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Abstract— In this paper, a human-behavior learning ap-
proach for optimal tracking control of robot manipulators is
proposed. The approach is a generalization of the reinforcement
learning control problem which merges the capabilities of
different intelligent and control techniques in order to solve
the tracking task. Three cognitive models are used: robot
and reference dynamics and neural networks. The convergence
of the algorithm is achieved under a persistent exciting and
experience replay fulfillment. The algorithm learns online the
optimal decision making controller according to the proposed
cognitive models. Simulations were carry out to verify the
approach using a 2-DOF planar robot.

I. INTRODUCTION

Human-behavior learning [1] has become a popular re-
search topic in different communities, specially in video
games applications [2]. These kind of applications extract
special features of the human performance while playing a
video game using a deep reinforcement learning architecture
known as Deep Q Network (DQN) [3]. The main components
of this algorithm are: a deep neural network (designed with
convolutional and fully connected layers [4]), a reinforce-
ment learning update rule (Q-learning rule [5]–[7]), a ε-
greedy strategy for exploration-exploitation [8], [9] of the
state-action space and an experience replay memory [10]. To
our knowledge, human-behavior learning has been applied
only on video games applications in a discrete-time domain
[11], that is, the system has discrete actions. Therefore,
human-behavior learning design for control applications is
an open problem and main contribution of this work.

In this paper, the human-behavior learning is analyzed
in a new perspective which is more similar to how human
learns and fills the current gap in control applications.
Whilst reinforcement learning (RL) is modeled by a tuple
of states, actions, state-transition functions, and rewards,
human-behavior learning is modeled by a tuple of actions,
cognitions, and emotions. The main difference between these
two approaches lies in the cognitions where different models
and functions are used to extract experiences [12] and
any previous knowledge [13], [14] that facilitates obtaining
the solution of the desired task in an optimal way. Some
examples of cognitive models are knowledge of the sys-
tem and environment dynamics [9], [15] or any intelligent
model/expert system [3], [16] like neural networks [17]–[19],
function approximators [20]–[24], fuzzy systems [25], deep
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models [26], among others. The emotions defines a complex
set and its topic for future work. For simplicity, this work
assumes that emotions are equivalent to rewards.

Control of linear systems has been studied in [4], [6], [27],
[28] using model-based and model-free RL controllers [24].
Furthermore, nonlinear systems control has been assessed in
[18], [23] using actor-critic structures and partial knowledge
of the system dynamics. Despite having good results, the
above approaches do not consider past experiences and pre-
vious knowledge as in a human-behavior learning approach.
In this work, robot manipulators are analyzed as a special
case of nonlinear systems. However, the proposed approach
can also be extended to any stabilizable nonlinear system for
both regulation and tracking tasks.

The main goal of the human-behavior learning approach is
to find an optimal decision making function (known as policy
in RL framework) which achieves an optimal solution of the
desired task by minimizing/maximizing the emotions in an
infinite horizon. For nonlinear systems, this function can be
regarded as the solution of a Hamilton-Jacobi-Bellman (HJB)
equation [29]. Nevertheless, it is an almost impossible task to
obtain a solution of the HJB equation for nonlinear systems
even we have full dynamics knowledge [30].

In this paper, the human-behavior learning for video
games is modified into a control problem to achieve the
above goal. Three cognitive models are used: robot and
reference dynamics and a neural network approximator. The
ε-greedy strategy is changed into a persistent exciting (PE)
condition [31] to guarantee convergence of a model-based
neural reinforcement learning algorithm. Experience replay is
generally used to store some samples and use them as targets
for the deep learning architecture [10]. In this new approach,
the experience replay is used to store past experiences and
use them at the reinforcement learning update rule, similarly
to eligibility traces [32], [33]. This modification improves the
convergence of the algorithm and the accuracies of the neural
estimates. Simulation studies verify our approach using a 2-
DOF planar robot.

