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Abstract— We consider linear resource sharing problems
with multiple agents. Agents are heterogeneous, with hetero-
geneity modelled by a tuple of parameters taking value accord-
ing to an underlying probability distribution, and share a fixed
resource amount. We provide an evaluation of a vital indicator
for the correct operation of the agents, namely, the probability
that the optimal resource share alters in case of a new agent
arrival. We view this problem under a data driven lens, and
provide a purely a-posteriori and prior-independent character-
ization of the above mentioned probability by exploiting recent
developments in the so called scenario approach theory. The
proposed framework is demonstrated on an economic dispatch
example in power systems, where agents can be thought of as
generating units participating in the power market.

I. INTRODUCTION

Resource sharing problems where multiple agents seek
an optimal way to share a budget while satisfying their
individual constraints appear in various engineering problems
ranging from power systems [1], [2], to robotics and sensor
networks [3], [4]. Despite the intense research activity in
solving such problems in a computationally efficient manner
by means of decentralized and distributed methodologies
(see, e.g., [5]–[13]), a remaining challenge is assessing the
sensitivity of the solution to a resource sharing problem when
it comes to new agent arrivals, as discussed in [2] in the
context of demand side management. The aim is determining
the capacity of a multi-agent system in terms of the critical
number of agents beyond which the arrival of a new agent
does not have any effect on the share of resources which
remains unaltered.

We focus on the particular class of multi-agent resource
sharing problems that can be encoded by means of a linear
program subject to equality budget constraints. This is a vast
class, encompassing e.g. problems arising in the application
domains outlined above, [1], [2], as well as the class of linear
production processes that are encountered in cooperative
game theory, [14], [15]. The amount of resource to be
shared is fixed and agents are considered to be heteroge-
neous, with heterogeneity modelled by a tuple of parameters
encompassing each agent’s contribution to the linear cost
and the constraints, and take values according to a fixed
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but possibly unknown multivariate probability distribution.
A finite population of agents participating in the resource
sharing problem is thus instantiated upon a multi-extraction
of these parameters from the underlying distribution. Once
the solution to the problem corresponding to a given agent
population is determined, it might be that the arrival of a new
agent either affects the computed optimal resource share, or
leaves this unaffected. Since agents are random, in the sense
that they are parameterized by a certain parameter tuple, the
effect of a new agent arrival can only be probabilistically
computed.

Preliminary results towards this direction were provided
in [16], but without considering any upper bound on the
agents’ decision vectors determining their contribution to
the resource sharing problem. Here, we extend these results
by introducing local upper-limit constraints to be present in
the resource sharing problem, with these limits constituting
an additional random parameter that contributes to agents’
heterogeneity. Accounting for these constraints when char-
acterizing the probability that an optimal resource sharing
solution remains unaltered upon a new agent arrival is,
however, far from being trivial and requires a new theoretical
analysis line.

To address this problem, we view it under a data driven
lens and provide a confidence interval for a probabilistic
sensitivity index given by the probability that the optimal
resource share changes upon the arrival of a new agent.
Such a result is based on a combination of tools from linear
programming, duality theory, and the so called scenario
approach, [17], [18], [19], especially the scenario approach
with constraint relaxation, [20], [21]. However, the standard
scenario approach theory is based on the existence of a
certain subset of the samples with an a priori fixed cardi-
nality that produces the same solution that is obtained when
all the samples are employed. The presence of upper-limit
constraints in the resource sharing problem considered in
this paper results in this cardinality to be increasing with
the number of agents (which corresponds to uncertainty
scenarios in our context), hence making the standard scenario
approach theory inapplicable. To this end we move away
from the a priori analysis that was pursued in [16], and rather
follow an a posteriori route, exploiting the recent “wait-and-
judge” developments of the scenario approach, [22], [23],
[20]. This allows us to obtain a tight quantification of the
probability that the optimal resource share changes upon
the arrival of a new agent based on the value taken by
an observable and easy to compute quantity, which is the
number of agents that are actually utilized in the current



solution.
The proposed framework is demonstrated on an economic

dispatch example in power systems. This entails dispatching
the generating units so that a given load is served at the
minimum cost. Such a problem directly fits in the proposed
setting, where generating units play the role of agents par-
ticipating in the power market and the load plays the role of
the resource to be shared.

