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Abstract— In this paper, we propose the Model Reference
Adaptive Control & Reinforcement Learning (MRAC-RL)
approach to developing online policies for systems in which
modeling errors occur in real-time. Although reinforcement
learning (RL) algorithms have been successfully used to develop
control policies for dynamical systems, discrepancies between
simulated dynamics and the true target dynamics can cause
trained policies to fail to generalize and adapt appropriately
when deployed in the real-world. The MRAC-RL framework
generates online policies by utilizing an inner-loop adaptive
controller together with a simulation-trained outer-loop RL
policy. This structure allows MRAC-RL to adapt and operate
effectively in a target environment, even when parametric
uncertainties exists. We propose a set of novel MRAC algo-
rithms, apply them to a class of nonlinear systems, derive
the associated control laws, provide stability guarantees for
the resulting closed-loop system, and show that the adaptive
tracking objective is achieved. Using a simulation study of
an automated quadrotor landing task, we demonstrate that
the MRAC-RL approach improves upon state-of-the-art RL
algorithms and techniques through the generation of online
policies.

I. INTRODUCTION

Recent years have witnessed an explosive growth in the
field of reinforcement learning (RL) and its use for the devel-
opment of control policies for complex systems and environ-
ments. Successful applications have been broad and varied -
ranging from direct actuator-level control and state regulation
to high-level planning and decision making [1][2][3][4].
The effectiveness of reinforcement learning algorithms in
overcoming constraints that typically limit classical control
techniques has enabled RL’s application to decision making
and continuous control tasks [5][6].

Many RL algorithms are fundamentally data-driven meth-
ods. As a result, control polices are often learned largely in
simulation. Training in simulation is a powerful technique,
allowing for a near infinite number of agent-environment
interactions - in comparison, training a policy on an actual
plant could be expensive, time-consuming or dangerous.
In practice, however, offline policies trained in simulation
often exhibit degenerate performance when used for real-
time control due to modeling errors that can occur online
[7][8]. It may be difficult to reliably predict the behavior
of a learned policy when it is applied to an environment
different from the one seen during training [9][10][11][12].
As a result, many researchers have focused on methods to
bridge this so-called ”sim-to-real” gap.
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In this paper we introduce a framework that leads to an
online policy that can be applied to the control of systems
when modeling errors occur online. This policy combines
Model Reference Adaptive Control (MRAC) and RL, which
we denote as MRAC-RL, and forms the main contribution
of the paper. The MRAC-RL control architecture includes an
inner-loop and an outer-loop, with adaptive control elements
in the inner-loop and RL elements in the outer-loop. This
architecture allows adaptive algorithms to adjust outer-loop
commands online, so that modeling errors due to parametric
uncertainties can be accounted for. The central merit of this
MRAC-RL framework is that it enables the true system to
react to the learned control policy in the same way that
the simulated system would have responded during training
when no modeling errors were present.

A. Related Work

1) Reinforcement Learning: A number of reinforcement
learning algorithms have been successfully used to solve
continuous control tasks. Of these, the Proximal Policy
Optimization (PPO) algorithm [13] has been shown to be
successful in a variety of tasks [14][15][16]. Even the most
powerful RL algorithms, however, may fail to generalize in
the presence of modeling errors [17][18][19]. The research
community has largely tackled these challenges by devel-
oping specialized RL algorithms. For example, the model-
based PILCO [20] uses a learned probabilistic dynamics
model to account for dynamic uncertainty, while DARLA
[17] improves sim-to-real transfer by learning robust fea-
tures. Another popular approach is to directly modify the
simulation & training protocols. In [21] an ensemble of
environments with varying dynamics were used to improve
the robustness of learned policies, while [22] used simulated
domain randomization to bridge the sim-to-real gap on a
drone racing task.

As alluded to above, much of the research in
bridging the sim-to-real gap has focused on improved
simulation techniques and improved RL algorithms
[23][12][17][20][18][11][24]. There has, however, been
little attention paid to methods that may be used to inject
additional robustness and adaptability into an already-trained
policy.

