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Abstract— Synchronized data provide unprecedented oppor-
tunities for inferring voltage frequencies and rates of change
of frequencies (ROCOFs) across the buses of a power system.
Aligned to this goal, this work puts forth a novel framework for
learning dynamics after small-signal disturbances by leveraging
the tool of Gaussian processes (GPs). We extend results on
inferring the input and output of a linear time-invariant
system using GPs to the multi-input multi-output setup by
exploiting power system swing dynamics. This physics-aware
learning technique captures time derivatives in continuous time,
accommodates data streams sampled potentially at different
rates, and can cope with missing data and heterogeneous levels
of accuracy. While Kalman filter-based approaches require
knowing all system inputs, the proposed framework handles
readings of system inputs, outputs, their derivatives, and
combinations thereof on an arbitrary subset of buses. Relying
on minimal system information, it further provides uncertainty
quantification in addition to point estimates for dynamic grid
signals. The required spatiotemporal covariances are obtained
by exploring the statistical properties of approximate swing
dynamics driven by ambient disturbances. Numerical tests
verify that this technique can infer frequencies and ROCOFs
at non-metered buses under (non)-ambient disturbances for a
linearized dynamic model of the IEEE 300-bus benchmark.

I. INTRODUCTION

Maintaining the stability of power systems requires know-
ing frequency oscillations across the grid. Due to the high
penetration of distributed and renewable energy resources,
power systems may experience increased oscillations. On the
other hand, modern devices (such as the frequency distur-
bance recorders (FDRs) comprising the frequency monitor-
ing network (FNET) [1], [2]) can collect time-synchronized
power grid measurements (frequency, voltage magnitude,
voltage phase angle) across the grid and relay them over the
Internet for processing on a centralized server. Since FDRs
are installed at the distribution level, their voltage phase
readings are susceptible to local injection fluctuations and
arbitrary shifts caused by transformers, yet frequency read-
ings could help predict and control system instabilities [3].
Reliable estimates of frequency excursions and their acceler-
ations are also instrumental towards realizing load frequency
control [4]. Nonetheless, frequency measurements are not
available at all buses, while the available data streams may
be sampled at different rates or even include missing entries
due to communication failures, and computing ROCOFs as
time differences is sensitive to measurement noise.
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The existing literature on inferring power system dynamics
can be broadly classified into data- and model-based meth-
ods. Data-based methods typically engage synchrophasor
measurements to learn the system’s dynamic states. For
example, missing entries from PMU data streams can be
recovered via the low-rank plus sparse decomposition of the
PMU data matrix pursued in [5]. If all PMU data is lost for
one or more consecutive times, a robust matrix completion
approach stacking data in a Hankel matrix shows promise
to estimate the lost signal [6], [7]. Arranging synchrophasor
readings in higher-order tensors rather than matrices could
potentially impute data over prolonged communication fail-
ures via tensor factorization [8]. Nonetheless, data-based
techniques cannot extrapolate on non-metered buses and
ignore any information on the dynamic system model.

Dynamic state estimation (DSE) aims at inferring the
power system states using both a system model and mea-
surements processed typically through a Kalman filter (KF);
see [9] for a comprehensive review. Plain KFs are optimal
estimators that adopt a linear system model, while nonlinear
power system dynamics can be handled through KF variants,
such as the extended [10], [11]; the unscented [12], [13];
and ensemble KFs [14], [15]. By and large, KF-based DSE
solutions operate on a localized fashion assuming each
bus is connected to an infinite bus, and thus ignore the
dynamic correlation among generators and loads [16], [17].
KFs operate on data collected over uniformly sampled time
intervals, which renders them vulnerable to missing data.
DSE approaches approximate continuous differential equa-
tions with discrete finite differences. Reference [18] suggests
a function basis expansion to predict the local frequency
under again a localized single-bus state-space model using
expectation maximization and prediction error minimization
algorithms. The work in [19] uses physics-informed deep
neural networks to find frequencies for a single-machine
infinite bus model.

Synchrophasor readings can be used to infer more coarse
dynamical system information, such as locating the sources
of oscillations. The latter task can be accomplished by com-
paring the arrival time of traveling waves [20]; by measuring
the dissipated energy of power flows [21], [22]; or via robust
principal component analysis [23]. Yet these methods require
all buses to be monitored.