II. PRELIMINARIES

Human behavior is composed of three main sets (see Fig.
1): actions A, cognitions C and emotions E . Actions A
denote everything that can be observed from physiological
sensors, for example, any movement of the body; these
actions can take place on different time scales, for example,
reading a book, food consumption, sleep, etc. Cognitions
C describe thoughts, skills and knowledge, for example,
how to use a broom, computer or a cellphone application.
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Emotions E describes a brief conscious experience that are
not characterized as a result from either reasoning or a
cognitive knowledge. Emotions are defined in a relative
scale, that is, from positive emotions (happiness, excited,
pleasurable) to negative emotions (angry, sad, unpleasant).
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Fig. 1. Human-Behavior Learning components

Mathematically, human behavior can be written as a
Markov decision process (MDP) given by the tuple (A, C, E).
Each MDP component are described as follows:
• The actions set A contains two subspaces: the set of

states X and the set of controls U , so A = X∪U . X and U
define all the possible states and controls of the system. The
actions set contains a decision making function from states
to controls denoted by h : X → U , which describes which
controls have to been applied in certain states in accordance
to the cognition set C and the received emotion ξ.
• The cognition set C contains all previous knowledge,

learning methods or skills that the human possess. Each
previous knowledge i can be defined by an application from
an action pair to a state value, for example, a state-transition
function fi : X × U → X which describes how the state
x ∈ X changes as a result of applying a control u ∈ U .
The skills si : X × U → X are methods that the human
uses to facilitate the execution of a task in accordance to its
experience or a stimuli.
• The emotion set E provides feedback stimuli about

the interaction between A and C. This feedback can be
interpreted as an application denoted by ξ : X × U → R.
Also the stimuli can be modified according to the cognitive
skills si.

Remark 1: The main difference between reinforcement
learning and human-behavior learning is the cognitive model
which contains as many state-transition functions fi of skills
or knowledge that the human acquires while learning.

III. HUMAN-BEHAVIOR LEARNING CONTROL DESIGN

The dynamics of a n-degree of freedom (DOF) robot
manipulator (without friction) [34] is

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ, (1)

where M(q) ∈ Rn×n denotes the symmetric inertia matrix,
C(q, q̇) ∈ Rn×n is the Coriolis and centrifugal forces

matrix, G(q) ∈ Rn denotes the gravitational torques vector,
τ ∈ Rn is the control torque and q, q̇, q̈ ∈ Rn denote the
joint positions, velocities and accelerations, respectively. The
robot dynamics (1) can be written as

ẋt =


xn+1

...
x2n

−M−1(q) [C(q, q̇)q̇ +G(q)]

+

[
0n×n
M−1(q)

]
ut

= f(xt) + g(xt)ut, xt0 = x0, t ≥ t0 (2)

where f(xt) ∈ R2n and g(xt) ∈ R2n×n define the
non-linear robot dynamics; with x1,t = q1,t, · · · , xn,t =
qn,t, xn+1,t = q̇1,t, · · · , x2n,t = q̇n,t. Define xt =
[x1,t, · · ·xn,t, xn+1,t, · · · , x2n,t]> and ut = τ .

The robot is regarded as the acting human. The actions
set A is given by all robot states xt ∈ A ⊂ R2n (joint
positions and joint velocities) and the torque inputs ut ∈
A ⊂ Rn. When a control torque ut is applied at the robot
joints, then the states xt are modified to a new state according
to the robot state-transition function (2). The state-transition
function (2) belongs to the cognition set C.

Humans have the skill to explore all their actions possi-
bilities in order to determine the best decision making. This
skill belong to the cognition set C and can be designed with
any exploration technique, for example, ε-greedy exploration
[9], softmax [26] or a persistent exciting (PE) condition [31].
In this paper a PE condition is used as exploration skill.

For a tracking control problem, the objective is to force
the robot states xt to track a smooth desired trajectory
xdt ∈ Rn [35]. The desired trajectory dynamics is regarded
as a cognitive model for the human-behavior learning, which
satisfies the following nonlinear reference model

ẋdt = ϕ(xdt ), (3)

with known initial condition. Here ϕ(·) denotes the dynamics
of the reference model. The tracking error is defined as et =
xt − xdt . The closed-loop dynamics between the cognitive
model (2) and (3) is

ėt = f(xt) + g(xt)ut − ϕ(xdt ). (4)

Humans are capable to store past experiences as previous
knowledge to facilitate the decision making. This also rep-
resents a skill for the cognitive set C which will be denoted
as memory vector M. So, the robot chooses controls from
the actions set A according to the following decision making
control

ut = h(et;PE,M) = h(xt, x
d
t ;PE,M). (5)

Notice that the decision making control depends on the
states provided by the state-transition functions (2) and (3);
the PE condition and experience replay skills. The decision
making controller is composed of a feedforward control u1,t
and feedback optimal control u2,t as

ut = u1,t + u2,t
u1,t = g−1(xt)

(
ϕ(xdt )− f(xt)

)
.

