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Abstract— In this paper, we study the trade-off between the
transmission cost and the control performance of a networked
control system subject to network-induced delay. Within the
linear–quadratic–Gaussian (LQG) framework, the joint design
of control policy and networking strategy is decomposed into
separate optimization problems. Based on the trade-off analysis,
a delay-dependent Value-of-Information (VoI) metric which
quantifies the value of transmitting a data packet is introduced.
The VoI enables the decision-makers embedded in subsystems to
design the triggering policy. The proposed scalable VoI inherits
the task criticality of the existing VoI metric. Additionally,
the sensitivity to the system parameters such as information
freshness and network delays is directly derivable. The VoI-
based scheduling policy is shown to outperform the periodical
triggering policy and the Age-of-Information (AoI) based policy
for network control systems under transmission delay. The
effectiveness of the constructed VoI with arbitrary network
delay is validated through numerical simulations.

I. INTRODUCTION

Networked control systems (NCSs) are generally referred
to multiple or even a large number of plants that are con-
trolled by computational algorithms and supported by a wired
or wireless communication network providing information
exchange [1]–[3]. Their application domains are multi-fold,
including for example smart energy grids [4], robotic systems
[5] and autonomous production lines [6]. From a theoretical
perspective, NCSs can be seen as realizations of a scenario
in which multiple feedback control loops are closed over
a shared communication network. In data scheduling of
NCSs, the event-triggered schemes impel a data transmission
only when a pre-designed triggering condition is satisfied.
A plethora of works e.g. [7], [8], have shown that event-
triggered schemes performs well in reducing the network
communication resource consumption while guaranteeing
similar control performance compared to widely-used time-
triggered scheme [9]. In NCSs, two main layers (control
layer and communication layer) strongly influence the per-
formance of each other and face heterogeneous inter-layer
couplings such as network-induced delay, packet loss and
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quantization. The inevitable presence of transmission delay
in NCSs indeed influences the system performance, which
has drawn significant attention in recent studies [10]–[12].

Age-of-Information (AoI) is a recently introduced metric
which is capable of coordinating communication resource
allocation by minimizing the information freshness of each
subsystem. AoI captures the information freshness at the con-
troller and is scalable for application in large-scale systems
[13]. By scalable we mean that the AoI is computationally
tractable and implementable on a NCS with a large number
of subsystems. However, as shown in [14], [15], minimizing
average information freshness does not necessarily lead to
individual control performance satisfaction, and might also
result in an undesirable collective performance.

Compared to AoI in NCSs, Value-of-Information (VoI) is
quantified as the variation in a value function with respect
to a piece of information about the state of the process
available to the controller [16], [17]. In [16], it has been
shown that the VoI-based scheduling policy is an optimal
policy, by assuming that network-induced effects, such as
transmission delay, quantization or packet dropouts, are
negligible. However, this assumption is definitely not valid
in real-world applications. Moreover, another disadvantage
of the previous VoI in [16] is its computational complexity
– in particular in comparison to AoI.

In this paper, we extend the VoI concept to NCSs subject
to arbitrary transmission delay. Firstly, under some mild
assumptions on the triggering policy, the initial joint design
problem is decomposed into two sub-problems i) the op-
timal control policy design, and ii) the optimal triggering
policy design. By addressing the trade-off between LQG
performance and communication cost and assuming that
the triggering decisions only depend on primitive random
variables, the solution to the optimal control problem is
shown to be the certainty equivalent controller. Analyzing
the optimal triggering policy design problem, we obtain a
VoI metric which is described as a measure of the urgency
of data transmission between the event-trigger and the remote
controller. The VoI serves as the triggering condition for
NCS closed over a communication network. Our constructed
VoI function sufficiently accounts for individual task require-
ments of networked control loops as previous VoI while
capturing the influence induced by transmission delay. We
prove that the delay-dependent VoI-based scheduling policy
is optimal, and improves the LQG control performance com-
pared to both periodic scheduling and AoI-based scheduling
policies. To reduce the computation burden in solving the
scheduling problem using dynamic programming, we provide
a simplified VoI proxy function based on an approximation
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approach.
The remainder of this paper is structured as follows.

Section II introduces the system model and the problem for-
mulation. Section III presents the main result on constructing
delay-dependent VoI and its performance analysis. Section
IV illustrates our results through simulation examples.

