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Abstract— In this work, we propose a Model Predictive Con-
trol (MPC)-based Reinforcement Learning (RL) method for
Autonomous Surface Vehicles (ASVs). The objective is to find an
optimal policy that minimizes the closed-loop performance of a
simplified freight mission, including collision-free path following,
autonomous docking, and a skillful transition between them. We
use a parametrized MPC-scheme to approximate the optimal
policy, which considers path-following/docking costs and states
(position, velocity)/inputs (thruster force, angle) constraints. The
Least Squares Temporal Difference (LSTD)-based Deterministic
Policy Gradient (DPG) method is then applied to update the
policy parameters. Our simulation results demonstrate that the
proposed MPC-LSTD-based DPG method could improve the
closed-loop performance during learning for the freight mission
problem of ASV.

I. INTRODUCTION

Autonomous Surface Vehicles (ASVs) are widely applied for
many fields, such as freight transportation, military, search and
rescue [1], and therefore attract broad attention for scientific
and industrial researches. Various methods have been proposed
to solve the problem of operating and automating the ASV,
including path following, collision avoidance, and autonomous
docking [2], [3]. However, designing a control strategy that
could realize both collision-free path following and docking in
a freight mission with time-varying disturbances is still a topic
worth exploring. With the development of Machine Learning
(ML), Reinforcement Learning (RL)-based control strategies
are getting noticed by people, as they can exploit real data to
reduce the impact of model uncertainties and disturbances.

Deterministic Policy Gradient (DPG), as the direct RL
method, estimates the optimal policy by a parameterized
function approximator, and optimizes the policy parameters
directly via gradient descent steps of the performance [4].
Deep Neural Networks (DNNs) are very commonly used
function approximators in RL [5]. However, DNN-based RL
lacks the abilities concerning the closed-loop stability analysis,
state/input constraints satisfaction, and meaningful weights
initialization [6]. To address these problems, the perspective
of using Model Predictive Control (MPC)-based RL has been
proposed and justified in [7], i.e. it suggests using MPC as the
function approximation for the optimal policy in RL. Unlike
DNNs, MPC-based policies satisfy the state/input constraints
and safety requirements by construction, and its well-structured
property enables the stability analysis of the system.

However, for computational reasons, simple models are
usually preferred in the MPC-scheme. Hence, the MPC model
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often does not have the required structure to correctly capture
the real system dynamics and stochasticity. As a result, MPC
can deliver a reasonable approximation of the optimal policy,
but it is usually suboptimal [8]. Besides, choosing the model
parameters that best fit the MPC model to the real system does
not necessarily yield a policy that achieves the best closed-
loop performance [6]. Therefore, choosing appropriate MPC
parameters to achieve the best closed-loop performance is
extremely challenging. Nevertheless, according to Theorem 1
and Corollary 2 in [7], it can conclude that by adjusting not
only the MPC model parameters but also the parameters in the
MPC cost and constraints, the MPC scheme can, theoretically,
generate the optimal closed-loop policy even if the MPC model
is inaccurate. It is also shown that RL is a suitable candidate
to perform that adjustment. Recent researches focused on the
MPC-based RL have further developed this approach [9], [10],
[11], [12], [13].

The contribution of this work is to provide a promising
approach for a complete ASV freight mission problem. The
problem is challenging since it needs to solve the obstacle
avoidance, path following, and autonomous docking simultane-
ously, in a stochastic environment. We elaborate the proposed
MPC-based RL method in the ASV problem framework, as
well as formulate an algorithm for the MPC-LSTD-based DPG
method.

II. ASV MODEL

The 3-Degree of Freedom (3-DOF) position of the vessel
can be represented by a pose vector η = [x, y, ψ]T ∈ R3 in the
North-East-Down (NED) frame, where x is the North position,
y is the East position, and ψ is the heading angle (see Fig. 1).
The velocity vector ν = [u, v, r]T ∈ R3, including the surge
velocity u, sway velocity v, and yaw rate r, is decomposed in
the body-fixed frame. The nonlinear dynamics can be written

Fig. 1. The 3-DOF ASV model in the NED frame.
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as follows [14]

