ξTC(0)‖, ρ, γ̈d.max}.

Finally, the assumptions (18) and (19) lead us to the conclu-
sion that (4) holds. Now we consider bounds on γ̈i(t). From
(11), it is shown that

|γ̈i(t)| ≤ b‖ξ2(t)‖+ aM‖ξ1(t)‖+ ‖ePF (t)‖
≤ 2b‖ξTC(t)‖+ ‖ePF (t)‖,

where the second inequality is obtained by setting b ≥ aM.
Recalling (26), it is seen that γ̈i(t) is bounded by

|γ̈i(t)| ≤ (2bκ1 + 4bκ2 + 1) max{‖ξTC(0)‖, ρ, γ̈d.max}.

The above inequality, together with (18) and (19), implies
that (5) holds, which completes the proof of Theorem 1.

Remark 4. Notice that µi, i ∈ {1, . . . ,m} are tunable param-
eters. Large values of those decrease the switching thresh-
old −µσ(tk)λmax(P )φ(t)>φ(t) in (15), thereby increasing
switching frequency. Also, the rate of convergence (21) is
increased because it is proportional to µ = mini∈{1,...,m} µi.

VI. SIMULATION RESULTS

This section demonstrates that the time coordination of
multiple UAVs can be achieved by the coordination control
law (9) over the directional inter-UAV information flow D(t)
switched in accordance with σ(t) in (13)–(16). We also show
that the proposed algorithm achieves it with significantly re-
duced inter-UAV communication as compared to the previous
work [13].
Let us consider a coordinated path-following mission where
five UAVs are involved. The dynamics and the path-following
controller implemented onboard are given in [23]. The de-
sired trajectories assigned to them are

pd,i(td) : [0, 50]→

 td
di − e−0.6td(5 + 3td) sin θi

2

 , (29)

where di = 6−2i and θi = −π/2+πi/6 for i ∈ {1, . . . , 5}.
Figure 3 depicts the desired trajectories (solid lines) and the
paths tracked by the UAVs (dotted lines). Initially, the UAVs
are on the ground and discoordinated. The control gains and
tunable parameters are chosen as a = 0.75, b = 1.82, δ =
1.2, φ0 = [0.9, 1.7, 1.1, 0.1]>, and µ1 = µ2 = µ3 = 0.2638.

Fig. 3: Time-coordinated path following of five UAVs.

In this mission, the UAVs are tasked to reconnoiter the area
−4 ≤ y ≤ 4 keeping abreast of one another and arrive at
x = 50 simultaneously. To be more specific, with the initial
path-following errors, they have to quickly catch up with
their virtual targets, achieve intervehicle coordination and
maintain it until the end of the mission. Additionally, they
have to progress in accordance with the desired mission pace



γ̇d(t) depicted as the dotted line in Fig. 7.
At any time t, the communication network D(t) is character-
ized by one of D1, D2 and D3 depicted in Fig. 2a–2c. Notice
that none of D1, D2 and D3 contains a directed spanning
tree. Only ∪3i=1Di in Fig. 2d is required to contain a directed
spanning tree in our algorithm. Figure 4 shows the evolution
of the network topology under the switching law σ(t) given
in (13)–(16) as the mission unfolds. Considering that D1, D2

and D3 are not connected, the network is not connected at
all times throughout the mission.

Fig. 4: Evolution of D(t).

It is illustrated in Fig. 6 and Fig. 7 how the coordination
dynamics (9) works to solve the time-coordination problem.
Since the desired trajectories start at x = 0 and the UAVs lie
in the left hand side of x = 0 at t = 0, they are initially put
behind the schedule. This causes ᾱi(xPF,i(0)) in (9) to be
positive, which leads to deceleration of γi(t) right after the
mission unfolds, as seen in Fig. 7. By virtue of it, the UAVs
are allowed to fast approach their virtual targets saving path-
following control efforts, Fig. 5. However, different sizes of
deceleration destroy the coordination γi(t) = γj(t). To fix it,
the second term in (9) adjusts the evolution of γi(t) in a way
that, as shown in Fig. 6, |γi(t)−γj(t)| converges to 0. When
some or all of the UAVs are deviated from their virtual targets
in the middle of the mission by wind gusts, they can recover
the coordination in the same manner. The effect of the first
term in (9) allows the UAVs to progress in accordance with
the desired mission pace γ̇d(t). In Fig. 7, it is shown that the
UAVs quickly adjust their pace to match the increase in γ̇d(t)
at t ≈ 30s. Even though there was a decrease in the mission
pace due to the initial path-following errors, the increase in
the desired mission pace γ̇d(t) at t ≈ 30s gets the UAVs to
arrive at their final destination x = 50 at t = 48.55s, which
is a little bit earlier than the original schedule (29).

Lastly, it is demonstrated that our algorithm can solve the
time-coordination problem with substantially reduced inter-
UAV communication as compared to the previous work [13].
Let us reconsider the above coordinated path-following sce-
nario where everything is the same except the communication
network is now a bidirectional graph G(t). The topology at
time t is characterized by one of Fig. 8a–8c.
The network topology is randomly switched every 0.3s as in
Fig. 9. It is evident from Fig. 10 that

λ̂(t) , λmin

(
1

nT

∫ t

t−T
QL(τ)Q>dτ

)
≥ λ̂min > 0, t ≥ T,

Fig. 5: Convergence of the path-following errors to 0.

Fig. 6: Convergence of the errors between virtual times to 0.

Fig. 7: Evolution of the mission pace which tracks the desired
mission pace γ̇d(t).

(a) G1 (b) G2 (c) G3 (d) ∪3
i=1Gi

Fig. 8: Network topologies with bidirectional graphs.

with n = 5, T = 3.4s and λ̂min = 0.0062. It means that
G(t) is connected in an integral sense even though it is not
connected pointwise in time during the mission. This PE-
like condition was presented in the previous work [13] as a
sufficient condition on the network connectivity for achieving



the time-coordination objectives.

Fig. 9: Evolution of G(t).

Fig. 10: Connectedness of G(t) in an integral sense.

Figure 11 shows the evolution of the norm of the coordi-
nation error state ξTC(t) = [ξ1(t)> ξ2(t)>]> in (10) when
the coordinated path-following mission unfolds over D(t)
switched as in Fig. 4 and over G(t) switched as in Fig. 9.

Fig. 11: Time-coordination performances over the directed
network D(t) and the bidirectional network G(t).

With the similar time-coordination performances observed
in Fig. 11, let us compare the amount of required inter-UAV
communication during the mission. As the Adjacency matrix
A(t) characterizes the information flow among the UAVs at
time t,

∑n
i,j=1

[∫ τf
0
A(t)dt

]
ij

quantifies the entire amount

of inter-UAV information flow during the mission. Here, τf
denotes the time instant when the UAVs arrive at their final
destinations, the values of τf over D(t) and G(t) are 48.55s
and 48.42s, respectively.

Amount of inter-UAV communication D(t) G(t)∑n
i,j=1

[∫ τf
0 A(t)dt

]
ij

77.17 126.48

TABLE I: Comparison of the amount of required inter-UAV
communication.

It is demonstrated in TABLE I that our time-coordination
algorithm solves the problem with less amount of inter-UAV
communication as compared to the previous algorithm [13].

VII. CONCLUSION

In this paper, a time-coordination algorithm is developed
for multi-UAV cooperative missions where the communica-
tion between UAVs is not required to be bidirectional. We
design a switching law for the inter-UAV information flow,
over which it is shown that a decentralized coordination con-
troller achieves the time coordination objectives. Finally, the
simulation results demonstrate the efficacy of the algorithm.
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