The remainder of the paper unfolds as follows. Section
II states the resource sharing program under study, while
Section III states our main result, i.e., the provision of upper
and lower bounds on the probability that the solution to
the resource sharing problem under study changes upon
the arrival of a new agent. Section IV provides a detailed
application of our methodology to the problem of economic
dispatch in power systems. Section V concludes the paper
and provides directions for future work. Proofs for all
mathematical statements can be found in [24].

II. MATHEMATICAL FRAMEWORK

The multi-agent optimal resource sharing problems con-
sidered in this paper are as follows:

Pm : min
{xi∈Rni}mi=1

m∑
i=1

(ci)>xi (1)

subject to: xi ≥ 0, i = 1, . . . ,m,
m∑
i=1

Aixi = b,

xi ≤ di, i = 1, . . . ,m,

where m ∈ N+ denotes the number of agents. For all i =
1, . . . ,m, let ci ∈ Rni

, di ∈ Rni

and Ai ∈ Rp×ni

. Moreover,
for all i = 1, . . . ,m, xi ∈ Rni

denotes the vector of decision
variables associated to agent i, while b ∈ Rp denotes the
total amount of p different resources to be shared among
agents. Row r of each Ai returns the consumption of the r-
th resource corresponding to a unitary value of the decision
variables xi of agent i; (ci)>xi is the cost associated to xi,
while di is an upper limit imposed to the value that can be
taken by xi.

Problem Pm then allocates the resources to various agents
by instantiating their decision variables so as to minimize the
global cost while satisfying the constraints. These are: the
non-negativity constraints xi ≥ 0, the budget type constraint∑m
i=1A

ixi = b, and the upper-limit constraints xi ≤ di,
which are all meant component-wise. Note that, possibly,
ni 6= nj for i 6= j.

Note that Pm in (1) is not a linear program in standard
form, [25], due to the presence of the upper-limit constraints.
It could be brought to standard form via the introduction
of additional slack variables, [25, Section 1.1]; however,
the number of coupling budget-type constraints would then
be proportional to the number of agents m. We prefer to
show the upper-limit constraints explicitly since this offers
additional interpretation to our results. Moreover, note that
the budget constraints are assumed to be equalities; the case

of inequality constraints can be captured by introducing
additional slack variables as performed in [24].

In Pm each agent i, i = 1, . . . ,m, is fully characterized
by the tuple δi = (ni, ci, di, Ai). Here, we assume that δi,
i = 1, . . . ,m, are independent and identically distributed
(i.i.d.) samples of a random quantity δ = (n, c, d, A) defined
over a generic probability space (∆,D,P). As (∆,D,P)
models the unknown population from which agents arise,
P is supposed to be unknown too. It should be noted
that P corresponds to the joint probability distribution of
the elements of (n, c, d, A); in the particular case where
all agents have decision vectors of the same length, then
the marginal probability of n will be concentrated to that
value. Given the i.i.d. assumption, the collection {δi}mi=1 is
distributed according to the product measure Pm.

Under this setting, Pm becomes a random linear program,
with the number of agents corresponding to the number
of realizations of the uncertain tuple (n, c, d, A) that have
instantiated Pm. We impose the following assumption.

Assumption 1 (Feasibility and uniqueness): For any
m ∈ N+, the linear program Pm in (1) is feasible and
admits a unique minimizer almost surely with respect to
Pm.

III. CHARACTERIZATION OF THE SENSITIVITY OF THE
SOLUTION TO THE ARRIVAL OF A NEW AGENT

Suppose that a new agent characterized by δ̄ = (n̄, c̄, d̄, Ā)
joins the resource sharing problem, and let x̄ ∈ Rn̄ denote its
corresponding decision vector. The resulting linear program
Pm+ for the (m+ 1)–agent problem is as follows:

Pm+ : min
{xi∈Rni}mi=1,x̄∈Rn̄

m∑
i=1

(ci)>xi + c̄>x̄ (2)

subject to: xi ≥ 0, i = 1, . . . ,m, x̄ ≥ 0,
m∑
i=1

Aixi + Āx̄ = b,

xi ≤ di, i = 1, . . . ,m, x̄ ≤ d̄.

Let x = [(x1)> . . . (xm)>]> ∈ R`, with ` =
∑m
i=1 n

i, be
the vector of all decision variables of all agents in Pm in
(1). Analogously, x+ = [x> x̄>]> ∈ R`+n̄ is the vector of
the decision variables of Pm+ in (2). The optimal solutions to
Pm and Pm+ are denoted by x? and x◦+ = [(x◦)> (x̄◦)>]>,
respectively. Thanks to Assumption 1, x? and x◦+ are almost
surely, with respect to Pm+1, uniquely defined.