Notations: In this study, E[·] and E[· | ·] denote the
expected value and the conditional expectation, respectively.
Let x ∼ N (µ,Cx) represent Gaussian random variable x
with mean µ and covariance matrix Cx. A sequence of a
random process {xk}k≥0 is denoted as Xk = {x0, . . . , xk}
for its complete history up to time index k.

II. PRELIMINARIES

A. System model

We consider a networked control system in which the
feedback loop is coupled through a communication network.
The stochastic discrete-time process to be controlled is
described by a discrete stochastic difference equation, which
is assumed to be linear and time-invariant. The stochastic
difference equation is given by

xk+1 = Axk +Buk + wk (1)

where system state xk ∈ Rn, control signal uk ∈ Rm, A ∈
Rn×n and B ∈ Rn×m. The variables xk and uk denote the
system state and the control input, respectively. The system
matrix pair (A,B) is assumed to be controllable. The process
noise wk ∼ N (0,W ) is independent identically distributed
(i.i.d) with zero mean and postive semidefinite covariance.
The initial state x0 ∼ N (0, R0) is a random vector with
zero mean and finite covariance. The random variables x0

and wk are assumed to be statistically independent for each
k. Across this paper, we call x0 and wk the primitive random
variables of the system.

B. Network model and information structure

The control system is equipped with a scheduler (event-
trigger), to determine whether allows the state xk to be trans-
mitted via the communication network at each time instant
k. See Fig. 1 for a graphical illustration. The transmission
triggering variable δk of the scheduler takes value from
{0, 1}, and is given by

δk = γ(Iek) =

{
1 transmission occurs
0 otherwise

(2)

where γ(·) denotes the triggering policy of the control system
and Iek denotes the information set for the event-trigger. Its
formal definition is provided in (6). We assume that the data
transmission is subject to a τ -step delay (see Definition 1),
which is induced by the communication network. To capture
this delay, we assume that the controller keeps a track of the
time instant it received the latest packet. This information
updating time instant is a function of the triggering variables.

Plant

Event trigger

Estimator

Controller

N
e
t
w
o
r
k

Fig. 1. A NCS with shared communication channel.

By using δk, the information updating time at the controller
side is described by c(k) = max{t|δt−τ = 1, t ≤ k}. The
transmission timeline in the networked control system is
illustrated in Fig. 2. To quantify the information freshness
of the data packet at the controller side, we introduce the
concept of Age-of-Information (AoI) as follows.

Definition 1: The delay-dependent AoI is defined as

∆k = k − s(k) (3)

where

s(k) = c(k)− τ (4)

is the generating time instant of the latest information update
of the controller.

At time instant k, the controller computes its action based
on the information updates. At the sensor side, the event-
trigger determines whether to transmit the current state xk
to the network according to the scheduling policy γk(Iek).
We will detail the design of our VoI-based policy in Section
III. The information received at the controller side, at time
instant k, is denoted as

zk =

{
xs(k) if δk−τ = 1,
∅ otherwise,

where the time index s(k) is defined in (4), and defining
δ−τ = . . . = δ−1 = 0. We denote the observation history of
the controller until time k as Zk. The information set at the
controller side is denoted as

Ick = {Zk,Uk−1}, (5)

with the initial information Ic0 = {z0}, and Uk−1 denotes
the control history up to time instant k − 1. The control
history Uk−1 up to time instant k − 1 is also available to
the event-trigger. It follows that, the information set at the
event-trigger is denoted as

Iek = {Xk,Uk−1, δk−1}, (6)

where Xk and δk−1 denote the system state history up to
time k and triggering decision history up to time k − 1,
respectively. Obviously the initial information set Ie0 =
{x0, δ0} because of the empty control history.
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Fig. 2. Transmission timeline

C. Problem statement

In this study, we aim to find the optimal joint co-design
of control and scheduling policy which solves the following
optimization problem:

min
f,γ

Ψ(f, γ) = J(f, γ) +R(γ), (7)

where f denotes the control policy and γ denotes the
scheduling policy (defined in (2)), J(f, γ) and R(γ) rep-
resent the control cost function and communication cost
function, respectively. The control cost function is given by

J =
1

T + 1
E
[ T∑
k=0

(
x>k Qkxk + u>k Rkuk

)
+x>T+1QT+1xT+1

]
, (8)

where the matrix Qk is positive semidefinite, Rk is pos-
itive definite, the matrix pair (A,Q

1
2

k ) is detectable, with

Qk =
(
Q

1
2

k

)>
Q

1
2

k . The communication cost function we
considered is designed as:

R =
1

T + 1
E
[ T∑
k=0

θkδk
]
,

where θk denotes the single transmission cost at time instant
k.

