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Abstracting the Sampling Behaviour of Stochastic Linear

Periodic Event-Triggered Control Systems

Giannis Delimpaltadakis, Luca Laurenti, and Manuel Mazo Jr.

Abstract

Recently, there have been efforts towards understanding the sampling behaviour of event-
triggered control (ETC), for obtaining metrics on its sampling performance and predicting its
sampling patterns. Finite-state abstractions, capturing the sampling behaviour of ETC systems,
have proven promising in this respect. So far, such abstractions have been constructed for non-
stochastic systems. Here, inspired by this framework, we abstract the sampling behaviour
of stochastic narrow-sense linear periodic ETC (PETC) systems via Interval Markov Chains
(IMCs). Particularly, we define functions over sequences of state-measurements and interevent
times that can be expressed as discounted cumulative sums of rewards, and compute bounds
on their expected values by constructing appropriate IMCs and equipping them with suitable
rewards. Finally, we argue that our results are extendable to more general forms of functions,
thus providing a generic framework to define and study various ETC sampling indicators.

1 Introduction

Event-Triggered Control (ETC), has been thoroughly studied in the past two decades [1–13]. The
vast majority of ETC research (e.g. [1–7]) has focused on improving triggering conditions and ex-
tending them to wider classes of systems. However, little attention has been paid to evaluating and
predicting ETC’s sampling behaviour. Such questions are of paramount importance, as answering
them would enable: a) deriving performance metrics and evaluating a given ETC design, and b)
scheduling traffic in networks of ETC loops.

Towards reasoning about ETC’s sampling behaviour, one approach is based on analytic tech-
niques ([8] and [9]). In [8] it is shown that, for small-enough triggering-condition parameters, in-
terevent times (intervals between consecutive events) converge to certain values or periodic patterns.
In [9], the nonlinear map describing the evolution of interevent times is studied. Despite the inter-
esting results in [8] and [9], there are certain drawbacks: a) they consider only 2-d linear systems,
b) they highly depend on which specific triggering condition is studied, and c) they cannot be easily
employed to compute ETC performance metrics in a tractable way.

A different approach is based on abstractions [10–13], where a given ETC system is abstracted by
a finite-state transition system. The set of the abstraction’s output sequences contains all sampling
patterns that can be exhibited by the ETC system. Compared to [8] and [9], abstraction-based
approaches do not focus on systems of specific dimensions and are not dependent on the given
triggering condition (except that some steps in the abstraction’s construction might vary). But
more importantly, the existing algorithms for computations over finite transition systems enable
tractable ways of predicting sampling patterns and computing performance metrics. For instance,
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as argued in [10–12], such abstractions can be used for scheduling traffic in networks of ETC loops,
while, in [13], abstractions were used to compute the minimum average interevent time of PETC
systems.

So far, such abstractions have been developed only for non-stochastic systems: [10] and [13] con-
sidered LTI ETC systems, whereas [11] addressed homogeneous systems and [12] extended previous
work to general nonlinear systems with bounded disturbances. However, for perturbed systems,
the abstractions were more conservative, due to the worst-case scenario approach that was followed.
Here, we abstract the sampling behaviour of stochastic ETC systems. Compared to non-stochastic,
and especially unperturbed, stochastic systems are more realistic. Moreover, regarding disturbances,
the probabilistic setting is less conservative, since it gives probabilistic assurances, according to
the disturbances’ probability distributions, instead of providing definitive answers on verification
questions, which are bound by the worst case.

We consider stochastic narrow-sense linear PETC (periodic ETC; periodic monitoring of the trig-
gering condition) systems and define their sampling behaviour to be the set of all possible sequences
of interevent times and state-measurements along with its induced probability measure. Reason-
ing about the sampling behaviour can be realized via defining functions over such sequences and
computing their expectations. Thus, the problem statement of this work is to compute bounds on
such expectations. For clarity, we focus on functions that are expressed as discounted cumulative
sums of rewards. Such functions can describe various sampling performance indicators, such as the
discounted sum of interevent times, quantifying how frequently the system samples. To compute
bounds on such expectations, we construct IMCs (interval markov chains; markov chains with inter-
val transition probabilities, see [14]) capturing PETC’s sampling behaviour, define appropriate IMC
state-dependent rewards, and employ the algorithms of [14] to compute their expected discounted
cumulative sums, serving as the bounds we are looking for. To compute the probability intervals, we
study the joint probabilities of transitioning from one region of the state-space to another with the
interevent time obtaining a specific value. We show that they can be reformulated as optimization
problems of integrals of Gaussians evaluated over polytopes, with their mean varying in different
polytopes; such problems have been effectively solved in [15]. Finally, we argue that our framework
is extendable to more general functions, like expected or total rewards, ω−regular properties, etc,
which can describe a whole range of sampling-behaviour properties.