The optimal solution to Pm+ in (2) can either be such that:
(a) x̄◦ = 0, in which case we must have x◦+ = [(x?)> 0>]
because, otherwise, if x◦+ = [(x◦)> 0>] 6= [(x?)> 0>], then
x◦ would achieve a strictly smaller cost for Pm in (1) than its
optimal solution x?, or (b) x̄◦ 6= 0 and x◦+ 6= [(x?)> 0>], in
which case we have that the optimal value of Pm+ improves
over that of Pm because [(x?)> 0>] is always feasible for
Pm+ .



For a resource sharing problem with m agents, our ob-
jective is to quantify how likely it is that the arrival of a
new agent improves the optimal solution achieved by the
initial m agents alone. More formally, given that the new
agent is characterized by a stochastic tuple δ̄ = (n̄, c̄, d̄, Ā),
we are interested in quantifying the probability with which
x◦+ 6= (x?, 0), i.e., P{δ̄ : x◦+ 6= (x?, 0)}, which then
serves as a probabilistic sensitivity index. It must be noticed,
however, that P{δ̄ : x◦+ 6= (x?, 0)} cannot be directly
computed, since P is not known (remember that P models
an unknown population). The evaluation of P{δ̄ : x◦+ 6=
(x?, 0)} therefore must proceed along a different route.

To this purpose, observe that, by considering the depen-
dence (which is not explicitly shown to avoid notational
clutter) of x? and x◦+ on the random sample {δi}mi=1, the
quantity of interest P{δ̄ : x◦+ 6= (x?, 0)} can be regarded
as a random variable defined over the product probability
space (∆m,Dm,Pm). Hence, we will provide upper and
lower bounds on P{δ̄ : x◦+ 6= (x?, 0)}, that will hold
with confidence measured with respect to Pm. We impose
in addition the following assumption.

Assumption 2 (Non-degeneracy): We assume that for any
m ∈ N+:

1) For all i = 1, . . . ,m, di > 0.
2) At any feasible point for Pm in (1), no more than `

constraints are active almost surely.
3) For any vector λ ∈ Rp,

P{δ = (n,c, d,A) ∈ ∆ : ∃j ∈ {1, . . . , n}
such that [c> + λ>A]j = 0} = 0, (3)

where [ · ]j denotes the j–th element of its argument.
Assumption 2 imposes certain non-degeneracy conditions.

In particular, part 1 excludes the case of degenerate agents
with xi being forced to be equal to zero. Part 2 implies that
Pm in (1) is non-degenerate in the sense of [25, Definition
2.10]. The condition of part 3 implies that for any given
λ ∈ Rp, the probability that λ belongs to the boundary of
the affine constraints c>+λ>A ≤ 0 is zero. In other words,
these affine constraints, parameterized by the elements c
and A of δ, do not accumulate over the same point at
their boundaries with the exception of zero probability cases
only. Such a condition appears also in [20], and is invoked
in the proof of Theorem 1. Both conditions 2 and 3 in
Assumption 2 are quite mild provided that δ = (n, c, d, A)
is generically distributed with no concentrated mass in the
marginal distributions of c, d, and A.

Fix now any β ∈ (0, 1) and for any k = 0, 1, . . . ,m− 1,
consider the following polynomial equation in the variable t
(see [20, Theorem 4]),(

m

k

)
tm−k − β

2m

m−1∑
i=k

(
i

k

)
ti−k

− β

6m

4m∑
i=m+1

(
i

k

)
ti−k = 0, (4)

and for k = m consider the polynomial equation

1− β

6m

4m∑
i=m+1

(
i

k

)
ti−m = 0. (5)

As shown in [20], for any k = 0, 1, . . . ,m − 1, (4) has
exactly two solutions denoted as t(k), t(k) ∈ [0,+∞), with
t(k) ≤ t(k), while (5) has only one solution denoted by
t(m) ∈ [0,+∞);1 we also define t(m) = 0. Define then the
functions ε(·), ε(·) : {0, 1, . . . ,m} → [0, 1] as

ε(k) = max{0, 1− t(k)}, (6)
ε(k) = max{0, 1− t(k)}, (7)

k = 0, 1, . . . ,m. We are now ready to state the main result
of our paper.