In a nutshell, existing methods for inferring power system
oscillations cannot extrapolate to other buses, presume uni-
form sampling rates, and cannot naturally deal with missing
data. In this paper, we aim at inferring the voltage frequencies
and acceleration across buses and time instances using the
powerful toolbox of GPs. We consider a centralized esti-



mation scheme in which system operators collect frequency
and/or ROCOF measurements on a subset of buses and
times possibly at different sampling rates. Depending on
which dynamic grid quantities are measured and which are
wanted, one can envision various application scenarios, such
as al) Estimating system frequencies and/or ROCOFs at non-
metered buses to ensure stability; a2) Predicting frequencies
and ROCOFs at monitored buses; or a3) Imputing missing
values from an FDR data stream.

The contribution of this work is twofold. First, introduce
GP modeling to learning power system frequencies and
ROCOFs. This provides a comprehensive learning paradigm
for processing data streams with different sampling rates and
missing data, extrapolating to non-metered buses, obviating
the need for approximating ROCOFs from finite differences,
and providing a complete pdf description in addition to point
estimates. Second, extend the idea of GP modeling linear
dynamical systems to the MIMO setting by exploring an
approximate homogeneous model for swing dynamics driven
by ambient disturbances and utilizing its statistical properties
to build physically meaningful covariances for the GP model.

Notation: Column vectors (matrices) are denoted by lower-
(upper-) case boldface letters. Operator dg(x) returns a
diagonal matrix with x on its main diagonal. Symbol (-)"
stands for transposition, matrix Iy is the N x N identity
matrix, £ = Z—f denotes time differentiation, and [E is the
expectation operator. Notation x ~ N (p,X) means x is
drawn from a multivariate Gaussian distribution with mean
p and covariance 3.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a power system with N buses comprising set
N. The dynamic behavior of the power system is captured
by a set of nonlinear differential-algebraic equations. Un-
der small-signal analysis and certain simplifications, power
system dynamics can be approximated by a second-order
multi-input multi-output (MIMO) linear time-invariant (LTT)
system described by the swing equation [24, Ch. 3]

Mw +Dw+ L0 =p (1)

where vectors 8 = [0, ... On]T, w = 0, and p =
[p1 ... pn]T collect respectively the deviations of nodal
voltage angles, voltage frequencies, and active power injec-
tions from their nominal steady-state values. We henceforth
drop the term deviations for brevity. Vector w collects the
related ROCOFs. Matrices M := dg({M,,}_,) and D :=
dg({D,}N_,) carry the per-generator inertia and damping
coefficients. Matrix L is the (reduced) negative Jacobian
matrix of active power injections with respect to voltage an-
gles evaluated at the current operating point. Within standard
approximations, matrix L is assumed symmetric and positive
semi-definite (psd); see [25]. Note that the dynamic model
in (1) involves only buses hosting generators as load buses
have been eliminated via Kron reduction [26].

The task of inferring oscillations dealt with in this work
can be abstractly posed as: Knowing model (1) and given
measurements of frequencies and/or ROCOFs at different

buses and times, estimate frequencies and ROCOFs at non-
metered buses and times. The proposed learning framework
can accommodate different power systems monitoring tasks.
For example, one can infer oscillations at non-metered buses;
whereas for metered buses, one can impute missing fre-
quency data, predict future values, or provide more reliable
estimates of ROCOFs from frequency measurements.

The proposed framework is built upon a physics-aware sta-
tistical model for power system oscillations using Gaussian
processes (GPs). Gaussian processes have previously been
adopted for learning in single-input single-output (SISO) LTI
systems [27], or differential equations evolving across time
and/or continuous spatial dimensions [28]. Leveraging the
particular properties of power systems oscillations, we put
forth a GP-based Bayesian model for learning under the
MIMO LTI system setup of (1). Before presenting our model,
let us briefly review GPs.

A GP is a random process with the additional property
that any collection of a finite number of its samples forms a
Gaussian random vector [29, Ch.1]. Take for instance a time
series z(t) and two sets of time indices 77 and Ta. If 2(¢) is
a GP, the two vectors z; and z, collecting the samples over
71 and 75 are jointly Gaussian or
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Now suppose one may wish to estimate z, given an imple-

mentation of z;. From (2), the conditional pdf of z5 given
z1 is Gaussian with mean and covariance [30, Ch. 6.4]

(3a)

(3b)

Elzo|z1] = p + B By (21 — py)
COV[Z2|Z1] = 222 — 22121_112;1.