2) Adaptive Control: Adaptive control and system iden-
tification methods have long been used in the control of
safety-critical systems [25][26][27][28][29]. Unlike many
RL algorithms, adaptive control techniques excel in the
”zero-shot” enforcement of control objectives - that is, in
learning to accomplish a task online [5][30][31][32]. These
adaptive techniques are able to accommodate, in real-time,
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parametric uncertainties and constraints on the control input
magnitude [33][34] and rate [35]. This ability to achieve
control goals while accounting for parametric uncertainties
in real-time is the strength of adaptive control.

The approach that we propose in this paper is a combi-
nation of the MRAC and RL methods so as to realize their
individual advantages and minimize their weaknesses. While
MRAC approaches are able to accommodate the presence of
modeling errors over short time-scales and meet tracking ob-
jectives, they are unable to guarantee the realization of long-
term optimality-based objectives. In contrast, RL-trained
policies can handle a broad range of tasks & objectives [36],
but may fail to generalize appropriately in the presence of
modeling errors (as discussed in Section I-A.1). The MRAC-
RL controller that we propose in this paper combines these
two methods, with MRAC in the inner-loop and RL in the
outer-loop. The resulting controller is guaranteed to be stable
under the assumption that the outer-loop has been designed,
offline, to lead to optimal behavior when no modeling errors
exist.

The general problem of interest is posed in Section II.
A brief description of the RL approach is also included
in this section. The MRAC-RL architecture and stability
results are presented in Section III. An extensive numerical
study is reported in Section IV, in which a quadrotor sub-
jected to modeling errors and loss of effectiveness is tasked
with landing on a moving platform. In these experiments,
the performance of MRAC-RL is validated and compared
with standard approaches. Summary and conclusions are
presented in Section V.

II. PROBLEM STATEMENT

Consider a continuous-time, deterministic nonlinear sys-
tem described by the following dynamics:

ẋ1 = δ1x2

ẋ2 = δ2x3

. . .

ẋn−1 = δn−1xn

ẋn = αT ζ(x) + bu

(1)

where x is the n−dimensional state vector, and ζ(x) =
[φ1(x), φ2(x), . . . , φn(x)]T denotes system nonlinearities. νi
denotes the ith component of a vector ν. We compactly
represent (1) as:

ẋi(t) =

{
δixi+1(t) i 6= n

αT ζ(x(t)) + bu(t) i = n
(2)

The problem that we address is the determination of the
control input u(t) in (2) in real-time, when δ and the
nonlinearity ζ(·) are known, but the parameters α and b are
unknown. The goal is to choose u so as to minimize a cost
function of x and u. Compactly, this is formulated as the
following:

min
u(t)∈U ∀t∈[0,T ]

∫ T

0

c(x(t), u(t))dt

subject to Dynamics in (2) ∀t ∈ [0, T ]

x(0) = x0

(3)

for a given initial condition x0. As a matter of notational
convenience, we often suppress signal dependencies on the
time variable t (for example, u(t) may be referred to by u).
Furthermore, a shorthand is adopted in which we use ζ to
mean ζ(x(t)).

A. An Offline Approach Based on Reinforcement Learning

The presence of unknown parameters α and b introduces
a direct challenge in determining an RL-based solution, as
a simulation cannot be constructed for training purposes.
To overcome this, we start with nominal, known parameter
values αr and br for α and b, respectively. Using these values
we formulate the following reference model:

ẋr,i(t) =

{
δixr,i+1(t) i 6= n

αTr ζ(xr(t)) + brur(t) i = n
(4)

As (4) is fully known, one can employ a number of ap-
proaches in order to choose the reference-control input ur(t)
so that the accumulated cost in (3) can be minimized. The
argument therefore is that if the true parameters in (2) are
equal to their nominal values, then a choice of u(t) = ur(t)
will solve the problem in (3). The determination of ur(t) can
be carried out using a number of methods, including LQR
and MPC, with the former providing optimal solutions for
linear dynamic systems with quadratic costs, and the latter
when the control input is subjected to various constraints.

An alternate offline approach that can be used to solve this
problem is reinforcement learning. RL generates a feedback
policy π. If the RL training has been successful, this choice
of control will drive the system in (4) so that the accumulated
cost in (3) is minimized.