(6)



The closed-loop dynamics (4) under the decision making
control (6) is

ėt = g(xt)u2,t. (7)

Both A and C sets receive the scalar emotion stimuli ξt ∈
E in accordance to a utility function in terms of the state xt
and control ut. This paper uses a quadratic function of the
form

ξt = ξ(et, u2,t) = e>t Set + u>2,tRu2,t, (8)

where S = S> ≥ 0 ∈ R2n×2n and R = R> > 0 ∈ Rn
are weight matrices. The main goal is to find an optimal
decision making controller that minimizes the negative emo-
tion stimuli from any initial state x0. This can be achieved
using the concept of value function in reinforcement learning
(RL) framework. The infinite-horizon value function [6] of
a decision making control is given by

V h(et) =

∞∫
t

ξ(eτ , u2,τ )dτ. (9)

Taking the time derivative of (9) gives the Hamiltonian of
system (7)

H(et, u2,t,∇V ) = V̇ (et) + ξt = 0

= (∇V )>(g(xt)u2,t) + ξt = 0 (10)

where ∇ ≡ ∂
∂et

. The optimal value function can be obtained
by the Bellman optimality principle as

V ∗(et) = min
u2,t∈U

 ∞∫
t

ξ(eτ , u2,τ )dτ

 , (11)

which satisfies the Hamilton-Jacobi-Bellman (HJB) equation

0 = min
v∈U

[H(et, v,∇V ∗)] . (12)

Therefore, the optimal decision making satisfies

u2,t = h∗(et, PE,M)

= arg min
v∈U

[
ξt + (∇V ∗)>(g(xt)v)

]
. (13)

Notice that the PE andM skills are not explicitly observed
in (13) because the cognitive model (2) serves only as
previous knowledge and it cannot acquired new valuable
information. To see the benefits of the PE and M skills,
we need to give a solution for the optimal value function
(11) which can be obtained using reinforcement learning.

IV. LEARNING HUMAN-BEHAVIOR

The cognitive set C gives numerous models and skills that
are useful to get the optimal decision making (13). Human-
behavior is supported by many intelligent techniques such as:
reinforcement learning [8], [32], deep learning [17], [26],
machine learning techniques [21], function approximators
[5], [8], and so on; with the aim of providing an ability
to learn by interacting with the actions (xt, ut) to achieve
the control task.

The first cognitive model is given by the state transition
function (2) and serves as previous knowledge for the other

cognitive models. Humans use relations between concepts
and ideas as cognitive model in such a way that it facilitates
the development of a task. Neural networks fit this cognitive
model by using pre-defined basis functions [14] to estimate a
desired performance. In this paper, neural networks are used
to estimate the value function (9).

The neural cognitive model is given by a value function
approximation (VFA). Consider the following neural approx-
imation [30]

V (et) = θ>φ(et) + ε(et) (14)

where φt = φ(et) : R2n → Rp is the activation function
vector with p neurons in the hidden layer, θ ∈ Rp is a weight
vector and εt = ε(et) is an approximation error. The gradient
of (14) satisfies

∇V = ∇φ>(et)θ +∇ε(et). (15)

Using the neural cognitive model (14) in the Hamiltonian
(10) gives

H(et, u2,t, θ) = θ>∇φt(g(xt)u2,t) + ξt = εHt (16)

where the residual error due to the approximation error εt is

εHt
= − (∇εt)> (g(xt)u2,t). (17)

The value function approximation is

V̂ (et) = θ̂>φ(et) (18)

where θ̂ are estimates of the neural weights θ. The Hamil-
tonian in terms of (18) is

Ĥ(et, u2,t, θ̂t) = θ̂>t ∇φt(g(xt)u2,t) + ξt = δt (19)

where δt is the temporal difference (TD) error due to
the value function approximation (18) [14]. The difference
between (19) and (16) is

δt = θ̃>t ∇φt(g(xt)u2,t) + εHt
(20)

where θ̃t = θ̂t − θ. The main objective of the neural
approximator is to minimize the squared TD error [23]

E =
1

2
δ2t

such that θ̂t → θ and δt → εHt
. It is used the normalized

gradient descent algorithm proposed in [23] for the neural
weights tuning as

˙̂
θt = −α∂E

∂θ̂t
= −α qt

(1 + q>t qt)
2

[
q>t θ̂t + ξt

]
(21)

where qt = ∇φ(xt)(g(xt)u2,t). This normalized version
guarantees boundedness of the activation functions.