Equation (3a) provides the minimum mean square error
(MMSE) estimate of zy given z;, while the covariance
in (3b) quantifies its uncertainty. Judiciously selecting the
parameters for the Gaussian distribution of z is obviously
important. The mean vector is usually set to zero, while
the covariance matrix takes the parametric form of a kernel
function as E[z(t)z(t')] = k(¢,t'); see [30]. The Gaussian
kernel k(t,t') = e #(=1)* for B > 0 is a popular choice
for learning processes z(t) that are known to be smooth.

Granted a kernel function, applying GP learning to
power system oscillations is straight-forward: Stack all fre-
quency/ROCOF measurements in z;, gather the unknown
quantities in zg, and apply (3) to obtain point estimates and
confidence metrics. These steps are depicted in Figure 1. The
key challenge here is in selecting meaningful covariances or
equivalently kernel functions. In doing so, two observations
are in order: First, we seek spatiotemporal kernels as the
processes at hand evolve both across time and the spatial
dimension of finitely many buses. Second, one should exploit
the fact that the involved processes are related through time-
differentiation and the swing dynamics. We pursue these two
objectives by considering an approximate model for ambient
dynamics as detailed next.
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Fig. 1. Workflow for inferring frequencies/ROCOFs.

III. DESIGNING COVARIANCES UNDER HOMOGENEOUS
AMBIENT DYNAMICS

To design the covariances required in modeling frequency
oscillations as GPs, we resort to the particular setting of
swing dynamics driven by ambient disturbances and over
buses with a homogeneous inertia-damping model. We com-
mence with the latter by postulating the next assumption.

Assumption 1. The inertia and damping coefficients are
homogeneous across buses, i.e., D = yM for a given v > 0.

This approximation is reasonable since such coefficients
scale roughly proportionally to the power rating of each
generator [31]. Assumption 1 has been frequently adopted
for studying power system dynamics [32], [33]. From As-
sumption 1, the MIMO LTI system of (1) decomposes into a
system of IV separable SISO LTI eigen-systems. The novel
idea here is to first model each SISO eigen-system using
GPs, and then linearly combine the eigen-states to arrive at
a statistical model for the original MIMO system of (1).
Starting with the decomposition, we paraphrase the next
claim from [25] and [33] for completeness.

Proposition 1. Consider matrix Ly, = M-2LM—1/2
and its eigenvalue decomposition Ly; = VAV, Under
Assumption 1, the swing dynamics of (1) are equivalent to

y+w+Ay =x “)
under the state and input transformations
y =V MY20 and x=V M~ /?p. (5)

Proof. Matrix Ly, is symmetric psd since L is symmetric
psd. Therefore, its eigenvectors are orthonormal or V'V =
VVT = Iy. Moreover, its eigenvalues {)\;}~,, placed in
the main diagonal of A, satisfy 0 = A\; < Ay < ... < Ap.
This is because L is known to be a weighted Laplacian of
the power grid graph [26]. If the grid is connected, then L
has a single zero eigenvalue and the remaining eigenvalues
are positive [32]. The claim carries over to Ly, due to the
congruence transformation Ly, = M~Y2LM~1/2 If D =
~vM, the equivalence of (1) with (4) follows by substituting
0 = M~/2Vy and p = M'Y/2Vx provided by (5) in (1),
and premultiplying by VT M~—1/2, O

Because A is diagonal, the MIMO LTI system of (4) is
decomposed into the N SISO eigen-systems

Ui vy +Nyi =@, i=1,...,N (6)

where \; > 0 is the ¢-th eigenvalue of L;;. We term y;
an eigen-frequency or eigen-state and x; an eigen-input. As
discussed in [25], [34], and [33], the transfer function of
eigen-system ¢ with respect to state ¢;(t) is
5

2+ys+ N
The first eigen-system corresponding to A\; = 0 is first-
order, and the remaining ones are second order. It is not
easy to verify they are all stable. Heed that if rather than
1;, we select y; as the state, the first eigen-system becomes
marginally unstable. This is an additional reason we chose
(eigen)-frequencies as the system states.

To apply a GP model on eigen-states, we need to describe
the spatiotemporal covariance E[y; (¢ + 7)y;(¢)] for all ¢ and
jeN,andt+ 7 and t € T. To do so, we focus on
ambient oscillations occurring when the swing equation is
continuously driven by small-magnitude random variations
in generation and demand at all buses. Ambient oscillations
occur under normal conditions and thus correspond to the
majority of observed frequency data. They are typically
attributed a white noise profile across time and buses with
variances scaling proportionally to generator ratings as de-
scribed next; see [25] and references therein.