Let us summarize this work’s contributions. It is the first one to abstract stochastic ETC
sampling. Compared to [10–13], it uses a completely different abstraction framework (IMCs), owing
to the need for different mathematical tools to analyze stochastic systems. The probabilities of going
from one region to another with the interevent time obtaining a specific value, which can be thought
of as reachability analysis for stochastic PETC systems, are investigated here for the first time. In
contrast to [10–12] which are written in the context of ETC traffic scheduling and to [13] which
studies the minimum average inter-event time, the formalism adopted here, introducing functions of
sampling sequences and their expectations, is more generic and can be employed to explore a wide
range of sampling behaviour properties. Finally, compared to the literature on IMC-abstractions
of stochastic systems (e.g. [15–17]), it is the first one to employ IMCs for computing bounds on
quantitative measures over trajectories, such as cumulative rewards (see Remark 5). In fact, it
is shown that these bounds are valid for all trajectories, even though the system’s state-space is
unbounded, in contrast to [15–17] which consider bounded domains.
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2 Preliminaries

2.1 Notation

The symbol N[0,s] denotes the set of natural numbers up to and including s. The n-dimensional
identity matrix is denoted by In. For any set S, denote its Borel algebra by B(S). For a set S ⊆ R

n,
denote S = R

n \ S. Given a matrix T ∈ R
m×n, denote T · S := {Tx ∈ R

m : x ∈ S}. Denote by Sk

the k-times Cartesian product S = S × . . . × S. Given x ∈ R
n, denote both the k-times Cartesian

product {x}× . . .×{x} and the kn-dimensional vector
[
x⊤ . . . x⊤

]⊤
by {x}k. Given sets Q1, Q2

and Q = Q1 ×Q2, for any q = (q1, q2) ∈ Q denote projQ1
(q) = q1 and projQ2

(q) = q2. We use the
term ‘path’ or ‘sequence’ interchangeably. Given a path ω = q0, q1, q2, . . . , denote ω(i) = qi. Given
a finite path ω = q0, . . . , qN , denote ω(−1) = qN . Finally, N (µ,Σ) denotes a Gaussian distribution
with mean µ and covariance matrix Σ.

2.2 Interval Markov Chains

Interval Markov Chains (IMCs) are finite Markov models, extending discrete-time Markov chains by
including uncertainty intervals on transition probabilities. They are often employed as abstractions
of continuous-space stochastic systems and used for verification (e.g. [15–17]).

Definition 2.1 (Interval Markov Chain (IMC)). An IMC is a tuple Simc = {Q, p0,imc, P̌ , P̂}, where:
Q is a finite set of states, p0,imc : Q → [0, 1] is a probability distribution on initial conditions, and

P̌ , P̂ : Q ×Q → [0, 1] are functions, with P̌ (q, q′) and P̂ (q, q′) representing lower and upper bounds
on the probability of transitioning from state q to q′, respectively.

For all q, q′ ∈ Q, we have P̌ (q, q′) ≤ P̂ (q, q′) and
∑

q′∈Q P̌ (q, q′) ≤ 1 ≤
∑

q′∈Q P̂ (q, q′). A
path of an IMC is a sequence of states ω = q0, q1, q2, . . . , with qi ∈ Q. Denote the set of the
IMC’s finite paths by Pathsfin(Simc). By p0,imc(q0) we denote the probability that a path’s initial
condition is q0. Given a state q ∈ Q, a probability distribution pq : Q → [0, 1] is called feasible if

P̌ (q, q′) ≤ pq(q
′) ≤ P̂ (q, q′) for all q′ ∈ Q. Given q ∈ Q, its set of feasible distributions is denoted by

Γq. We denote by D(Q) = {pq : pq ∈ Γq, q ∈ Q} the set of all feasible distributions for all states.

Definition 2.2 (Adversary). Given an IMC Simc, an adversary is a function π : Pathsfin(Simc) →
D(Q), such that π(ω) ∈ Γω(−1), i.e. given a finite path it returns a feasible distribution w.r.t. the
path’s last element.

The set of all adversaries is denoted by Π. Given a π ∈ Π, an IMC path evolves as follows:
ω(0) is sampled according to p0,imc, and at any time-step i, given ω(i) = q, π chooses a distribution
pq ∈ Γq from which ω(i+ 1) is sampled.

IMCs can be equipped with a reward function R : Q → R≥0. Given an adversary π, the

expected discounted cumulative sum of rewards along paths Eπ(
∑N

i=0 γ
iR(ω(i))), where γ ∈ [0, 1)

and N ∈ N ∪ {∞}, is well-defined and single-valued; however, due to the existence of infinite
adversaries, the IMC produces a whole set of expected values. The bounds of this set (sup

π∈Π and)
infπ∈Π Eπ(

∑

i γ
iR(ω(i))) can be computed as shown in [14]. Other tractable computations include

total or average rewards [14], verifying ω-regular properties ([15–17]), etc.

2.3 Stochastic Linear PETC Systems

Consider the following stochastic linear control system:

dζ(t) = Aζ(t)dt +Bυ(t)dt+BwdW (t),
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where: A ∈ R
n×n, B ∈ R

n×nυ , Bw ∈ R
n×nw , ζ(t) is the state of the system, υ(t) is the con-

trol input and W (t) is an nw-dimensional Wiener process on a complete filtered probability space
(Ω,F , {Ft}t≥0,Pr). Ω denotes the sample space, F a σ-algebra, {Ft}t≥0 the natural filtration and
Pr the probability measure. When the initial condition of the above stochastic differential equation
is known, say x ∈ R

n, we denote the process solving it by ζ(t;x). Initial conditions are sampled
from a probability distribution p0 : Rn → [0, 1].