In order to lead to a self-contained exposition, we briefly
describe the RL training procedure. First, it is assumed
that the continuous time dynamics in (4) are sampled with
sufficient accuracy, resulting in the discrete time dynamics:

xr,t+1 ∼ p(xr,t+1|xr,t, ur,t) (5)

An appropriate numerical integration scheme ensures that
this discrete-time formulation closely approximates the dy-
namics in (4). The resulting Markov Decision Process (MDP)
is then utilized to lead to a policy π such that ur = π(xr),
where π(·) is stochastic. RL begins with the construction of
a simulation environment (using the reference model) that is
used to collect the system data for an initial policy. Repeated
training of the policy π is then carried out, so as to optimize
the cost function [37].

The RL training procedure consists of repeated interac-
tions of the policy with the environment as follows. At
each timestep, an observation xr,t is received, a control
ur,t is chosen, and the resulting cost c is received. Re-
peating this process, a set of input-state-cost tuples D =



[(xr,1, ur,1, c1), . . . (xr,N , ur,N , cN )] are formed. These tu-
ples form the data used to train the reinforcement learning
agent. This data is then used to update the policy using
an RL algorithm. In typical RL algorithms the policy is
parametrized by a set of parameters, so that ut ∼ πθ(xt).
For example, in deep RL θ represents the weights/biases of
a neural network. The learning algorithm then seeks to adjust
θ so that the expected accumulated cost is minimized, i.e

min
θ

J(θ)

where J(θ) = Eπθ

[
T∑
t=0

ct

]
(6)

The expectation arises from the potential stochasticity of
the policy π and the transition dynamics [38][39]. A large
number of approaches to solving (6) exist, including policy
gradient methods in which we attempt to directly estimate
∇θJ(θ). The policy gradient can be calculated as:

∇θJ(θ) = E

[
−

T∑
t=0

Aπθ (xt, ut)∇θ log πθ(ut|xt)

]
(7)

where Aπθ is the advantage function [38], which represents
the relative utility of taking an action ut in state xt, with
respect to the other potential viable actions. The gradient in
(7) is then utilized to update the weights as θt+1 = θt −
η∇θtJ(θt) with learning rate η. With this update, the policy
π is updated, new data D is collected and the updated policy
gradient (7) is calculated. The process repeats until training
is complete. For a more detailed overview on policy gradient
algorithms, refer to [38].

In some simple settings, certain reinforcement learning
algorithms can be shown to converge to optimal policies. For
example, if the state and action spaces are discrete (that is,
xt ∈ X, ut ∈ U ∀t for finite sets X, U) Watkin’s Q-learning
algorithm can be used to achieve the globally optimal policy.
The optimal Q function, or state-action value function, is
given by the fixed point solution to the Bellman equation:

Q∗(x, u) = −c(x, u)+γ
∑
x′∈X

p(x′|x, u) max
u′∈U

Q∗(x′, a′) (8)

Here, 0 < γ < 1 is a discount factor. If the optimal Q
function is found, the globally optimal policy can easily
be determined: π∗(x) = argmaxu∈UQ

∗(x, u). An iterative
rule for determining the optimal Q-function, denoted as Q-
learning, is given by:

Q̂(xt, ut) = Q̂(xt, ut) + ηtδt (9)

where ηt is a sequence of learning rates, and δt = −ct +
γmaxu′∈U Q̂(xt+1, u

′)−Q̂(xt, ut) is the temporal difference
error [40][39]. If ηt satisfy the Robbins-Monro criterion and
every state-action pair (as represented in the trajectory) is
visited infinitely often, then the Q function estimate can be
shown to converge to the fixed-point solution: Q̂(x, u) →
Q∗(x, u) ∀x ∈ X, u ∈ U [40].

Two important points should be made about these guaran-
tees of convergence. First, it is assumed that the transition

probabilities in (5) do not change during the Q-learning
process. Therefore, that (5) is fixed is a requirement for
the convergence result. The second point is the requirement
that X and U are finite sets. In the context of controlling
a physical system, representing the state and action spaces
as continuous is often a more appropriate modeling choice.
The MRAC-RL approach proposed in this paper attempts to
relax both of these requirements. Adaptive control is used
to accommodate changing transition/dynamic models, while
policy gradient algorithms such as PPO are used at an outer-
loop to accommodate continuous state and action spaces.
It should be noted that a significant and growing body of
literature exists in RL, including on methods that attempt
to relax the aforementioned requirements [41][24][22]. The
approach that we propose, MRAC-RL, is distinct from these
and it’s details and advantages will be presented in the
sections that follow.