η̇ = J(ψ)ν (1a)
Mν̇ +Dν = τ + τ a, (1b)

where J(ψ) ∈ R3×3 is the rotation matrix, M ∈ R3×3 is
the mass matrix, and D ∈ R3×3 is the damping matrix (see
[15] for their specific physical meanings and values). Vector
τ ∈ R3 presents the control forces and moment empowered
by the thrusters. Vector τ a ∈ R3 is the additional forces
rendered from disturbances, e.g., wind, ocean wave and etc.
The thrust configuration is illustrated in Fig. 1. The vector
τ could be specifically written as τ = T (α)f , where f =
[f1, f2, f3]> ∈ R3 is the thruster forces vector as we consider
one tunnel thruster f1 and two azimuth thrusters f2, f3. They
are subjected to the bounds

fpmin ≤ fp ≤ fpmax, p = 1, 2, 3. (2)

Matrix T (α) ∈ R3×3 presents the thruster configuration,
written as

T (α) =

 0 cos (α2) cos (α3)
1 sin (α2) sin (α3)
lx1 T32 T33

 , (3)

where elements T32 = lx2 sin (α2)− ly2 cos (α2), and T33 =
lx3 sin (α3)−ly3 cos (α3). Constants lxi and lyi with i = 1, 2, 3
are the distances between each thruster and the cross line
of the ship’s center. Term α = [α1, α2, α3]> ∈ R3 is the
corresponding orientation vector. The angle α1 is fixed (π/2),
while α2 and α3, associated to the two azimuth thrusters, are
restricted in the range

|α2 + π/2| ≤ αmax, |α3 − π/2| ≤ αmax. (4)

A maximum angle of αmax with a forbidden sector is con-
sidered in this work to avoid thrusters 2 and 3 directly work
against each other, as shown in Fig. 1. With a sampling time
of dt, we discretize the ship system (1) as

sk+1 = F (sk,ak, τ a) , (5)

where sk =
[
η>k ,ν

>
k

]>
and ak =

[
f>k ,α

>
k

]>
are system

state and input vectors, respectively. Subscript k denotes the
physical time and F (·) is the discretized real system.

III. SIMPLIFIED FREIGHT MISSION

In this work, we consider a simplified freight mission
problem: the ASV starts from an origin A to the end B,
which is supposed to follow a designed collision-free course
and finally dock at the wharf autonomously. Note that the
transition from path following to docking is a notable point of
this problem.

A. Collision-Free Path Following

Given a reference path Pref . At time instance k, P ref
k =

[xrefk , yrefk ]>. Then path following could be thought as mini-
mizing the error l (ηk)

l (ηk) =
∥∥∥ηpk − P ref

k

∥∥∥2
2

= (xk − xrefk )2 + (yk − yrefk )2, (6)

where ηpk = [xk, yk]> contains the first two elements of ηk.
Besides, we assume obstacles of round shape. To avoid these
obstacles, the following term gn (ηk), representing the position
of the ship relative to the nth obstacle, should satisfy

(xk − ox,n)
2

+ (yk − oy,n)
2 ≥ (rn + ro)

2
, (7)

i.e.,

1−
(

(xk − ox,n)
2

+ (yk − oy,n)
2
)/

(rn + ro)
2︸ ︷︷ ︸

gn(ηk)

≤ 0, (8)

where (ox,n, oy,n) and rn are the center and radius of the nth

circular obstacle (n = 1, . . . , No), respectively. Constant ro is
the radius of the vessel and No is the number of obstacles.

B. Autonomous Docking

Docking refers to stopping the vessel exactly at the endpoint
B as well as avoiding collisions between any part of the vessel
and the quay [3]. The “accurate stop” requires not only an
accurate docking position but also zero-valued velocities and
thruster forces at the final time, i.e., we ought to minimize

h (ηk,νk,fk) = ‖ηk − ηd‖
2
2 + ‖νk‖22 + ‖fk‖

2
2 , (9)

where ηd = (xd, yd, ψd) is the desired docking position.
Successfully docking requires h (ηK ,νK ,fK) ≈ 0, where
subscript K denotes the terminal time step of the freight
mission. As for “collision avoidance”, we define a safety
operation region S as the spatial constraints for the vessel.
The operation region is chosen as the largest convex region
that encompasses the docking point but not intersecting with
the land. Thus, as long as the vessel is within the region S, no
collision will occur during docking, i.e. the following condition
should hold

ηpk ∈ S, S = {x|Ax < b}, (10)

where ηpk = [xk, yk]> describes the position of the vessel. The
matrix A and the vector b are determined by the shape of the
quay and together define the convex region S.