In typical state-feedback sample-and-hold control, like ETC, the control input is held constant
between consecutive event time-instants ti and ti+1:

dζ(t) = Aζ(t)dt +BKζ(ti)dt+BwdW (t), t ∈ [ti, ti+1), (1)

where K ∈ R
nυ×n is the feedback gain matrix. According to PETC, event time-instants ti are

determined as follows:

ti+1 = ti + inf
{

t ∈ I : φ
(

ζ(t; ζ(ti)), ζ(ti)
)

> 0
}

(2)

where t0 = 0, I = {h, 2h, . . . , kmaxh}, h > 0 is a predefined sampling period, kmax > 0, φ(·, ·) is called
triggering function, (2) is called triggering condition and ti+1− ti is called interevent time. The state
is monitored periodically with period h, and when the triggering function is detected positive, then
an event time-instant ti+1 is defined, and the state measurements ζ(ti+1) are communicated to the
controller, which updates the control action to Kζ(ti+1). There is a forced upper-bound kmaxh on
interevent times, to prevent the system from operating in an open-loop manner indefinitely. We call
the combination (1)-(2) (stochastic) PETC system.

Interevent times are a stochastic process depending on the previously sampled state. Thus, for
interevent times, we adopt the following notation: τ(x) := inf{t ∈ I : φ(ζ(t;x), x) > 0}, where
x ∈ R

n is the previously sampled state.

Remark 1. Since (1) is time-homogeneous, reasoning in the time interval [ti, ti+1) is equivalent to
reasoning in [0, ti+1 − ti). In this work, we normally use the latter convention.

Assumption 1. We assume the following:

1. The matrix pair (A,Bw) is controllable.

2. φ(ζ(t;x), x) = |ζ(t;x) − x|∞−ǫ, where ǫ > 0 is a predefined constant.

3. The sampling period h = 1 (for ease of presentation).

Item 1 ensures that ζ(t) is a non-degenerate Gaussian random variable (see [15]). Regarding
item 2, φ is the Lebesgue-sampling function [1] with an ∞-norm instead of a 2-norm. We restrict
ourselves to this case for clarity, but our results are extendable to more general functions.

Remark 2. Modifying the proof of [7, Theorem 1], it can be proven that the triggering function
from Assumption 1 guarantees mean-square practical stability for PETC system (1)-(2), under mild
assumptions. The proof is omitted due to space limitations.

3 Problem Formulation

The stochastic PETC system (1)-(2) can exhibit different sequences of communicated measurements
and interevent times (ζ(t0), 0), (ζ(t1; ζ(t0)), t1), (ζ(t2 − t1; ζ(t1)), t2 − t1), . . . , depending on initial
conditions and random events. We denote the set of all possible such sequences of infinite length by:

Y = {(x0, 0), (x1, s1), (x2, s2), . . . | xi ∈ R
n, si ∈ N[0,kmax]}
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We call Y the sampling behaviours of the PETC system. There is a well-defined probability measure
PrY over B(Y) (according to [18]), induced by Pr and p0 as follows:

PrY(ω(0) ∈ (X0, s)) =







∫

X0

p0(x)dx, if s = 0

0, otherwise

(3)

PrY(ω(i+ 1) ∈ (Xi+1, si+1)|ω(i) = (xi, si)) =

Pr(ζ(si+1;xi) ∈ Xi+1, τ(xi) = si+1) (4)

where ω ∈ Y, s, si, si+1 ∈ N[0,kmax], xi ∈ R
n, X0, Xi+1 ⊆ R

n and we use (X0, s) (or (Xi+1, si+1)) to
denote the set {(x, s) : x ∈ X0}. Also, let us denote Q := R

n × N[0,kmax].
Studying the PETC system’s sampling behaviour can be formalized by defining functions f :

Y → R and computing their expectation EPrY(f(ω)). Here, we focus on functions that can be
described as cumulative discounted rewards:

f(ω) =

∞∑

i=0

γiR(ω(i)) (5)

where R : Q → [0, Rmax] is a bounded reward function. With a suitable choice of R, EPrY(f(ω)) can
describe various indicators on PETC’s sampling behaviours and performance:

Example 1: Consider the reward R((x, s)) = s. Then, f(ω) represents the discounted sum
of interevent times over paths. The expectation EPrY(f(ω)) provides a useful metric on the PETC
system’s sampling performance: the bigger it is, the bigger are expected to be the interevent intervals,
which implies that the expected sampling performance is “better”.

Example 2: Consider the reward R((x, s)) = min(α
1

|x|+ε
+ βs,Rmax), with α, β, ε > 0, which

penalizes paths that overshoot far from the origin or exhibit a high sampling frequency. Again, a
bigger EPrY(f(ω)) implies better performance.

Unfortunately, exactly computing expectations EPrY(f(ω)) is infeasible: among others, how does
one obtain PrY and integrate over an uncountable set of paths Y? This motivates the following
problem statement:

Problem Statement. Consider the PETC system (1)-(2), its sampling behaviours Y along with
PrY, and let Assumption 1 hold. Given a reward R : Q → [0, Rmax] and its discounted cumulative
sum f(ω) =

∑

i γ
iR(ω(i)), with γ ∈ [0, 1), compute (non-trivial) lower/upper bounds on EPrY(f(ω)).

In what follows, the problem is addressed by abstracting the sampling behaviour Y and PrY by
an appropriate IMC Simc, defining suitable reward functions R,R over its states, and calculating
infπ∈Π Eπ(

∑

i γ
iR(ω(i))) and sup

π∈Π Eπ(
∑

i γ
iR(ω(i))).

Remark 3. Our results are extendable to more general functions f(ω), such as expected or total
rewards, ω-regular properties, etc. (by modifying our proofs in accordance to e.g. [14, 15]). Thus,
leveraging our results, we could compute bounds on: expectation and variance of interevent times,
probability of certain sampling patterns arising, etc.