Hi(s) = )

Assumption 2. Ambient disturbances are zero-mean random
processes with covariance E[p(t + 7)p' ()] = eM6(7),
where §(7) is the Dirac delta function and € > 0 is a given
constant.

Under this statistical model for ambient disturbances, we
next compute the spatiotemporal covariances of eigen-states
by adopting a result from [25]. It is worth noticing that
Assumption 2 can be waived as demonstrated in [35], which
generalizes the current work. Excluding A\; = 0, we assumed
4X\; >~y for all i = 2,..., N, although over-damped eigen-
systems can be handled similarly.

Proposition 2. Under Assumption 2, the covariance of
eigen-states is

Ely(t+7)y " (t)] = dg ({ki()}) (8)
where k1(7) = %e‘"’“' and fori=2,...,N
ki(1) = Bie V1™V 2 cos(2m fi| 7| + s) )

with f; = \/[A = 3/(47); Bi = §,/ gz + =7 and
1; = arctan (ﬁ)

Proof. Under Assumption 2, the covariance of the eigen-
inputs can be easily derived as

E[x(t +7)x" (t)] = VIM~Y2E[p(t + 7)p ' (t)]M~Y/?V
= VI M Y2MM~Y/2V§(7)

= elo(7). (10)

Because the eigen-inputs are uncorrelated and the eigen-
systems are decoupled, the eigen-states are uncorrelated with
each other. Moreover, since each eigen-system ¢ is driven



by zero-mean white noise, its output y;(¢) is wide-sense
stationary with mean zero and covariance k;(7) = E[g; (¢ +
7)yi(t)] that can be computed as the convolution

ki(T) =€ hi(T) * hy(—7) % 6(T).

Here h;(7) is the impulse response of eigen-system i com-
puted as the inverse Laplace transform of H;(s) in (7)

hi(t) = Aje "2 cos(2m fit + i )u(t)

where A; = /1+ ﬁ and wu(t) being the unit step
function. Interestingly, the convolution ¢ h;(7) * h;(—7)
yields (9) as shown in [25], [34]. O

Having captured the first- and second-order statistics of
eigen-states, we can now transition to the original space
of power system frequencies via the transformation w =
M~1/2Vy. Frequency oscillations are apparently zero-mean
and their covariance can be easily computed from (8) as

Elw(t+ mw' (t)] = M~ Y2V dg ({ki(7)}) VI M~1/2,

Y
This covariance provides an explicit form for the kernel
function & ((n,t1), (m,t2)) = Elw, (t1)wm(t2)], which can
be evaluated as the (m, n)-th entry of the matrix on the right-
hand side (RHS) of (11) upon setting 7 = ¢; — t5. Note that
the kernel function k; exhibits shift-invariance in the sense
that k;(¢1,t2) = ki(t1 —t2). This is why we have oftentimes
abused notation and denoted k; as taking a single-argument.
The covariance of (11) applies to noiseless readings of
system frequencies. In practice, the collected frequency data
are corrupted by zero-mean Gaussian measurement noise
with variance afL per bus. Then, the RHS of (11) should
be appended a dg({o2}Y_;)d(7) term.

It should be emphasized that if ambient inputs are Gaus-
sian distributed, eigen-states and hence original states (fre-
quencies) are Gaussian as well. Then GPs become the natural
choice. A GP model however can still be used when swing
dynamics are driven by non-Gaussian ambient disturbances
or non-ambient disturbances (e.g., deterministic inputs of
impulse- or step-type caused by generator or line trips).! We
elaborate on this in the next section, which reviews how GPs
extend to the time derivatives of random processes.

IV. COVARIANCES UPON TIME DIFFERENTIATION

So far, we have presented a statistical model assuming
that both vector z; of observations and vector z, of wanted
quantities in (2)—(3) involve only frequencies. An appealing
property of GPs is that time differentiation of a GP yields a
GP. Therefore, our GP model for frequencies can be easily
modified to yield a GP model for ROCOFs. This is important
as it enables including available ROCOF measurements in z;
and/or estimating ROCOFs by having them in zs.