C. Objective Function

In the context of RL, we seek a control policy π that
minimizes the following closed-loop performance J

J(π) = Eπ

[
K∑
k=0

γkL (sk,ak)

∣∣∣∣∣ak = π(sk)

]
, (11)

where γ ∈ (0, 1] is the discount factor. Expectation Eπ is taken
over the distribution of the Markov chain in the closed-loop
under policy π. The RL-stage cost L(sk,ak), in this problem,
is defined as a piecewise function:

L =

{
l (ηk) +O (ηk) + ξ (αk) ‖ηk − ηd‖

2
2 > d

h (ηk,νk,fk) + Γ (ηk) + ξ (αk) ‖ηk − ηd‖
2
2 ≤ d,

(12)

where O (ηk) is the obstacle penalty for path following

O (ηk) =

No∑
n=1

cn ·max(0, gn (ηk) + ds), (13)



where cn > 0 is the penalty weight, constant ds > 0 is the
desired safe distance between vessel and obstacles. Therefore,
once the ship breaks the safe distance, i.e. gn (ηk) + ds > 0,
a positive penalty will be introduced to the objective function.
Function Γ (ηk) is the collision penalty for docking

Γ (ηk) = κ · (1− 1S(ηpk)), (14)

where κ > 0 is the penalty weight and 1S(·) is the indicator
function. When the ship is out of the safe region, i.e. ηpk /∈ S,
a positive penalty will be imposed in the objective function.
Function ξ (αk) is the singular configuration penalty, aiming
to avoid the thruster configuration matrix T (αk) in (3) being
singular [16]

ξ (αk) =
ρ

ε+ det
(
T (αk)W

−1T> (αk)
) , (15)

where “det” stands for the determinant of the matrix. Constant
ε > 0 is a small number to avoid division by zero, ρ > 0 is the
weighting of maneuverability, and W is a diagonal weighting
matrix. Constant d > 0 is designed to substitute the stage cost
from path following to docking at ‖ηk − ηd‖

2
2 = d, which

means that our target transits from path-following to docking
when the ship approaches the destination.

IV. MPC-BASED REINFORCEMENT LEARNING

The core idea of our proposed approach is to use a parame-
terized MPC-scheme as the policy approximation function, and
apply the LSTD-based DPG method to update the parameters
so as to improve the closed-loop performance.

A. MPC-Based Policy Approximation

Consider the following MPC-scheme parameterized with θ

min
η̂,ν̂,f̂ ,α̂,σ

θd

‖η̂N − ηd‖
2
2 + δ

·
(
hθ (η̂N , ν̂N ) + Γθ (η̂N )

)
+

ω>f σN +

N−1∑
i=0

γi
(
lθ (η̂i) + ξ (α̂i) + ω>σi

)
(16a)

s.t. ∀i = 0, . . . , N − 1, n = 1, . . . , No[
η̂>i+1, ν̂

>
i+1

]> = Fθ(η̂i, ν̂i, f̂ i, α̂i,θa) (16b)

fpmin ≤ f̂p,i ≤ fpmax, p = 1, 2, 3 (16c)
|α̂2,i + π/2| ≤ αmax, |α̂3,i − π/2| ≤ αmax, (16d)
gn (η̂i) + θg ≤ σn,i, gn (η̂N ) + θg ≤ σn,N , (16e)
σi ≥ 0, σN ≥ 0, (16f)
η̂0 = ηk, ν̂0 = νk, (16g)

where N is the prediction horizon. Arguments η̂ =
{η̂0, . . . , η̂N}, ν̂ = {ν̂0, . . . , ν̂N}, f̂ = {f̂0, . . . , f̂N−1},
α̂ = {α̂0, . . . , α̂N−1}, and σ = {σ0, . . . ,σN} are the primal
decision variables. The term θd

‖η̂N−ηd‖22+δ
· (hθ (·) + Γθ (·))

introduces a gradually increasing terminal cost as the ship
approaches the endpoint, where δ > 0 is a small constant to
avoid division by zero. The weighting parameter θd, designed
to balance the priority of path following and docking, is tuned
by RL. Note that θd is chosen to minimize the closed-loop
performance that considering both path following and docking,
although it may be suboptimal for either single problem.