4 Abstracting the Sampling Behaviour via IMCs

Typically, to abstract a system with a continuous state-space via a finite-state IMC, the following
steps are followed (e.g. [15–17]): 1) the state-space is partitioned into a finite number of sets, each
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of which is represented by a state of the IMC, 2) if the state-space is unbounded, then one set of the
partition is unbounded as well, and its corresponding IMC-state is made absorbing, and 3) given
two states q1, q2 of the IMC, with q1 non-absorbing, the transition probability intervals from q1 to
q2 are computed such that they bound the probability Pr(ω(i + 1) ∈ q2|ω(i) = x1) for all x1 ∈ q1,
where ω refers to paths of the original system.

Here, we employ the same ideas. Consider a compact polytope X ⊂ R
n, m convex polytopes Ri

such that
m⋃

i=1

Ri = X ⊂ R
n and the following IMC:

Simc = (Qimc, p0,imc, P̌ , P̂ ), (6)

where:

• Qimc = (QR × N[0,kmax]) ∪ {xuns}, where QR = {R1,R2, . . . ,Rm} and xuns is an indicator for

all states of the PETC system belonging in X.

• p0,imc : Qimc → [0, 1] is such that:

p0,imc(q) =







∫

projQR
(q)

p0(x)dx, if q 6= xuns and

projN[0,kmax]
(q) = 0

∫

X

p0(x)dx, if q = xuns

0, otherwise

(7)

• P̌ and P̂ are such that ∀(R, s), (R′, s′) ∈ Qimc \ {xuns}:

P̌
(

(R, s), (R′, s′)
)

≤ min
x∈R

Pr(ζ(s′;x) ∈ R′, τ(x) = s′)

P̂
(

(R, s), (R′, s′)
)

≥ max
x∈R

Pr(ζ(s′;x) ∈ R′, τ(x) = s′)

P̌
(

(R, s), xuns

)

≤

min
(x,s′)∈R×N[0,kmax]

Pr(ζ(s′;x) ∈ X, τ(x) = s′)

P̂
(

(R, s), xuns

)

≥

max
(x,s′)∈R×N[0,kmax]

Pr(ζ(s′;x) ∈ X, τ(x) = s′)

(8)

and for all q′ ∈ Qimc:

P̌ (xuns, q
′) = P̂ (xuns, q

′) =

{

1, if q′ = xuns

0, otherwise
(9)

To show how Simc abstracts the sampling behaviours Y, let us relate paths of the IMC to paths in Y.
First, consider any path ω = (x0, 0), (x1, s1), . . . ∈ Y for which 6∃ j ≥ 0 such that xj ∈ X . Such a path
is related to a path ω̃ in the IMC, which is such that xi ∈ projQR

(ω̃(i)) and si = projN[0,kmax]
(ω̃(i))

for all i. Next, consider paths ω = (x0, 0), (x1, s1), . . . ∈ Y for which ∃j ≥ 0 such that xj ∈ X and
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xi /∈ X for all i < j. These are related to IMC paths ω̃, which are such that xi ∈ projQR
(ω̃(i)) and

si = projN[0,kmax]
(ω̃(i)) for all i < j, and ω̃(i) = xuns for all i ≥ j. Note that xuns is absorbing, and

all paths in Y that enter X (even those that eventually return to X) are mapped to IMC paths that
enter xuns at the same time and stay there.

Remark 4. X is assumed to be a polytope and Ri to be convex polytopes in order to facilitate
optimization techniques employed later to determine P̌ and P̂ .

The above IMC, with a suitable choice of rewards, can be used to address the problem at hand:

Theorem 4.1. Consider a reward function R : Q → [0, Rmax] and f(ω) as in (5). Consider the
IMC Simc from (6). Define reward functions R,R : Qimc → [0, Rmax]:

R(q) =







min
(x,s)∈q

R((x, s)), if q 6= xuns

min
(x,s)∈Q

R((x, s)), if q = xuns

R(q) =







max
(x,s)∈q

R((x, s)), if q 6= xuns

max
(x,s)∈Q

R((x, s)), if q = xuns

(10)

Then, the following holds:

inf
π∈Π

Eπ(
∞∑

i=0

γiR(ω̃)) ≤ EPrY(f(ω)) ≤ sup
π∈Π

Eπ(
∞∑

i=0

γiR(ω̃))

Proof. Below, we treat xuns as the set X × N[0,kmax]; whenever y ∈ X × N[0,kmax] we write y ∈ xuns.
Also, for si, si+1 ∈ N[0,kmax], xi ∈ R

n, Xi+1 ⊆ R
n, denote T ((Xi+1, si+1)|(xi, si)) := PrY(ω(i + 1) ∈

(Xi+1, si+1)|ω(i) = (xi, si)) (T is often called transition kernel). With abuse of notation, we write
∫

Q
T (dy′|y), for some y ∈ Q, to denote

∑

s′∈N[0,kmax]

∫

Rn T ((dx′, s′)|y).