III. MAIN RESULT

Before presenting the main result in this work, we provide
the following supporting result.

As proved in [18], a pair of joint control and communi-
cation policies with a certainty equivalence controller is a
dominating class of policies. Thus, within the dominating
policies, the local sub-problems can be decomposed into:
i) the design of certainty equivalence controller; and ii) the
design of optimal triggering policy [19]. In the following, we
provide a condition on the scheduler to guarantee certainty
equivalence of the controller.

Lemma 1 ( [20]): Let the triggering policy be a function
of the primitive random variables, i.e., δk = γk (x0,Wk−1).
Then the optimal controller which minimizes the finite
horizon LQG problem (8) is certainty equivalent, i.e.,

u∗k = f∗(Ick) = LkE[xk | Ick], (9)

with Lk = −(Λk)−1B>Pk+1A and Pk being the solution
of the following algebraic Riccati equation:

Pk = Qk +A>(Pk+1 − Pk+1B(Λk)−1B>Pk+1)A,

PT = QT , Λk = Rk +B>Pk+1B. (10)

�

Lemma 1 decomposes the co-design problem (7), and there-
fore the remaining problem is how to find the optimal trigger-
ing policy, which is detailed below. For notation simplicity,
the subscript i is omitted from the next subsection.

A. System dynamics reparameterization

We design the estimator at the controller-side as

E[xk | Ick] = A∆kxs(k) +

∆k∑
r=1

Ar−1Buk−r, (11)

where uk is defined in (9) and s(k) is defined in (4). The
estimation error is defined as

ek = xk −E[xk | Ick] (12)

Similarly, starting from the latest triggering time instant s(k),
the state dynamics (1) can be further written as

xk = A∆kxs(k) +

∆k∑
r=1

Ar−1
(
Buk−r + wk−r

)
. (13)

By substituting (11) and system dynamics (13) into the error
function (12), the estimation error is obtained as

ek =

∆k∑
r=1

Ar−1wk−r, (14)

which will be served as a key component in designing the
VoI-based scheduling policy.

In order to characterize how the triggering policy influ-
ences the control performance, the estimation error (14)
is reparameterized with respect to the triggering variables.
Note that the value of ∆k+τ and error dynamics (14) are
determined by the decisions up to time instant k. The AoI
expression with respect to decision δk at time instant k + τ
is given as

∆k+τ = (1− δk)(∆k+τ−1 + 1) + δkτ.

For illustrative purpose, we provide an example. If the
triggering occurs at k − 1, while not at k, then ∆k+τ =
τ + 1. Besides, if no triggering occurs during [k− τ, k], then
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∆k+τ = ∆k + τ . Accordingly, the expression of ek+τ with
respect to decision δk is denoted as

ek+τ = (1− δk)(Aek+τ−1 + wk+τ−1)

+δk

τ∑
r=1

Ar−1wk+τ−r

=

∆k+τ∑
r=1

Ar−1wk+τ−r. (15)

B. VoI Construction

We formally define the VoI as follows

VoIk := Vk(Iek) |δk=0 −Vk(Iek) |δk=1 . (16)

Equation (16) indicates the value that is assigned to the re-
duction of uncertainty from the decision maker’s perspective
given a measurement update [16], where Vk(Iek) denotes
the value function in the optimization problem from the
viewpoint of the event-trigger. Now we are ready to present
our main result.

Theorem 1: Let the triggering policy be a function of the
primitive random variables, i.e., δk = γk (x0,Wk−1). And
let the optimal control policy be given by (9). The optimal
scheduling policy which minimizes the optimization problem
(8) is the VoI-based policy given by

δ∗k = 1VoIk>0 =

{
1 if VoIk > 0,
0 otherwise,

(17)

where VoIk is the VoI at time instant k expressed as

VoIk = −θk + tr(Γk+τΦ(∆k+τ ) + ρk, (18)

where Φ(∆k+τ ) = E[
∑∆k+τ�1+1
r=τ+1 (Ar−1)>Ar−1‖wk+τ−r‖2]

with Γk = L>k ΛkLk. Besides, the ρk is expressed as

ρk = E[Vk+1 | Iek, δk = 0]−E[Vk+1 | Iek, δk = 1] (19)

with Vk = E[
∑T−τ
t=k θtδt + e>t+τΓt+τet+τ | Iek].