As mentioned earlier, the RL literature is large and
growing. In this paper we restrict our attention to the
Proximal Policy Optimization algorithm in [13]. PPO is a
policy gradient actor-critic algorithm which attempts to solve
(6). Deep actor-critic RL methods employ multiple neural
networks, so that the policy and value functions are learned
simultaneously.

A specific point to note about the proposed MRAC-RL is
its deterministic nature. We assume that the underlying model
is deterministic, and propose a corresponding deterministic
control solution. A stochastic policy trained via RL can
also be made deterministic by the choice of a random seed.
With this solution as the first-step, subsequent extensions to
its stochastic counterpart need to be carried out, which are
beyond the scope of this paper.

B. Modeling Uncertainty

Following the approach above, RL is used to train a
feedback policy π for the reference system in (4), so that
ur,t = π(xr,t). If the true parameters α and b coincide with
their nominal values αr and br, respectively, then the refer-
ence model in (4) is identical to the true system in (2). Since,
under this assumption, the target system is identical to the
reference system, a choice of ut = ur,t = π(xr,t) guarantees
that the same pseudo-optimal performance exhibited in the
reference system can be assured in the target system.

The problem that we consider in this paper is the case
when the true parameters depart from their nominal values.
As this departure is assumed to occur in real-time, it cannot
be accommodated for in the training procedure. In such a
case, the target transition function differs from the reference
system transition function, and therefore the policy π cannot
be guaranteed to converge, i.e., the training is incomplete. To
accommodate this real-time change, a faster feedback loop
based on adaptive control is proposed. The details of the
resulting MRAC-RL architecture are described in Section III.

C. Example

We illustrate the problem statement using a simple exam-
ple: the control of an inverted pendulum, whose model is



given by (10):

ml2θ̈ = mgl sin θ − µθ̇ + u (10)

It is easy to see that (10) corresponds to a special case
of (2). The problem that we address is the control of (10)
in the presence of uncertainties in m, l, µ, with only their
nominal values mr, lr, and µr known. That is, the parameters
in (2) correspond to δ1 = 1, α = [g/l,−µ/ml2]T , and
b = 1/(ml2), with nominal values αr and br defining the
reference system in (4). With no parametric uncertainty, it is
clear that RL approaches can be used in order to determine
u so that a requisite objective in (3) can be minimized [15].
The goal is to determine the policy for u in (10) when α
and b depart from their nominal values.

III. AN ONLINE POLICY BASED ON MODEL
REFERENCE ADAPTIVE CONTROL

Fig. 1. RL vs. MRAC-RL. (a) represents
a standard application of a trained policy, in
which the trained policy is inserted directly
into the target system: u = π(x). (b) shows
how MRAC-RL is used. The policy is inserted
into the reference system, producing ur =
π(xr). (13) - (15) are then used to calculate
u.

The problem that
we address is the
control of (2) when
α and b are un-
known. For ease of
exposition, we ex-
press b = λbr and
assume that λ > 0.
We make the fol-
lowing assumption
about the reference
system (4), which
is fully known:
Assumption A1: An
RL-based solution
ur(t) can be deter-
mined for t ≥ 0 as
the approximate so-
lution of the prob-
lem:

min
ur(t)∈U ∀t∈[0,T ]

∫ T

0

c(xr(t), ur(t))dt

subject to Dynamics in (4) ∀t ∈ [0, T ]

xr(0) = x0

(11)

for all initial conditions x0.
In what follows, we denote ex(t) = x(t) − xr(t) and

eζ(t) = ζ(x(t)) − ζ(xr(t)). Before presenting the online
policy, we introduce a few notations and definitions. We
consider the matrix AH in the following form:

AH =


0 δ1 0 . . . 0
0 0 δ2 . . . 0
...