We focus on the lower bound, as the upper bound’s proof follows similarly. It suffices to show
that ∃π ∈ Π such that:

Eπ(

∞∑

i=0

γiR(ω̃)) ≤ EPrY(f(ω)) (11)

We constrain our search to history-independent (Markovian) adversaries, which can be defined as
π : Qimc → D(Qimc). Given that a Markovian adversary, given a state q ∈ Qimc, returns a feasible
distribution π(q) = pq ∈ Γq, by abuse of notation we write π(q, q′) = pq(q

′) for any q′ ∈ Qimc.
Define the so-called value functions :

V (y) = R(y) + γ

∫

Q

V (y′)T (dy′|y), ∀y ∈ Q

V
π
(q) = R(q) + γ

∑

q′∈Qimc

V
π
(q′)π(q, q′), ∀q ∈ Qimc

V (y) is the expected value of f(ω) given that ω(0) = y: V (y) = EPrY(f(ω)|ω(0) = y). Similarly,
V

π
(q) = Eπ(

∑

i γ
iR(ω̃(i))|ω̃(0) = q) (see [19]). Thus:

EPrY (f(ω)) =

∫

Q

V (y)Pr(ω(0) ∈ y)dy

Eπ(
∞∑

i=0

γiR(ω̃(i))) =
∑

q∈Qimc

V
π
(q)p0,imc(q)

7



By incorporating (3) and (7) to the above equations, we get:

EPrY(f(ω)) =

∫

Rn

V ((x, 0))p0(x)dx =

=

∫

X

V ((x, 0))p0(x)dx +
∑

R∈QR

∫

R

V ((x, 0))p0(x)dx
(12)

Eπ(

∞∑

i=0

γiR(ω̃(i))) =

= V
π
(xuns)

∫

X

p0(x)dx +
∑

R∈QR

V
π
((R, 0))

∫

R

p0(x)dx

(13)

Observe that if we prove that there exists a π such that the following two conditions hold:

V
π
(xuns) ≤ inf

y∈Q
V (y), (14)

∀q ∈ Qimc \ xuns : V
π
(q) ≤ min

y∈q
V (y) (15)

then from (12)-(13) we have that (11) holds and the proof is complete. Consider the following
adversary for all q ∈ Qimc:

π(q, q′) =







∫

q′
T (dy′|y⋆(q)), if q 6= xuns

1, if q = q′ = xuns,

0, otherwise

where y⋆(q) = argminy∈q V (y). Indeed π ∈ Π, since P̌ (q, q′) ≤ π(q, q′) ≤ P̂ (q, q′) and
∑

q′∈Qimc
π(q, q′) =

1 for all q ∈ Qimc. We will show that π satisfies (14) and (15), thus completing the proof. We use
the fact that V

π
(q) is the fixed-point of the following value iteration [14]:

V
π,0(q) = R(q),

V
π,i+1(q) = R(q) + γ

∑

q′∈Qimc

V
π,i(q

′)π(q, q′), ∀q ∈ Qimc

Let us now prove (14) first, via induction. Observe that:

V
π,0(xuns) = R(xuns) ≤ inf

y∈Q
V (y)

due to (10) and the fact that V (y) ≥ R(y) for all y ∈ Q. Now, if we assume that V
π,i(xuns) ≤

infy∈Q V (y), we have:

V
π,i+1(xuns) = R(xuns) + γ

∑

q′∈Qimc

V
π,i(q

′)π(xuns, q
′)

= R(xuns) + γV
π,i(xuns)

≤ inf
y∈Q

R(y) + γ inf
y∈Q

(V (y))

∫

Q

T (dy′|y0), ∀y0

≤ inf
y0∈Q

(

R(y0) + γ

∫

Q

V (y′)T (dy′|y0)
)

= inf
y∈Q

V (y),

8



where in the second step we used that π(xuns, xuns) = 1 and π(xuns, q
′) = 0 for any q′ 6= xuns,

in the third step we used that
∫

Q
T (dy′|y0) = 1 for any y0, and in the fourth step we used that

infy∈Q(V (y)) ≤ V (y′) for all y′ ∈ Q. Thus, by induction, we have proven (14).
Finally, let us prove (15), again by induction. Again from (10), we have that V

π,0(q) ≤
miny∈q V (y) for all q ∈ Qimc \ xuns. If we assume that V

π,i(q) ≤ miny∈q V (y) for all q ∈ Qimc \ xuns,
then we have for all q ∈ Qimc \ xuns:

V
π,i+1(q) = R(q) + γ

∑

q′∈Qimc

V
π,i(q

′)π(q, q′)

= R(q) + γ
∑

q′∈Qimc

V
π,i(q

′)

∫

q′
T (dy′|y⋆(q))

≤ min
y∈q

R(y)+

+ γ
∑

q′∈Qimc

min
y∈q′

(V (y))

∫

q′
T (dy′|y⋆(q))

≤ R(y⋆(q)) + γ
∑

q′∈Qimc

∫

q′
V (y′)T (dy′|y⋆(q))

= V (y⋆(q)) = min
y∈q

V (y)

where in the third step we used that V
π,i(q) ≤ miny∈q V (y) for all q ∈ Qimc \ xuns by the induction

assumption and V
π,i(xuns) ≤ infy∈Q V (y) by our earlier proof, in the fourth step we used that

miny∈q′(V (y)) ≤ V (y′) for all y′ ∈ q′ and miny∈q R(y) ≤ R(y⋆(q)), and in the fifth step we used
that y⋆(q) = argminy∈q V (y). The proof is complete.