Remark 2: The neural cognitive model emulates how hu-
mans use different tools to perform the same task. Since it
is difficult to obtain the optimal value function (11), then an
approximation is used in terms of simpler functions.

The decision making control is obtained by solving the
stationary condition ∂Ĥ/∂u2,t = 0 under the best neural
weights θ̂∗t . The optimal decision making control is

u2,t = h∗(et, θ̂
∗
t ;PE,M) = arg min

v∈U

[
ξt + θ̂∗>t qt

]
. (22)



The neural cognitive model (21) gives an approximate
solution of (11) such that the optimal decision making control
(13) is obtained. To achieve this goal, the approximation
needs an exploration term which, in this case, is given by a
PE exciting condition.

Remark 3: Convergence of the neural-cognitive model
weights is achieved under an enough exploration of the
action setA. This exploration is satisfied if qt fulfills a persis-
tently exciting (PE) condition [31]. So, the PE skill is within
the neural approximator (21), that is, qt = qt(xt, u2,t;PE).

The neural model (21) updates the weights by considering
only one sample [19]. The key idea of the experience replay
is to store more samples in a memory vector and add them to
the gradient descent update rule [12], such that it minimizes
simultaneously the actual TD error δt and the TD error of
previous samples. The experience replay skill is based on
memory, that is, humans store past experiences as knowledge
in order to facilitate decision making. Consider that the
samples are stored in a memory vector of M dimension.
Denote qk and ξk as samples of q and ξ in time instance tk,
that is,

qk = ∇φ(xtk)(g(xtk)utk) (23)
ξk = ξ(xtk , utk). (24)

The TD error δk at time instance tk is

δk = θ̂>t qk + ξk. (25)

The neural cognitive model works together with the PE
and experience replay skills and modifies the gradient de-
scent algorithm as

˙̂
θt = −α qt

(1 + q>t qt)
2

[
q>t θ̂t + ξt

]
−α

M∑
k=1

qk
(1 + q>k qk)2

[
q>k θ̂t + ξk

]
.

(26)

Theorem 1: If the learning input qt/(1+q>t qt) and the se-
quence qk/(1+qkq

>
k ) in (26) are PE, then the neural weights

θ̂t of the neural-cognition model converges exponentially to
a small bounded set; and hence θ̂t remain bounded and are
closed to their optimal values.

Proof: Consider that εHt
= 0. The update (26) can be

written in terms of the weights error θ̃t as

˙̃
θt = −α

[
qtq
>
t

(1 + q>t qt)
2

+

M∑
k=1

qkq
>
k

(1 + q>k qk)2

]
θ̃t. (27)

The term in brackets of (27) is a positive definite matrix
and hence it is easy to show that ˙̃

θt = −Atθ̃t has an
exponential solution of the form θ̃t = e−At(t−t0)θ̃t0 . On
the other hand, when εHt

6= 0, then the cognitive-neural
network has the form of ˙̃

θt = −Atθ̃t + BtεHt
, for some

bounded time-varying matrix Bt. Since the unforced system
is exponentially stable, then the forced system trajectories
are uniformly ultimate bounded (UUB) [15] and converges
exponentially to a small bounded zone if qt/(1 + qtq

>
t ) and

qk/(1 + qkq
>
k ) are persistently exciting. Subsequently the

neural weights remain bounded and are closed to the real
weights of the optimal decision making control.

Here the experience replay skill improves the exponential
convergence in a similar way as human-learning [2], i.e.,
there are used past experiences as previous knowledge to
update the neural weights.