...
...

. . .
...

0 0 0 . . . δn−1
αH,1 αH,2 αH,3 . . . αH,n

 (12)

where δ is the fixed vector corresponding to δ in (2) and (4).
αH is chosen so that the characteristic polynomial of AH

has eigenvalues σi such that Re[σi] < 0 ∀ i = 1, . . . , n. The
choice of these σi represent hyperparameters, and render AH
Hurwitz. It is easy to see that there always exists αH that
will ensure such a spectrum for AH . We now choose the
MRAC-RL input signal u(t) in (2) as follows (see Figure
1):

ξ = ur −
1

br
αTr eζ +

1

br
αTHex (13)

u = K̂T
ζ ζ + k̂ξξ (14)

˙̂
Kζ = −Γζζe

T
xPBr,

˙̂
kξ = −γξξeTxPBr (15)

where Γζ = ΓTζ � 0, γξ > 0 and P = PT � 0 solves
the Lyapunov equation: PAH + ATHP = −Q for a given
symmetric positive definite matrix Q. K̂ζ and k̂ξ represent
adaptive parameter estimates that are updated at every
timestep. It is clear from (13) - (15) that if there are
no parametric uncertainties, if the initial conditions of
(2) are identical to those of (4), if K̂ζ(0) = 0n×1 and
if k̂ξ(0) = 1, then the MRAC-RL policy coincides with
ur(t). Assumption A1 then implies that the optimization
problem in (3) is (approximately) solved. The following
theorem articulates the stability property of the MRAC-RL
architecture when there is parametric uncertainty in (2):

Theorem 1: Under Assumption A1, the closed-looped
systems specified by the target system (2), the reference
system (4), and the MRAC-RL controller given by
(14) - (15) will have globally bounded solutions, with
limt→∞ ||ex(t)|| = 0.

Proof: In order to determine the underlying Lyapunov
function for the closed loop system, we first define the
ideal control parameters for the MRAC-RL architecture. In
particular, define K∗ζ and k∗ξ as the solutions of the so-called
matching conditions:

α+ λbrK
∗
ζ = αr, λk∗ξbr = br (16)

Inserting the adaptive control law (14) into the closed-loop
target system, we next determine the dynamics of the state
tracking error, ex. For i = 1, . . . , n − 1 it can be seen that
ėxi = δiexi+1 . The derivative of exn can then be determined
as:

ėxn = αT ζ − αTr ζr − brur
+ λbrK̂

T
ζ ζ + λbrk̂ξur − λk̂ξαTr eζ + λk̂ξα

T
Hex

Utilizing the matching conditions (16) and defining the
parameter estimation errors K̃ζ = K̂ζ −K∗ζ , k̃ξ = k̂ξ − k∗ξ ,
we can rewrite this as: ėxn = αTHex + λbr[K̃

T
ζ ζ + k̃ξξ].

Defining Br = [0, 0, . . . , br]
T , the complete error equation

can be written as:

ėx = AHex + λBr[K̃
T
ζ ζ + k̃ξξ] (17)



This leads to a Lyapunov function candidate:

V (ex, K̃ζ , k̃ξ) = eTxPex + λTr(K̃T
ζ Γ−1ζ K̃ζ) + λ

k̃2ξ
γξ

(18)

The time derivative of V can be calculated as:

V̇ = −eTxQex + 2λTr(K̃T
ζ [ζeTxPBr + Γ−1ζ

˙̂
Kζ ])

+ 2λk̃ξ[e
T
xPBrξ +

˙̂
kξ
γξ

]

Choosing the adaptive parameter update laws as (14) and
(15), we therefore obtain that:

V̇ = −eTxQex ≤ 0

This leads to the conclusion that ex(t), K̂ζ(t), and k̂ξ(t) are
bounded for all t ≥ 0. From Assumption A1, it follows
that xr(t) is bounded, and therefore it follows that the
state x(t), ζ(x(t)), and u(t) are all bounded for any initial
conditions. Barbalat’s lemma can be utilized to conclude that
limt→∞ ||ex(t)|| = 0, which concludes the proof [30]. �

The MRAC-RL solution that we propose in this paper is
given by (13)-(15), where the MRAC component occurs in
(14) and (15), and the RL component occurs in (13). The last
two terms in (13) are essential coupling term that guarantee
that the combination of MRAC and RL results in a control
architecture that can be globally bounded.