Parameter θg is the tightening variable used to adjust the
strength of the collision avoidance constraints. If the value of
θg (positive) is larger, it means that the constraints are tighter
and the ship is supposed to be farther away from the obstacles.
It is important to use RL to pick an appropriate θg , since when
θg is too large, although we ensure that the ship safely avoids
obstacles, the path following error is increased. Conversely, a
smaller θg reduces the following error, but we may gain more
penalty when the vessel breaks the safe distance, as described
in (13). Note that the obstacle penalties are considered directly
as constraints (16e) in the MPC rather than as penalties in the
MPC cost, because (8) is a conservative model of the obstacle
penalty (13). Variables σi (σi = {σ1,i, . . . , σN0,i}) and σN
(σN = {σ1,N , . . . , σN0,N}) are slacks for the relaxation of
the state constraints, weighted by the positive vectors ω and
ωf . The relaxation prevents the infeasibility of the MPC in
the presence of some hard constraints.

The parameterized stage cost lθ (·), terminal cost hθ (·), and
docking collision penalty Γθ (·) in the MPC cost (16a) are
designed as follows

lθ =
∥∥∥η̂pi − P ref

i

∥∥∥2
Θl

(17a)

hθ = ‖η̂N − ηd‖
2
Θη

+ ‖ν̂N‖2Θν
(17b)

Γθ = θκ · (1− 1S(η̂pN )), (17c)

where Θl,Θη,Θν ∈ R3×3 are the weighing matrices that
are symmetric semi-positive definite. They are expressed as
Θl = (diag(θl))

2, Θη = (diag(θη))2, Θν = (diag(θν))2.
Operator “diag” assigns the vector elements onto the diagonal
elements of a square matrix. Parameter θκ is treated as a
degree of freedom for the docking collision penalty. The real
model is (5) and we assume the disturbance τ a follows a
Gaussian distribution. To address the disturbance without using
a complex stochastic model in the MPC scheme, one measure
is to use a parameter vector θa ∈ R3 to parameterize the
model as Fθ(ŝi, âi,θa). As detailed in [7], the full adaptation
of the parametrized MPC scheme (model, costs, constraints)
can compensate for that unmodelled disturbance. Overall, the
adjustable parameters vector θ is consisted as

θ = {θl,θη,θν ,θa, θκ, θd, θg}. (18)

And θ will be adjusted by RL according to the principle of
“improving the closed-loop performance”. Note that: 1. the
span of the RL (K ≈ 550) is much longer than the horizon
of the MPC (N = 60); 2. the RL cost (12) is a “switching”
function, while the MPC cost (16a) contains simultaneously
the path following and docking cost to avoid the mixed-integer
treatment of the problem; 3. the MPC model does not perfectly
match the real system. For the above reasons, having different
cost functions in the MPC scheme and RL is rational [7].
Therefore, in order to improve the closed-loop performance
of the MPC scheme as assessed by the RL cost, it can be
beneficial to parameterize the MPC cost functions, model, and
constraints. RL then adjusts these parameters according to the
principle of “improving the closed-loop performance”. From
Theorem 1 and Corollary 2 in [7], we know that, theoretically,
under some assumptions, if the parametrization is rich enough,



the MPC scheme is capable of capturing the optimal policy
π? in presence of model uncertainties and disturbances.

Importantly, the deterministic policy πθ(s) can be obtained
as

πθ(s) = u?0(s,θ), (19)

where u?0(s,θ) is the first element of u?, which is the input
solution of the MPC scheme (16).

B. LSTD-Based DPG Method

The DPG method optimizes the policy parameters θ directly
via gradient descent steps on the performance function J ,
defined in (11). The update rule is as follows

θ ← θ − α∇θJ(πθ), (20)

where α > 0 is the step size. Applying the DPG method
developed by [17], the gradient of J with respect to parameters
θ is obtained as

∇θJ(πθ) = E [∇θπθ(s)∇aQπθ
(s,a)|a=πθ

] , (21)

where Qπθ
and its inner function Vπθ

are the action-value
function and value function associated to the policy πθ,
respectively, defined as follows

Qπθ
(s,a) = L (s,a) + γE

[
Vπθ

(
s+|(s,a)

)]
(22a)

Vπθ
(s) = Qπθ

(s,πθ (s)) , (22b)

where s+ is the subsequent state of the state-input pair (s,a).
The calculations of ∇θπθ(s) and ∇aQπθ

(s,a) in (21) are
discussed in the following.