Proof: By substituting the algebraic Riccati equation
(10) into the optimization cost function (7), we can rewrite
(7) as

Ψ(f, γ) =
1

T + 1
E[x>0 P0x0 +

∑T
k=0 w

>
k Pk+1wk

+(uk + Lkxk)>Γk(uk + Lkxk) + θkδk](20)

Inserting the certainty equivalence controller (9) into the cost
function (20) results in

Ψ(f∗, γ) =
1

T + 1
E[x>0 P0x0 +

T∑
k=0

w>k Pk+1wk

+e>k Γkek + θkδk]. (21)

where Γk = L>k ΛkLk. We define a cost-to-go function at
time k for (21) as

Vk = E[

T−τ∑
t=k

θtδt + e>t+τΓt+τet+τ | Iek], (22)

where et, for 0 ≤ t < τ , is independent of the triggering
policy since no packet arrives at the controller during t ∈
[0, τ) due to the transmission delay. It is straightforward to
re-write Vk as

Vk = E[θkδk + e>k+τΓk+τek+τ + Vk+1 | Iek]. (23)

The minimizer δ∗k of cost-to-go function (23) is obtained as
δ∗k = 1VoIk>0 with VoIk defined in (16). Regarding the term
E[e>k+τΓk+τek+τ | Iek] in stage cost of Vk, by substituting
(15), it can be further written as

E[e>k+τΓk+τek+τ | Iek, δk = 0]

−E[e>k+τΓk+τek+τ | Iek, δk = 1]

=

∆k+τ�1+1∑
r=1

(Ar−1wk+τ−r)
>Γk+τA

r−1wk+τ−r

−
τ∑
r=1

(Ar−1wk+τ−r)
>Γk+τA

r−1wk+τ−r

= tr(Γk+τΦ(∆k+τ )), (24)

with Φ(∆k+τ ) defined in (18). Overall, the combination of
(16), (23) and (24) implies the expression of VoI

VoIk = −θk + tr(Γk+τΦ(∆k+τ ) + ρk (25)

with ρk = E[Vk+1 | Iek, δk = 0]−E[Vk+1 | Iek, δk = 1].

To obtain a valid VoI function (18), we need to minimize the
cost-to-go function (22) using dynamic programming. In the
numerical backward induction of dynamic programming, the
objective function must be computed for each combination
of values. The cost-to-go function Vk (22) is dependent on
future triggering variables (δk+1, δk+2, . . . , δN ) and needs
to be computed recursively, therefore, its computation is in
general difficult. In order to achieve generic computational
tractability and scalability, we introduce an approximation of
the VoI function using Proposition 4 of [16], a so-called VoI
proxy function.

Let γ̄ = {δ̄0, . . . , δ̄N} be a periodic triggering policy with
δ̄k = 1 for all 0 ≤ k ≤ N . At each time instant k, we
use the sub-optimal set of policies {δk, δ̄k+1, . . . , δ̄N} as the
baseline policy to simplify the ρk calculation, and it results
in ρk = 0.

Proposition 1: Consider the joint optimization problem
(8) and let the optimal control policy be given by (9). The
VoI proxy-based scheduling policy γ̃ is given by

δ̃k = 1VoIPk>0, (26)

where

VoIPk = −θk + tr(Γk+τΦ(∆k+τ )) (27)

with Φ(∆k+τ ) defined in (18). The policy is sub-optimal
but outperforms the periodical policy in tradeoff between
the control performance and communication cost.

Proof: We need to prove Ψ(γ̃, f∗) ≤ Ψ(γ̄, f∗). Let
the cost-to-go function under sub-optimal triggering policy
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and periodical policy be Ṽk and V̄k, respectively. In order to
show Ψ(γ̃, f∗) ≤ Ψ(γ̄, f∗), it is enough to show Vk ≤ Ṽk.
Assume that the claim holds for k + 1, we have

Ṽk = E[θδ̃k + e>k+τΓk+τek+τ + Ṽk+1 | Iek]

≤ E[θδ̃k + e>k+τΓk+τek+τ + V̄k+1 | Iek]

≤ E[θδ̄k + e>k+τΓk+τek+τ + V̄k+1 | Iek] = V̄k,

where δ̄k = γ̄(Iek). The first and second equalities result from
backward induction, the first inequality is from the induction
hypothesis and the second inequality is from the definition
of the sub-optimal triggering policy γ̃.

The scheduling policy (26) based on VoI proxy function (27)
given in Proposition 1 is no longer optimal for the optimiza-
tion problem (7). However, in the following Corollary 1, we
show that the VoI proxy metric will be shown that the VoI
proxy metric outperforms the periodic scheduling policy and
AoI-based scheduling policy.