The structure of the MRAC-RL controller differs from the
standard MRAC solution in the following manner. MRAC is
typically used to track systems in which the reference input
ur has been chosen so that the reference system, which
is selected to be stable, produces a desired and bounded
reference signal xr. In the scenario given in this paper, there
is no such requirement on the reference system (4). The only
requirement is that ur has been trained by the RL policy
so that Assumption A1 is met. This flexibility in choosing
ur allows any learning that stems from RL to be explicitly
incorporated into the controller, and hence is advantageous
compared to a pure MRAC solution.

The benefit of introducing MRAC into the architecture
is clear - the controller in (14)-(15) guarantees in real-time
that the state tracks that of the reference system, with a
clear analytical guarantee of global boundedness, despite
the departure of the true target system model (2) from the
reference system (4). We have, however, not demonstrated
the optimality of the cost function in (3) for the proposed
control input u(t). In a specific case where the cost function
does not depend on u(t) then MRAC-RL can be shown
to approximately optimize (3) as T → ∞. While analytic
evaluation of MRAC-RL control optimality is a direction for
future work, the simulation study in the following section
demonstrates that MRAC-RL can drastically improve the
control performance for a general cost function.

IV. SIMULATION EXPERIMENTS

We investigate a quadrotor task, in which an autonomous
quadrotor must land on a moving platform. PPO is used to
train two policies: RL and DR-RL. The former is used as

a control policy, as well as in the outer-loop RL algorithm
for MRAC-RL, while the latter is trained using a domain
randomized training environment. We then compare MRAC-
RL to these two standard RL techniques [42][22].

A. Quadrotor Dynamics

We first describe the quadrotor dynamical model. The
squared angular velocities of each propeller are used as
input, that is: u = [ω2

1 , ω
2
2 , ω

2
3 , ω

2
4 ]T . The thrust produced

by each propeller is calculated by multiplying the squared
angular speed by a propeller specific constant κ. Letting
K = diag(κ1, κ2, κ3, κ4), the vector of thrusts produced
by each propeller is then given by Ku. Finally, denoting the
(body-frame) vertical force, roll moment, pitch moment, and
yaw moment by fz, τφ, τθ, τψ respectively, we have:

fz
τφ
τθ
τψ

 =


1 1 1 1
L 0 −L 0
0 L 0 −L
µ −µ µ −µ

Ku (19)

where L is the distance from each propeller to the quadrotor
center of mass, and µ is a rotational drag constant. Assuming
low-speeds, we may then construct a simple rigid-body
model for the quadrotor dynamics:

ẍ = (cosφ cos θ cosψ + sinφ sinψ)
fz
m

ÿ = (cosφ sin θ sinψ − sinφ cosψ)
fz
m

z̈ = cosφ cos θ
fz
m
− g

φ̈ = θ̇ψ̇(
Iy − Iz
Ix

) +
L

Ix
τφ

θ̈ = φ̇ψ̇(
Iz − Ix
Iy

) +
L

Iy
τθ

ψ̈ = φ̇θ̇(
Ix − Iy
Iz

) +
1

Iz
τψ

(20)

where x, y, z represent the center of mass position in an
inertial frame and φ, θ, ψ are the roll, pitch, and yaw angles
of the quadrotor body frame, respectively, in the inertial
frame [43]. m is the mass of the quadrotor; Ix, Iy, Iz are
the moments of inertia. A linearized model of (20) around
the hover equilibrium point is given by:

ẍ = gθ θ̈ =
L

Iy
τθ

ÿ = −gφ φ̈ =
L

Ix
τφ

z̈ =
∆fz
m

ψ̈ =
1

Iz
τψ

(21)

where ∆fz = fz −mg. (21) contains four distinct subsys-
tems, which include the evolution of [x, ẋ, θ, θ̇], [y, ẏ, φ, φ̇],
[z, ż], and [ψ, ψ̇]. We utilize (21) as a design-model for
the MRAC-RL controller, and (20) as an evaluation and
simulation model for the numerical experiment.