1) ∇θπθ(s): The primal-dual Karush Kuhn Tucker (KKT)
conditions underlying the MPC scheme (16) is written as

R =
[
∇ζLθ Gθ diag (µ)Hθ

]>
, (23)

where ζ = {η̂, ν̂, f̂ , α̂,σ} is the primal decision variable of
the MPC (16). Term Lθ is the associated Lagrange function,
written as

Lθ(y) = Ωθ + λ>Gθ + µ>Hθ, (24)

where Ωθ is the MPC cost (16a), Gθ gathers the equality
constraints and Hθ collects the inequality constraints of the
MPC (16). Vectors λ,µ are the associated dual variables.
Argument y reads as y = {ζ,λ,µ} and y? refers to the
solution of the MPC (16). Consequently, the policy sensitivity
∇θπθ required in (21) can then be obtained as follows ([7])

∇θπθ (s) = −∇θR (y?, s,θ)∇yR(y?, s,θ)
−1 ∂y

∂u0
, (25)

where u0 is the first element of the input, expressed as

u0 =
[
f̂
>
0 , α̂

>
0

]>
. (26)

2) ∇aQπθ
(s,a): Under some conditions [17], the action-

value function Qπθ
can be replaced by an approximator Qw,

i.e. Qw ≈ Qπθ
, without affecting the policy gradient. Such an

approximation is labelled compatible and can, e.g., take the
form

Qw (s,a) = (a− πθ (s))
>∇θπθ(s)

>︸ ︷︷ ︸
Ψ>(s,a)

w + Vv (s) , (27)

where Ψ(s,a) is the state-action feature vector, w is the
parameters vector estimating the action-value function Qπθ

and
Vv ≈ Vπθ

is the parameterized baseline function approximating
the value function, it can take a linear form

Vv (s) = Φ (s)
>
v, (28)

where Φ(s), the state feature vector, is designed to constitute
all monomials of the state with degrees less than or equal to
2. And v is the corresponding parameters vector. Now we get

∇aQπθ
(s,a) ≈ ∇aQw(s,a) = ∇θπθ (s)

>
w. (29)

The parameters w and v of the action-value function approxi-
mation (27) are the solutions of the Least Squares (LS) problem

min
w,v

E
[
(Qπθ

(s,a)−Qw(s,a))
2
]
, (30)

which, in this work, is tackled via the LSTD method (see [18]).
LSTD belongs to batch method, seeking to find the best fitting
value function and action-value function, and it is more sample
efficient than other methods. The LSTD update rules are as
follows

v = Em

{[
K∑
k=1

[
Φ(sk)(Φ(sk)− γΦ(sk+1))

>
]]−1

K∑
k=1

[
Φ(sk)L(sk,ak)

]}
, (31a)

w = Em

{[
K∑
k=1

[
Ψ(sk,ak)Ψ(sk,ak)

>
]]−1

K∑
k=1

[
(L(sk,ak) + γVv (sk+1)− Vv (sk))Ψ(sk,ak)

]}
, (31b)

where the summation is taken over the whole episode, which
terminates at K when the ship reaches the destination (i.e.
‖ηK − ηd‖

2
2 ≤ derror). The values will be then averaged by

taking expectation (Em) over m episodes.
Finally, equation (20) can be rewritten as a compatible DPG

θ ← θ − αEm

{
K∑
k=1

[
∇θπθ (sk)∇θπθ(sk)

>
w
]}

, (32)

and the proposed MPC-LSTD-based DPG method is summa-
rized in Algorithm 1.

V. SIMULATION

In this section, we show the simulation results of an
ASV freight mission problem using the introduced MPC-
based RL method. We choose the initial parameters vector as
θ0 = {0.55,3,3,1e−7, 60, 35, 0.5}, where the bold numbers
represent constant vectors with suitable dimension. Other
parameters values used in the simulation are given in Table I.



Algorithm 1: MPC-LSTD-based DPG method
Input: vessel model, objective function, initial parameters

θ0
Output: locally optimal policy πθ?

1 repeat
2 for each episode in m episodes do
3 initialize η0, ν0;
4 while ‖ηk − ηd‖

2
2 ≤ derror do

5 solve the MPC (16) and get y?;
6 calculate and record the RL stage cost

L(sk,ak) according to (12) and the
sensitivity ∇θπθ(sk) according to (25);

7 end
8 end
9 calculate v according to (31a);

10 calculate w according to (31b);
11 update θ according to (32);
12 until convergence;

TABLE I
PARAMETERS VALUES.

Symbol Value Symbol Value
γ,N, dt 1, 60, 0.5 τa, αmax N (0, 1e−3), 17π

18

f1min,max −100, 100 f2,3min,max 0, 200

ρ, ε, δ 1, 0.001, 0.001 W diag([1, 1, 1])

ω,ωf [1, 5, 5]> c1,2,3 5, 8, 8

d, ds, derror 42.5, 1, 0.5 No,m 3, 10

r0, r1, r2, r3 1, 1.4, 1.7, 1.9 ηd [21.3, 23.3, 8.4]>

η0 [0, 0, π
4
]> ν0 [0.4, 0, 0]>

Origin A

End B

q

Fig. 2. Freight shipping paths from A to B. Pref : the reference path. P1-P13:
the renewed path after each learning step.