Remark 5. To the authors’ knowledge, this is the first time, in the literature of IMC-abstractions
of stochastic systems, that IMCs are employed to compute bounds on quantitative measures over a
system’s trajectories, such as cumulative rewards. In addition, we highlight that the bound holds even
in the case where the system’s state-space is unbounded and an unbounded set of it (the set X) is
abstracted by an absorbing state xuns. That is, the bound does take into account paths of the system
that eventually leave X and certainly contribute to the expectation of the cumulative reward.

Remark 6. The above proof does not provide a recipe to compute the bounds on EPrY(f(ω)), since
this would assume knowledge of y⋆(q); it only shows that there exists an adversary π ∈ Π such
that Eπ(

∑

i γ
iR(ω̃(i))) ≤ EPrY (f(ω)). It has been shown in [14] that the bound (sup

π∈Π and)
infπ∈Π Eπ(

∑

i γ
iR(ω̃(i))) can be obtained via a modified value iteration algorithm, with polynomial

time-complexity. However, an important aspect that our proof shows is that value iteration provides a
valid bound on EPrY(f(ω)) in every time step i; thus, the algorithm can be terminated in an arbitrary
number of steps, still providing sound results.

Thus, given Simc, by defining rewardsR,R as described in Theorem 4.1, and calculating infπ∈Π Eπ(
∑

i γ
iR(ω̃(i)))

and sup
π∈Π Eπ(

∑

i γ
iR(ω̃(i))) via the algorithm proposed in [14], we obtain non-trivial bounds on

EPrY (f(ω)). To construct Simc, what remains is to determine P̌ , P̂ , according to (8). This is carried
out in the next section.
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5 Transition Probability Intervals

In this section, we derive P̌ and P̂ , according to (8). In what follows, for s ∈ N[0,kmax], we denote

ζ(s;x) = ζs,x and ζ̃s,x =
[
ζ⊤1,x ζ⊤2,x . . . ζ⊤s,x

]⊤
.

Let us investigate equation (8), which indicates that we are interested in quantities (maxx∈R

or) minx∈R Pr(ζs′,x ∈ S, τ(x) = s′), where S = R′ or S = X . The law of conditional probabilities
implies:

min
x∈R

Pr(ζs′,x ∈ S, τ(x) = s′) ≥

min
x∈R

Pr(ζs′,x ∈ S|τ(x) = s′) ·min
x∈R

Pr(τ(x) = s′)
(16)

and conversely for maxx∈R. Hence, to determine P̌ and P̂ according to (8), it suffices to minimize
and maximize over R the quantities Pr(τ(x) = s′) and Pr(ζs′,x ∈ S|τ(x) = s′). For conciseness, we
assume that S is a compact polytope, since in the case of the unbounded S = X we can write:

Pr(ζs′,x ∈ X|τ(x) = s′) = 1− Pr(ζs′,x ∈ X |τ(x) = s′),

and focus on Pr(ζs′,x ∈ X |τ(x) = s′) with X being compact. In what follows, it is shown that
optimizing over R the quantities Pr(τ(x) = s′) and Pr(ζs′,x ∈ S|τ(x) = s′), can be reformulated as
optimizing the integral of a Gaussian evaluated over a polytope, with its mean varying in another
polytope. Such optimization problems have been effectively solved in [15]. We focus on minimization,
as maximization is the same up to a reversal of inequalities.

The following proposition, stemming from Assumption 1, is instrumental in our construction, as
it enables computing probabilities of the type Pr(ζ̃s,x ∈ S) as an integral of a Gaussian distribution
over S:

Proposition 5.1. It holds that ζ̃s,x ∼ N (µζ̃s,x
,Σζ̃s,x

), with µζ̃s,x
=

[
E(ζ⊤1,x) E(ζ⊤2,x) . . . E(ζ⊤s,x)

]⊤
,

Σζ̃s,x
=






Cov(1, 1) Cov(1, 2) . . . Cov(1, s)
...

... . . .
...

Cov(s, 1) Cov(s, 2) . . . Cov(s, s)






where E(ζ(t;x)) = [eAt(I +A−1BK)−A−1BK]x,

Cov(t1, t2) =

∫ min(t1,t2)

0

eA(t1−s)BwB
⊤
w eA

⊤(t2−s)ds

Proof. Application of the expectation and covariance operators to the solution of linear SDE (1)
(see [20, pp. 96]).

5.1 Probabilities on Interevent Times

Here, we focus on the second term of (16): minx∈R Pr(τ(x) = s); i.e., the probability that the
interevent time is s when starting from R. Define the set:

Φ(x) := {y ∈ R
n : φ(y, x) ≤ 0} = {y ∈ R

n : |y − x|∞≤ ǫ},

which is such that φ(ζ(t;x), x) > 0 ⇐⇒ ζ(t;x) /∈ Φ(x), where φ(·) is the triggering function. Hence,
for any s < kmax, since the probability that the interevent time is s is equal to the probability that
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the triggering function was negative at times 1, 2, . . . , s− 1 and positive at s, we can write:1

Pr(τ(x) = s) = Pr(ζ̃s,x ∈ Φs−1(x)× Φ(x)) =

Pr(ζ̃s−1,x ∈ Φs−1(x))− Pr(ζ̃s,x ∈ Φs(x))

The above implies:
∀s < kmax : min

x∈R
Pr(τ(x) = s) ≥

min
x∈R

Pr(ζ̃s−1,x ∈ Φs−1(x))−max
x∈R

Pr(ζ̃s,x ∈ Φs(x))
(17)