To explain this key feature of GPs, we adopt the alternative
interpretation of GPs provided in [27]. One can postulate

1Our numerical tests considered ambient and non-ambient disturbances,
both under a non-homogeneous ineertia/damping swing model.

that each eigenstate g;(t) can be expressed as a linear
combination of K fixed basis functions {¢¥(¢)} | as [30]

K
Gi(t) =D wiek(t) =w/o,(t), i=1,...,.N (12)
k=1

where ¢, (t) := [¢p}(t) --- ¢K(¢)]" is a mapping from ¢ to
RX and w; is a vector of unknown coefficients. Following a
Bayesian approach, we further postulate that w; is random
with prior distribution w; ~ N(0,Ix). We are interested
in the joint probability density function (pdf) for samples of
¥;(t) collected at times 7 := {¢1,...,¢r}, and stacked in
vi = [9i(t1) -~ 9:(tp)]". From (12), it follows that y; =
®;w; for the T x K matrix ®; := [¢;(t1) - ¢;(tr)]".
Because w; is Gaussian, vector y; becomes Gaussian too.
It is not hard to verify that y; ~ A(0,K;) where K; =
®,®' » 0. Since the latter holds for any collection of
sampling instances 7, signal y;(¢) is a GP. If we assume
E[Wiwﬂ = 0 for j # ¢ and that matrix K; is Toeplitz with
entries dictated by (9), then (12) agrees with the modeling
of Section III. Observe also that its (¢, k)-th is

(Kilew = ki(te — tr) = @] (te);(tx)
with the kernel function k;(t; — i) defined in (9).
If y;(t) is provided by (12), its time derivative is §j;(t) =
w, ¢,(t). And because w; is Gaussian, the random process

7i(t) is also a GP. If vector y; collects the samples of j;(t)
over T, its covariance matrix is

Efy:y] = ®Eww/]®] = 0,8 =K,

13)

(14)

where ®; is the element-wise time derivative of ®;. Inter-
estingly, matrix K; := ®;® relates to K; as
Kilew = & (t)d(tr)
_ 0 7
= 34,00, &; (te)di(te)
_ Pki(te, ty)
o Oty 0ty

The first equality stems from the definition of K, the second
from the definition of time differentiation, and the third one
because k;(te,tx) = @; (te)d;(tx). The cross-covariances
E[§;y; ] can be computed likewise as E[§;y, | = ®;®] =
K, whose (¢, k)-th entry would be %f‘e’t’“).

In a nutshell, eigen-ROCOFs can be modeled as zero-
mean GPs with covariances obtained by differentiating the
related kernel functions. Based on these GP models, it is
straightforward to arrive at a GP model for the original
ROCOFs & = M~/2Vy similar to (11). Having modeled
frequencies and ROCOFs as GPs, we can utilize the Bayesian
inference of (3) to estimate frequencies and ROCOFs at non-
metered buses and times.

In some applications, one might be interested in a par-
ticular frequency band of power system frequencies. Recall
that the term power system frequencies {w, (t)}2_; refers in
fact to the time-domain signal of interest here. For example,
inter-area oscillations typically correspond to the frequency
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content of w,, (¢) in the range of 0.1-0.8Hz [24, Ch. 12]. As
indicated by (7), each eigen-system ¢ exhibits either a low-
pass or band-pass behavior around its resonance frequency
fi. If the focus lies on a particular band, the eigen-systems
with out-of-band resonant frequencies can be ignored and the
observed signals can be passed through bandpass filters. In
other words, filtered frequency measurements can be approx-
imated as @ = M~'/2V pyp + n, where n is measurement
and modeling noise; yp is the subvector of y collecting the
eigen-states with in-band resonant frequencies; and matrix
Vp samples the associated eigenvectors (columns of V).
To reduce the computational complexity of the proposed
learning scheme, matrix V should be replaced by Vp
in (11). Another advantage of such filtering is that having to
infer fewer eigen-states means that learning can be conducted
using fewer metered buses.