Theorem 1: Consider Assumptions 1 and 2. Fix β ∈
(0, 1), and consider ε(·) and ε(·) as defined in (6) and (7),
respectively. Denote then by s? the number of agents whose
decision vector has at least one non-zero element, i.e.,

s? =
∣∣∣{i ∈ {1, . . . ,m} :

∃j ∈ {1, . . . , ni} such that xi,?j 6= 0
}∣∣∣,

where | · | denotes the cardinality of its argument and xi,?j
denotes the j-th element of the i-th component of the optimal
solution x?. We then have that

Pm
{
{δi}mi=1 ∈ ∆m :

P{δ̄ ∈ ∆ : x◦+ 6= (x?, 0)} ∈ [ε(s?), ε(s?)]
}
≥ 1− β.

Proof of Theorem 1: see [24].

Theorem 1 implies that the probability that the optimal
solution x? of Pm in (1) changes upon the arrival of a new
agent lies within the interval [ε(s?), ε(s?)] with confidence
at least 1 − β. The quantity s? that appears in the interval
definition is itself a random variable, since it depends on
the random sample {δi}mi=1, and is always highly correlated
with P{δ̄ : x◦+ 6= (x?, 0)}. However, unlike the quantity of
interest P{δ̄ ∈ ∆ : x◦+ 6= (x?, 0)}, s? is a computable one
since it can be a posteriori determined by a direct inspection
of x?. The essential message conveyed by Theorem 1 is
that the observable [ε(s?), ε(s?)] always provides a correct
quantification (with confidence 1 − β) of the sought but
unknown quantity P{δ̄ ∈ ∆ : x?δ 6= (x?, 0)}.

This quantification is often tight since, as shown in [20]
and [26], ε(k) and ε(k) rapidly get close each other as m in-
creases, while their value is barely affected by β, so that very
small values like β = 10−6 or β = 10−8 can be enforced to
obtain that P{δ̄ ∈ ∆ : x◦+ 6= (x?, 0)} ∈ [ε(s?), ε(s?)] with
practical certainty. This can be also appreciated in Figure
1, which depicts ε(k) and ε(k) for β = 10−6 and various
values for m.

1The solutions to (4) and (5) can be easily found by means of a bisection
numerical algorithm; see [20, Appendix A] for a MATLAB implementation.
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Fig. 1. ε(k) and ε(k) for β = 10−6 and: a) m = 250; b) m = 500; c) m = 1000.

Eventually, it is worth noticing that the result of Theorem
1 holds irrespective of the probability measure P (as long
as Assumption 2 is satisfied), hence irrespective of the
distribution of the agents’ population.

IV. APPLICATION TO ECONOMIC DISPATCH PROBLEM

Ever-rising costs of fossil fuels and the need for a better
usage of renewable sources of energy for a suistainable
development have made power system planning ever more
pressing in energy production. The economic dispatch prob-
lem is a planning procedure carried out by a dispatch com-
pany that has to meet a (typically forecasted) load by several
energy producers in a given geographical area. It involves
determining the optimal power output from available energy
generation facilities so as to minimize the overall production
cost while meeting the required load and complying with
power limits of each facility. If we denote with P i the power
produced by the i-th facility, with Ci(P i) the associated
production cost, and with L the load energy request, then
the (simplified) energy dispatch problem considered in this
paper is formalized as

min
{P i∈R}mi=1

m∑
i=1

Ci(P i) (8)

subject to:
m∑
i=1

P i = L,

0 ≤ P i ≤ P imax, i = 1, . . . ,m,

where each cost function Ci(·) is convex, increasing, and
such that Ci(0) = 0. Note that the overall production is
required to exactly match the load L (as opposed to be
greater than or equal to it) because storing excess energy
would be extremely costly and viable only for a limited
amount of energy. Clearly, it must be L ≤

∑m
i=1 P

i
max for (8)

to be feasible.
Even if Ci(·) is in general a nonlinear function, it is often

the case that Ci(·) can be well approximated by a Piece-
Wise Affine (PWA) function. To this end, for each generating
facility i, we split the interval [0, P imax] into ni parts [P̄ i0, P̄

i
1],

[P̄ i1, P̄
i
2], . . . , [P̄ ini−1, P̄

i
ni ], with P̄ i0 = 0 and P̄ ini = P imax,

and we assign a cost coefficient cij to the segment [P̄ ij−1, P̄
i
j ],

for all j = 1, . . . , ni. Since the per unit production cost is
increasing with P i, it holds that ci1 < ci2 < · · · < cini ,

for all i = 1, . . . ,m. If we denote with xij the amount of
power produced within the segment [P̄ ij−1, P̄