For s = kmax, we have Pr(τ(x) = kmax) = Pr(ζ̃kmax−1,x ∈ Φkmax−1(x)), which implies:

min
x∈R

Pr(τ(x) = kmax) = min
x∈R

Pr(ζ̃kmax−1,x ∈ Φkmax−1(x)) (18)

From (17) and (18), observe that it suffices to focus on quantities Pr(ζ̃s,x ∈ Φs(x)) for any s < kmax,
in order to determine minx∈R Pr(τ(x) = s) or minx∈R Pr(τ(x) = kmax). The proposition below
paves the way for computing such probabilities:

Proposition 5.2. For all s ∈ {1, 2, . . . , kmax} and x ∈ R
n:

Pr(ζ̃s,x ∈ Φs(x)) =

∫

Φs(0)

N (z|µ1(s, x),Σζ̃s,x
)dz,

where:

µ1(s, x) =








eA(I +A−1BK)−A−1BK − In
e2A(I +A−1BK)−A−1BK − In

...
esA(I +A−1BK)−A−1BK − In







x

Proof. See Appendix.

Using the above proposition, we arrive at the following:

Corollary 5.3 (to Proposition 5.2). The following holds:

min
x∈R

Pr(ζ̃s,x ∈ Φs(x)) = min
y∈µ1(s,R)

∫

Φs(0)

N (z|y,Σζ̃s,x
)dz (19)

where µ1(s,R) is the convex polytope: µ1(s,R) = {y ∈ R
sn : y = µ1(s, x), x ∈ R}. The same holds

for maxx∈R.

Proof. It is a straightforward result of Proposition 5.2. Note that µ1(s,R) is a convex polytope in
R

sn, since µ1(s, x) is linear on x and R is a convex polytope.

Optimization problem (19) requires optimizing the integral of a Gaussian over a polytope (that
is, Φ(0)), with its mean varying in a convex polytope (that is, µ1(s,R)). Similar problems have
been effectively solved in [15]: for obtaining the optimal points yopt ∈ µ1(s,R), certain KKT-like
conditions have been derived, facilitating optimization. To compute the optimal value of the integral
at yopt, we could: either 1) apply a whitening transformation T transforming Σζ̃s,x

to identity (such a

T always exists), under/over-approximate T ·Φs(0) by hyperrectangles, and compute the integral by
breaking it down to uni-dimensional integrals (as done in [15]), or 2) use simple numerical techniques
to obtain bounds on it.

1With a slight abuse of notation, Φ0(x) = {x}.
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Remark 7. A different way of solving optimization problem (19), is by regular convex-optimization
methods. By modifying the proof of [21, Proposition 2], we can prove that the integral (19) is log-
concave on y (omitted, due to space limitations).

Remark 8. Compared to [15], where min
x∈R

Pr(ζ̃s,x ∈ S) was determined for any fixed polytope S, here

an added difficulty is that we have to compute min
x∈R

Pr(ζ̃s,x ∈ Φs(x)); that is, a probability of landing

in a set varying w.r.t. the optimization variable x. This issue has been circumvented, by employing
the affinity of Φ(x) w.r.t. x (see proof of Proposition 5.2).

Once we have computed maxx∈R Pr(ζ̃s,x ∈ Φs(x)) and minx∈R Pr(ζ̃s−1,x ∈ Φs−1(x)) as described
above, we readily obtain values for minx∈R Pr(τ(x) = s), with s < kmax, and minx∈R Pr(τ(x) =
kmax), by (17) and (18) respectively. Similar steps are followed for maxima.

5.2 Conditional Probabilities on States at Event Times

To complete the computation of the transition probability intervals, what is left is determining the
first term of (16): min

x∈R
Pr(ζ(s;x) ∈ S|τ(x) = s). For any set Z ⊆ R

n and any l ∈ N[0,s] , we adopt

the shorthand notation:

Pr(Z|Φl(x)) ≡ Pr(ζs,x ∈ Z|ζ̃l,x ∈ Φl(x))

Pr(Z|Φl−1(x) × Φ(x)) ≡

Pr(ζs,x ∈ Z|ζ̃l,x ∈ Φl−1(x)× Φ(x))

Proposition 5.4. For any s < kmax, the following holds:

min
x∈R

Pr(ζs,x ∈ S|τ(x) = s) ≥

1

(1−minx∈R Pr(Φ(x)|Φs−1(x)))
·

[

min
x∈R

Pr(S|Φs−1(x))−

max
x∈R

Pr(S|Φs(x)) ·max
x∈R

Pr(Φ(x)|Φs−1(x))

]

(20)

For s = kmax, the following holds:

min
x∈R

Pr(ζs,x ∈ S|τ(x) = kmax) = min
x∈R

Pr(S|Φkmax−1) (21)

Similar results hold for maxx∈R Pr(ζs,x ∈ S|τ(x) = s).

Proof. See Appendix.

Equations (20) and (21) indicate that it suffices to focus on quantities Pr(S|Φl(x)) and Pr(Φ(x)|Φl(x)),
with l < kmax. The following result provides the probability distribution giving rise to these condi-
tional probabilities:

Corollary 5.5 (to Proposition 5.1). Consider the random variable ξ = (ζs,x|ζ̃l,x = v), where l ∈
N[0,s], and v ∈ R

ln. Then ξ ∼ N (µξ(x, v),Σξ), where:

µξ(x, v) = E(ζs,x)− Σζs,x,ζ̃l,x
Σ−1

ζ̃l,x
(v − E(ζ̃l,x))

Σξ = Σζs,x − Σζs,x,ζ̃l,x
Σ−1

ζ̃l,x
Σζ̃l,x,ζs,x

,
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where Σζs,x = Cov(s, s), Σζ̃l,x
, E(ζ̃l,x) and E(ζs,x) obtained from Proposition 5.1, and Σζs,x,ζ̃l,x

=

Σ⊤
ζ̃l,x,ζs,x

=
[
Cov(s, 1) Cov(s, 2) . . . Cov(s, l)

]
.