V. NUMERICAL TESTS

The novel GP-based learning framework was evaluated
using synthesized data on the IEEE 300-bus power system
benchmark, which was Kron-reduced to a 69-bus system
upon eliminating load buses [26]. Generator parameters were
obtained from [36], so that Assumption 1 on homogeneity
was actually not met. To build the postulated covariances,
we need to know (M,~,L). We chose v = 1111\?[11 and
L was set to the B-matrix obtained from MATPOWER’s
function makeJac. Although covariances were derived pre-
suming homogeneous inertia-damping coefficients, power
systems dynamics data were generated using the non-
homogeneous (M, D) parameters from the benchmark. We
converted the swing equation to its state-space representation
using MATLAB’s ss function, and solved given input p(t)
using the ode45 command. Dynamics were simulated at
a time resolution of 1 ms, but sampled and processed
at the reporting rate of 15 samples per second according
to the IEEE C37.118.1-2011 standard [37]. Synthesized
frequency readings were corrupted by zero-mean additive
white Gaussian noise (AWGN) with standard deviation of
0.01 rad/s to comply with the maximum frequency errors
allowed by [37]. Benchmark data and the developed code
can be found at https://github.com/manajalali/
GP4GridDynamics.
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Fig. 3. ROCOEF estimate at bus 34 under ambient disturbances.
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Fig. 4. Frequency estimate for bus 36 under ambient disturbances with
metered buses selected at random.

We first evaluated the proposed GP framework under am-
bient disturbances with covariance E[p(t)p " (t)] = 0.01-M.
Focusing on inter-area oscillations, we filtered frequency
measurements using MATLAB’s filtfilt function. The
filter was designed to maintain the K = b5 eigen-states
with resonant frequencies f;’s falling within 0.1-0.8Hz. We
assumed frequencies were being collected at M = 20 out
of the 69 buses. Metered buses were selected based on the
placement scheme proposed in [38], which aims at maxi-
mizing the minimum eigenvalue of the posterior covariance
matrix when estimating yp by row-sampling the linear-
Gaussian model & = M~/ 2V pyp + n. The non-metered
frequency deviations and ROCOFs were estimated using (3).
The 4o uncertainty interval was computed by taking the
square root of the diagonal entries of (3b). Figure 2 and 3
depict the estimation results respectively for the frequency
and ROCOF at a non-metered bus. The results confirm
that the GP framework can successfully infer oscillations
under ambient disturbances even when Assumption 1 on
inertia/damping homogeneity is waived. To study the effect
of meter placement, we repeated the previous test by select-
ing M = 20 metered buses at random. Figure 4 shows the
frequency estimation outcome. The results demonstrate that
the sensor placement does not significantly affect the point
estimation of the GP paradigm. However, the uncertainty
interval was increased.

We also analyzed the capability of the GP paradigm to
predict system states. Unlike the previous tests, we did not
focus on inter-area oscillations but used the raw frequency
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Fig. 6. Estimated frequencies at buses 1 and 63 of the 69-bus system under
a non-ambient disturbance (a fault near bus 1).

measurements from 60 randomly selected buses across the
grid. We used the frequencies observed from these buses
during 7 seconds to predict the frequencies at non-metered
buses for the next 7 seconds. Figure 5 demonstrates how
uncertainty increases as we advance further in the future.
In this final test, we evaluated the proposed scheme under
non-ambient dynamics, thus waiving both assumptions under
which covariances were derived. To generate a non-ambient
setup, we simulated a generator trip on bus 1 using an
impulse function. Further, we assumed that bus 1 at which
the generator trip has occurred is not metered. Figure 6
depicts the performance of the GP paradigm for estimating
frequencies at buses 1 and 63. The results confirm that
although the proposed GP framework was formulated for
ambient disturbances, it applies also to other settings.

VI. CONCLUSIONS AND FUTURE WORK

A novel method for learning power system frequencies
and ROCOFs using GPs has been put forth. The required
spatiotemporal covariances have been derived upon leverag-
ing the statistical properties of ambient dynamics under an
approximate rendition of the swing equation. The proposed
framework can accommodate different sampling rates, miss-
ing data, extrapolate dynamics at non-metered buses, and
estimates ROCOFs in a parametric fashion without resorting
to finite differences. The point estimates are endowed with
a complete pdf characterization, which can be instrumental
in detecting and identifying bad, erroneous, and/or attacked

data. Numerical tests on a non-homogeneous power system
benchmark corroborated the efficacy of the proposed scheme
in extrapolating and predicting frequencies and ROCOFs
under ambient and non-ambient disturbances. This work sets
the foundations for interesting research directions, including
real-time implementations, parameter estimation, and modal
analysis. Utilizing the GP estimation paradigm to infer
voltage angles and power deviations would be useful for
fault identification. Finally, exploring more detailed gener-
ator models and using other measurements, such as field
voltages, could improve observability and enhance frequency
estimation.
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