The model in (20) is implemented using an RK4 in-
tegration scheme with a time step of 1 millisecond. The



following parameters are used to construct the reference
environment: Ix = Iy = .22kg ·m2, Iz = .44kg ·m2, m =
1.2kg, L = .30m. Tmax = 20s in (22). The control input
is updated every 50 milliseconds to emulate latencies due to
measurement, communication, actuation and computation.

B. Quadrotor Landing Task

Due to the strength of RL algorithms in solving ”uncon-
strained” control problems, we are free to define the landing
task in an elegant and concise manner (instead of having to
formulate a convex/simplified objective to enable tractable
solutions via LQR or MPC). We assume that a platform of
known inertial position is moving with known inertial veloc-
ity. The goal is to utilize full state feedback to determine a
control policy that enables a quadrotor to landing on the mov-
ing platform from a wide array of initial conditions. Let ∆z
and ∆xy be the inertial vertical distance and lateral distance,
respectively, from the quadrotor to the platform. Further-
more, let vxy =

√
ẋ2 + ẏ2 be the quadrotor’s lateral velocity.

We define the boolean variable box to be True if ALL of
the following simultaneously hold: |∆z| ≤ zmax; |∆xy| ≤
lmax; |φ| ≤ φmax; |θ| ≤ θmax; |vxy| ≤ vl,max; |vz| ≤
vz,max, where zmax, lmax, φmax, θmax, vl,max, vz,max are
user provided parameters that determine if the quadcopter
has successfully landed.

A ternary cost function then quite naturally defines the
control objective:

c(~x, t) =


−1 IF box

1 ELSE IF ∆z ≤ 0 OR t ≥ Tmax
0 ELSE

(22)

where ~x captures the whole quadrotor state. The first case
in (22) defines success, the second case represents failure
either due to a crash or a timeout, and the third is a neutral
case and therefore set to zero. This cost function is a natural
formulation for the problem at hand, as the goal is to have the
quadrotor land as quickly and accurately as possible. Because
the function is complex and non-quadratic, standard optimal
control methods become inadequate. RL is a good alternative
as it allows the determination of a policy with such a cost
function.

C. Reinforcement Learning

PPO is used to learn an appropriate feedback policy π in
order to solve the optimization problem in (6). The actor
and critic networks each have two hidden layers; each layer
contains 64 neurons and uses tanh activation functions. A
learning rate of 1e−4, a discount factor of .99, a clipping
range of .2, and a generalized advantage estimator discount
of .95 are used as hyperparameters. Applying the PPO
algorithm to the reference environment with the cost function
in (22) results in the successful training of a feedback
policy π, which accomplishes the task when no parametric
uncertainties or loss of propeller effectiveness are present.

D. MRAC-RL

We introduce two types of parametric uncertainties into
the problem. In the first, the parameters m, Ix, Iy , Iz ,
and L vary by ±25% of their reference values. In the
second type, we test uncertainty in the form of a sudden
and asymmetric loss of effectiveness (LOE) in one of the
propellers. This is done by allowing K in (19) to take
the form: K = diag(κ1, κ2, κ3, βκ4), where 0 < β < 1.
This could simulate, for example, the sudden fracturing of a
single propeller blade mid-flight, as was done in [43]. This
represents an extreme and sudden change to the quadrotor
model that may occur in real-time. The goal is to determine
an online control signal u in (19)-(20) so that the cost
function in (22) is minimized.

E. DR-RL

A standard RL method for accommodating model uncer-
tainty is domain randomization (DR) [44][22]. In DR the
agent is trained over a distribution of different environment
models so that more robust and generalizable policies may
be learned. Thus, we develop a domain-randomized RL (DR-
RL) agent to compare against MRAC-RL. The DR-RL agent
is trained using PPO in the same manner as the baseline RL
agent, except that the environment parameters m, Ix, Iy , Iz ,
and L are varied during training by sampling the parameter
values from a uniform distribution over ±25% of the nominal
values.