Remark 1: Compared with previous VoI function in [16],
which is of the form

VoIk = e>k A
>Γk+1Akek − θk + ρk,

the VoI function (18) and VoI proxy function (27) is repa-
rameterized with the Gaussian noise and time information
which are available at the decision maker at the sensor side.
Moreover, they capture the essential variables such as delay
and analytically characterize the relationship between com-
munication delay and the formulated optimization problem
(7). These observations facilitate the VoI metric to be applied
in a large-scale NCS.

The result of performance guarantee in Proposition 1 also
applies for comparison between VoI proxy-based triggering
policy (26) and AoI-based triggering policy proposed in [16].
This introduces our next corollary.

Corollary 1: Let γ̂ be the AoI-based triggering policy
given in [16], under the fixed optimal control law as in
(9) of Lemma 1, the sub-optimal triggering policy γ̃ given
in (26) outperforms the AoI-based triggering policy γ̂ in
optimization problem (7).

Proof: Let the cost-to-go function under AoI-based
scheduling policy be V̂k. We need to prove Ψ(γ̃, f∗) ≤
Ψ(γ̂, f∗). Assume that the claim holds for k + 1, we have

Ṽk = E[θδ̃k + e>k+τΓk+τek+τ + Ṽk+1 | Iek]

≤ E[θδ̃k + e>k+τΓk+τek+τ + V̂k+1 | Iek]

≤ E[θδ̂k + e>k+τΓk+τek+τ + V̂k+1 | Iek] = V̂k,

where δ̂k = γ̂(Iek). The first and second equalities come
from backward induction, and the derivation explanation is
same as in the proof of Proposition. 1.

IV. SIMULATION RESULT

In this section, we provide a numerical simulation to vali-
date the effectiveness of our proposed VoI-based scheduling
policy. In terms of dynamics (1), we choose a two-dimension
linear system with system matrices A = diag{1.15, 1.1},
B = diag{0.1, 0.1}, and the Gaussian noise covariance is
W = diag{0.001, 0.0001}. The constant delay is set as
τ = 2. Regarding the weighting coefficients in LQG cost
function (7), we choose Qk = QT+1 = diag{1, 1}, and
Rk = RT+1 = diag{1, 1} for all k. The time horizon is
chosen as T = 150. The simulated average transmission rate
is defined as r = 1

T+1

∑T
t=0 δk, and the control performance

is valued by the average mean square error 1
T+1

∑T
t=0 ‖ek‖2.

We run Monte Carlo simulations with 1000 trials.
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Fig. 3. From up to bottom: the trajectory of VoI proxy function (27) and
the triggering events of the system.
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0

Fig. 4. System states and control signals under VoI proxy-based scheduling
policy (26).

Fig. 3 depicts the VoI proxy trajectory (27) and triggering
events of the networked control system under the transmis-
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Fig. 5. Trade-off between the control performance and transmission rate.

sion cost θ = 0.3. The triggering occurs only when the VoI
function is positive. Under the VoI proxy-based scheduling
policy (26), the system states [x1 x2]>, their estimation [x̂1

x̂2]> and the optimal LQG control actions [u1, u2]> are
shown in Fig. 4.

In Fig. 5, we compare the trade-offs between control
performance and transmission rate of system under different
scheduling policies. They are VoI proxy-based (26), peri-
odical and AoI-based scheduling policies [16], respectively.
The transmission rate under VoI-based triggering policy
decreases with the increasing transmission cost θ, therefore
we obtained the trade-off curve of the control performance
with respect to the transmission rates. In order to obtain
the same transmission rate range, the transmission costs θ
is chosen from 0 to 0.3 with the step size of 0.03. In
periodical triggering policy case, the periods are chosen as
T = {2, 3, 4, 5, 6, 7}. It can be observed that the VoI proxy-
based triggering policy leads to a lower average mean square
error under the same transmission rates compared with the
rest scheduling policies.

V. CONCLUSIONS

In this paper, by addressing the trade-off between control
performance and communication resource consumption for a
NCS, we analytically characterized the relationship between
quality of control and VoI function. The derived VoI func-
tions properly reflect the relevance of information including
temporal aspects for the control task and is parameterized
by network coupling variables such as transmission delay.
The data packet is transmitted through the network whenever
the value of information is positive to preserve the control
tasks. Finally, numerical simulation is provided to verify the
effectiveness of the proposed VoI-based scheduling policy.
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