Proof. Straightforward application of the well-known formula for conditional normal distributions.

Based on the above proposition, we get the following:

Proposition 5.6. For any l ∈ N[0,s]:

min
x∈R

Pr(S|Φl(x)) ≥ min
y∈P1

∫

S

N (z|y,Σξ)dz

min
x∈R

Pr(Φ(x)|Φl(x)) ≥ min
y∈P2

∫

Φ(0)

N (z|y,Σξ)dz
(22)

where P1 and P2 are the polytopes:

P1 = {y ∈ R
n : y = µξ(x, v + {x}l), x ∈ R, v ∈ Φl(0)}

P2 = {y ∈ R
n : y = µξ(x, v + {x}l)−x, x ∈ R, v ∈ Φl(0)}

The same holds for maxx∈R.

Proof. See Appendix

All individual terms in (20) and (21) can be obtained via solving optimization problems like (22),
which can be solved similarly to (19). As soon as we determine all such terms, we obtain a lower
bound on minx∈R Pr(ζs,x ∈ S|τ(x) = s). Finally, now that both quantities on the right hand-side of

(16) have been computed, we obtain P̌ and P̂ as described right below (16), and the construction of
Simc is complete.

6 Conclusion and Future Work

We have abstracted the sampling behaviour of stochastic linear PETC systems via IMCs. Specifically,
we have constructed IMCs and corresponding suitable rewards, that can be employed for computing
bounds on expectations of functions of sequences of state-measurements and interevent times, which
can be expressed as discounted cumulative sums of rewards. We have demonstrated that such
functions can express various sampling performance indicators, and argued that our results are
extendable to more general functions, encoding total or average rewards, ω−regular properties, etc.
Unfortunately, numerical examples have been omitted, due to space limitations. Future work will
focus on the following: a) considering more general functions and sampling indicators, b) endowing
the IMCs with actions, enabling scheduling of ETC traffic in networks with probabilistic safety
guarantees, c) extending to more general classes of systems and triggering functions, and d) providing
extensive experimental results.
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Appendix

Proof of Proposition 5.2. Φ(x) is affine on x: Φ(x) = Φ(0) + {x}, where ‘+’ here denotes
Minkowski sum. Employing Proposition 5.1:

Pr(ζ̃s,x ∈ Φs(x)) =

∫

Φs(x)

N (z|µζ̃s,x
,Σζ̃s,x

)dz

=

∫

Φs(0)+{x}s

N (z|µζ̃s,x
,Σζ̃s,x

)dz

=

∫

Φs(0)

N (z|µζ̃s,x
− {x}s

︸ ︷︷ ︸

µ1(s,x)

,Σζ̃s,x
)dz

Proof of Proposition 5.4. From the law of total probability:

Pr(S|Φs−1(x)) =

= Pr(S|Φs−1(x) × Φ(x)) · Pr(Φ(x)|Φs−1(x))+

Pr(S|Φs(x)) · Pr(Φ(x)|Φs−1(x))

= Pr(S|Φs−1(x) × Φ(x)) · (1− Pr(Φ(x)|Φs−1(x)))+

Pr(S|Φs(x)) · Pr(Φ(x)|Φs−1(x))

Thus:

Pr(ζs,x ∈ S|τ(x) = s) =

Pr(S|Φs−1(x) × Φ(x)) =
1

(1− Pr(Φ(x)|Φs−1(x)))
·

·

[

Pr(S|Φs−1(x)) − Pr(S|Φs(x)) · Pr(Φ(x)|Φs−1(x))

]

It is then clear how (20) is derived. Deriving (21) is straightforward.

Proof of Proposition 5.6. By Corollary 5.5, we have:

Pr(ζs,x ∈ S|ζ̃l,x = v) =

∫

S

N (z|µξ(x, v),Σξ)dz

Thus:

min
x∈R

Pr(S|Φl(x)) = min
x∈R

Pr(ζs,x ∈ S|ζ̃l,x ∈ Φl(x)) ≥

min
(x,v)∈R×Φl(x)

∫

S

N (z|µξ(x, v),Σξ)dz =

min
(x,v)∈R×Φl(0)

∫

S

N (z|µξ(x, v + {x}l),Σξ)dz =

min
y∈P1

∫

S

N (z|y,Σξ)dz
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where we made the change of variables: y = µξ(x, v + {x}l). Similarly:

min
x∈R

Pr(Φ(x)|Φl(x)) ≥

min
(x,v)∈R×Φl(0)

∫

Φ(x)

N (z|µξ(x, v + {x}l),Σξ)dz =

min
(x,v)∈R×Φl(0)

∫

Φ(0)

N (z|µξ(x, v + {x}l)− x,Σξ)dz =

min
y∈P2

∫

Φ(0)

N (z|y,Σξ)dz

Since µξ(x, v−{x}l) is linear on both x and v (see Corollary 5.5), then P1,P2 are polytopes.
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