V. SIMULATION STUDIES

In this section, the performance of the human-behavior
learning was assessed using a 2-DOF planar robot [36]. The
matrices of the 2-DOF robot were defined as

M(q) =

[
(m1 +m2)l21 + w1 + 2w2 + J1 w1 + w2

w1 + w2 w1

]

C(q, q̇) =


∂w2

∂q2
q̇2

∂w2

∂q2
(q̇1 + q̇2)

−∂w2

∂q2
q̇1 0


G(q) =

[
(m1 +m2)gl1 cos(q1) + w3

w3

]
where q1 and q2 define the joint angles of the 2-DOF robot,
mi, Ji and li stand for the mass, inertia and length of each
link i = 1, 2, g = 9.81 m/s2 is the gravity acceleration and
w1 = m2l

2
2+J2, w2 = m2l1l2 cos(q2), w3 = m2gl2 cos(q1+

q2). The links were modeled as thin bars with Ji = 1
12mil

2
i .

The robot parameters were m1 = m2 = 0.5 kg and l1 =
l2 = 0.6 m.

The activation functions were selected as the quadratic
vector in the state components as

φ(et) =
[
e21 e1e2 e1e3 e1e4 e

2
2 e2e3 e2e4 e

2
3 e3e4 e

2
4

]
.

So there were 10 neural weights θ. The weight matrices
were set as S = I4×4 and R = I2×2. The learning rate was
set to α = 10. These hyper-parameters were obtained via a
grid search until the best performances was achieved. The
desired joint space trajectory was

qd1 =
π

3
sin
(π

6
t
)
, qd2 =

π

3
cos
(π

6
t
)
,

so xdt = [qd1 , q
d
2 , q̇

d
1 , q̇

d
2 ]>. Three different experiments were

executed using different memory size, that is,M = 0,M =
5, and M = 10. A PE signal with small amplitude and high
frequency was used.

Fig. 2 and Fig. 3 show the tracking results for the proposed
cases. All cases achieve a correct realization of the desired
trajectory by considering the PE signal, the excitation of
the desired trajectory and the experience replay skill. When
M = 0, the human-behavior algorithm needs that the PE
signal be sufficient rich in order to guarantee convergence of
the estimates and hence the learning time increases. When
M = 5 and M = 10 the convergence of the solution was
improved.

A large memory M speed up convergence of the human-
behavior algorithm to the optimal/near optimal solution.
However, fast convergence could imply that the algorithm
converges to a local minima, which can be seen as the trade-
off between exploration and exploitation in RL algorithms.
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In order to see this issue, the mean squared error (MSE)
ēt =

∑N
t=0 e

2
t , was used as performance metric. Fig. 4 shows

the bar plot of the MSE. The plot show that the human-
behavior algorithm without experience replay skill has large
MSE since it converges in more time steps. On the other
hand, when M = 10 shows the better MSE performance
for the joint position q1 but not for joint position q2 because
it finds a local minima. So for control design, there is a
trade-off between the size of the memory in order to balance
the exploration and exploitation of the knowledge that was
acquired.

Fig. 5 shows the phase diagram between the joint position
states x1 and x2 of the 2-DOF robot. Here is more evident
the convergence improvement of the human-learning method
using the experience replay skill. Since the proposed method
needs bounded control input, some authors use an actor-
critic structure [12], [23] to overcome this issue. However
it increases the complexity of the neural cognitive model
by adding other neural network and extra hyper-parameters,
which is relatively undesirable due to the computational re-
sources. A large enough weight matrix R helps to normalize
the input dynamics g(xt) such that the control input remain
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0.014

Fig. 4. Mean squared error ēt

bounded.

VI. CONCLUSIONS

In this paper, the control of nonlinear systems using a
human-behavior learning is presented. The proposed learning
method finds online the solution of a HJB equation and the
optimal decision making method. The effectiveness of the
proposed human-behavior learning lies in the use of different
cognitive models and skills which help to find the best
decision making control in less time. Three cognitive models
composed by the nonlinear dynamics, desired reference and
a neural network model; and two skills given by a persistent
exciting condition and a memory vector; are used to facilitate
obtaining the solution of the optimization problem.

The use of experience replay skill improves the conver-
gence of the neural network algorithm by taking into account
more experiences at the update rule. Simulations studies
verify our approach with satisfactory results.
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