F. Simulation Results

When there is no parametric uncertainty or LOE, the
aggregate success rate of the PPO-trained policies on the
landing task was found to be 94%. This demonstrates that
the PPO-trained policy (henceforth referred to as RL below)
is satisfactory when the target system and reference system
are equivalent. We compare three control approaches:
• RL: The PPO-trained policy π is used directly in

the target system (as in Figure 1a). Every 50ms the
quadrotor control is updated: u = π(~x), where ~x is the
full state of the quadrotor.

• MRAC-RL: The MRAC inner-loop converts ur to u at
each timestep (as in Figure 1b). Every 50ms the refer-
ence control is calculated: ur = π(~xr). The quadrotor
control u is then calculated using (13) - (15).

• DR-RL: The DR-RL trained policy (described in section
IV-E)) is used in the same manner as the RL approach.

TABLE I
±25% PARAMETRIC UNCERTAINTY RESULTS

Algorithm Results
Success Rate Avg. Success Time

RL 48% 7.5s
MRAC-RL 82% 3.5s

DR-RL 74% 8.9s

As shown in Table 1, the inclusion of an MRAC inner-
loop increases the task success rate when compared to both



standard RL and DR-RL. The latter improvement is notewor-
thy, as DR-RL is explicitly used to accomodate variations in
model parameters.

We next compare the PPO-trained policy to MRAC-RL in
the case of a sudden asymmetric loss of effectiveness (LOE)
- that is, when the ability of a single propeller to produce
thrust is severely compromised.

TABLE II
ASYMMETRIC LOE. THE LOE COLUMN IS THE DEGREE OF PROPELLER

THRUST LOST (WITH 0% BEING NO LOSS).

PPO MRAC-RL LOE
Success Rate Success Rate

94% −− 0%
71% 95% 10%
28% 81% 25%
4% 47% 50%
0% 11% 75%

Fig. 2. MRAC-RL (green) and pure
RL (orange) trajectory rollouts when
a single propeller loses effectiveness.
The baseline ”ideal” trajectory (blue)
is shown, when there is no loss of
effectiveness. Note that the MRAC-
RL trajectory more closely tracks this
baseline than the RL rollout.

As in the case of sim-
ple static model pertur-
bations, the inclusion of
MRAC at the inner-loop
greatly improves the task
performance. In the LOE
experiment, we determine
the state trajectories pro-
duced by RL and MRAC-
RL algorithms, and com-
pare both trajectories with
the ideal baseline trajectory
when there is no LOE. We
report that, for a LOE of
10%, the standard RL ap-
proach exhibits an average
point-wise trajectory diver-
gence of .17m, while the
MRAC-RL approach leads

to a divergence of .01m. For a LOE of 50% the RL
divergence is .47m and the MRAC-RL divergence is .04m.

V. SUMMARY & CONCLUSIONS

In this paper we have proposed a control architecture,
MRAC-RL, to solve optimal control problems in the form
of (2)-(3) when parametric modeling uncertainty is present.
MRAC-RL consists of an MRAC-based inner-loop and an
RL-based outer-loop. We provide stability guarantees for
the resulting closed-loop system and prove that the adap-
tive tracking objective is achieved. An extensive numerical
investigation of a quadrotor landing task is carried out to
validate the proposed MRAC-RL. Both parametric uncer-
tainties and an asymmetric loss of actuator effectiveness are
emulated in this numerical study. In addition to validating
the theoretical result of satisfactory tracking in the presence
of modeling errors, we also show that the performance of
the controller can be improved by the inclusion of MRAC.
This improvement is quantified through a comparison with

other approaches that are based only on RL. While this paper
compares MRAC to standard RL and domain-randomization
techniques, the modular nature of the proposed architecture
allows integration with several other robust RL methods. For
example, a robust algorithm such as PILCO [20] could be
used to train the outer-loop.

In this paper we have paid special attention to the mini-
mization and convergence of tracking error, but did not ad-
dress the convergence of parameter error, as our focus is on
control performance with imperfect learning. Incorporation
of persistent excitation conditions to investigate improved
learning, as was done in in [45] and [30], is the subject of
future research. Proof of control optimality under general
conditions of finite time-horizons and arbitrary costs, and
experimental demonstrations of MRAC-RL are all topics for
future research as well.
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