Fig. 3. Variations of some selected MPC parameters {θ1l , θ
1
η , θ

1
ν , θκ, θd, θg}

over learning steps.

Fig. 4. Variations of the normed policy gradient ‖∇θJ(πθ)‖2 and the
closed-loop performance J(πθ) over learning steps.

Fig. 5. Variations of the error η − ηd with time under the learned policy
πθ? . Red line: the desired value.

Fig. 6. Variations of the vessel velocity ν with time under the learned policy
πθ? . Red line: the desired value.

Fig. 7. Variations of the thruster force f and thruster angle α with time
under the learned policy πθ? . Green line: the constraint value.



Figure 2 shows the prescribed reference path and the thirteen
shipping paths updated after each learning step. The last path
P13 is obtained under the final learned policy πθ? with an
episode length of K = 550. It is worth noting that, although we
say that if the parametrization is rich enough, the MPC scheme
can generate the optimal policy, this is a theoretical result. In
practice, the assumption of a “rich enough” parametrization
is typically not satisfied. Other practical issues can come in
the way of optimality such as, e.g., the local convergence of
the RL algorithm and of the solver treating the MPC scheme.
Addressing these potential issues typically requires good initial
guesses. Although these are often available in the MPC context,
we can only claim that the final learned policy πθ? obtained
from the converged parameters θ? is locally optimal. This
observation applies to most RL techniques. Following the
reference path Pref defined from the origin A to the point q,
the vessel departs from A and passes through three obstacles
to reach q. At the point q, where ‖ηk − ηd‖

2
2 = d, the vessel

transits from path following to docking. The vessel eventually
stops at the end B with zero velocities and thruster forces,
and has no collision with the quay (within the safety operation
region S) during the docking process. It can be seen that in the
first few paths (P1-P4), the ship does not follow Pref precisely,
and is relatively far away from the three obstacles when it
bypassed them. After learning, such as in the P13, the ship
follows closely the reference route, and the distance when
avoiding obstacles is also reduced.

Figure 3 shows the convergences of the MPC parameters θ
over learning steps (θ? represents the converged parameters).
Note that θ1l is the first element of θl, and the same fashion for
others. It can be seen that the initial value of θl is relatively
small, and the initial values of θη,θν , θκ, θd are relatively large.
Therefore, in the MPC cost (16a), the terminal cost weights
more than the stage cost, i.e., docking is regarded as more
important than path following. Consequently, the path following
performance is relatively poor in the initial episodes, and then
gets improved as θl increases and θη,θν , θκ, θd decrease. In
addition, the initial value of θg is large, which means that the
ship must be very far away from the obstacles. However, this
is unnecessary under the premise of ensuring the safe distance
ds. To reduce the cost, RL gradually reduces θg , and therefore
results in what we have in Fig. 2: the distance for avoiding
obstacles tends to decrease over learning.

The variations of the normed policy gradient ‖∇θJ(πθ)‖2
and the closed-loop performance J(πθ) are displayed in Fig. 4.
As can be seen, the policy gradient converges to near zero and
the performance is improved significantly over learning. Figure
5 illustrates the variations of error between the vessel pose state
η and the desired docking state ηd under the learned policy
πθ? . Figure 6 presents the variations of the vessel velocity ν
with time under the policy πθ? . The red dash lines in these
two figures represent the zero-valued reference lines. It can
be seen that both the pose error and velocity converge to the
red dash lines, which signifies a satisfactory docking. The
variations of the vessel’s thruster force f and thruster angle
α under policy πθ? are exhibited in Fig. 7. The green lines
stand for the constraint values. As can be seen, both the forces

and the angles obey their constraints, and when approaching
the endpoint, the forces decline to zero and the angles remain
constant.

VI. CONCLUSION

This paper presents an MPC-based RL method for the ASV
to accomplish a freight mission, which includes collision-
free path following, autonomous docking, and an ingenious
transition between them. We use a parameterized MPC-scheme
as the policy approximation function, and adopt the LSTD-
based DPG method to update the parameters such that the
closed-loop performance gets improved with learning. For
future works, we will further validate our proposed method by
realizing the experimental implementations.
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