i
j ], then we can

express P i =
∑ni

j=1 x
i
j with 0 ≤ xij ≤ dij = P̄ ij − P̄ ij−1, and

rewrite (8) as

min
{xi∈Rni}mi=1

m∑
i=1

(ci)>xi (9)

subject to:
m∑
i=1

1>xi = L,

0 ≤ xi ≤ di, i = 1, . . . ,m,

where xi = [xi1 · · · xini ]>, ci = [ci1 · · · cini ]>, di =

[di1 · · · dini ]>, and 1 = [1 · · · 1]> ∈ Rni

. It is easy to
see that problem (9) fits the structure of Pm in (1), setting
Ai = 1> and b = L. Note also that the solution to (9) is such
that, for each i and for all j = 1, . . . , ni− 1, xij+1 > 0 only
if xij = dij , because the cij are increasing with j. This means
that no power will be allocated in the interval [P̄ ij , P̄

i
j+1] if

the previous interval [P̄ ij−1, P̄
i
j ] has not been fully exploited,

thus making (ci)>xi an actual PWA approximation of Ci(Pi)
for Pi = 1>xi.

Suppose now that, by solving (9), the energy dispatch
company has successfully planned the optimal usage of a
population of known power plants in order to meet the
required load. The company is certainly interested in re-
ducing the costs by searching for additional facilities able
to supply the desired area that may have smaller costs or
better capacity. However, finding new facilities is a costly
and time consuming operation, so it would be ideal for the
company knowing in advance how beneficial this poll for
new generators could be. The framework proposed in this
paper can be used in order to retrieve the probability that
this polling operation could bring a change in the original
solution: a high probability of improving the solution will
act as an incentive to start a new search for better facilities;
otherwise, the dispatch company will stick with the solution
found.

The availability of a new generating facility in the energy



dispatch problem yields the optimization problem

min
{xi∈Rni

}mi=1,

x̄∈Rn̄

m∑
i=1

(ci)>xi + c̄>x̄ (10)

subject to:
m∑
i=1

1>xi + 1>x̄ = L,

0 ≤ xi ≤ di, i = 1, . . . ,m,

0 ≤ x̄ ≤ d̄,

and Theorem 1 ensures that a valid with confidence 1−β as-
sessment of the probability that the solution to (10) improves
over that of (9) is given by the interval [ε(s?), ε(s?)], where
ε and ε are computed as in (6)-(7) and s? is the number of
non zero components in the optimal solution to (9).

To test numerically the validity of Theorem 1, problem (9)
was repeatedly solved 100 times with different batches of m
production facilities, and each time the optimal solution x?(t),
t = 1, . . . , 100, and s?(t), t = 1, . . . , 100, were computed. For
each x?(t), M = 50 ·m new generating plants corresponding
to various n̄, d̄, c̄ were then considered and problem (10) was
solved M times so as to compute

P̂{x◦+,(t) 6= (x?(t), 0)} =
no. of cases s.t. x◦+,(t) 6= (x?(t), 0)

M
,

which is an empirical evaluation of the probability that
the solution x◦+,(t) to (10) improves over x?(t). The pairs
(s?(t), P̂{x

◦
+,(t) 6= (x?(t), 0)}) were then plotted in a bi-

dimensional graph along with the curves ε(k) and ε(k) so as
to allow one for a visual inspection that P̂{x◦+,(t) 6= (x?(t), 0)}
is indeed within [ε(s?(t)), ε(s

?
(t))] as predicted by Theorem 1.

We performed eight simulation campaigns: four with m =
100 and four with m = 200 for the number of agents. For
each value for m, each energy producer i was generated as
follows:
• ni was independently extracted from a uniform distri-

bution over the integers 3, 4, . . . , 10;
• P imax was extracted from a uniform distribution over

[Pmin, Pmax], with Pmin = 100 and we let Pmax ∈
{200, 400, 800, 1600} (the four values of Pmax corre-
spond to the four test campaigns with the same value
of m);

• P̄ i0, . . . , P̄
i
ni

were extracted from a uniform distribution
over [Pmin, P

i
max] and then ordered;

• ci1, . . . , c
i
ni

were extracted from a uniform distribution
over [0, 5] and then ordered.

In all tests the confidence parameter was set to β = 10−7.
Figure 2a depicts the results obtained for m = 100 and
different values of Pmax, as reported in the figure legend.
As Pmax changes, different clouds of points are obtained

corresponding to various batches of energy producers. In all
cases, as predicted by Theorem 1, P̂{x◦+,(t) 6= (x?(t), 0)} is in
between ε(s?) and ε(s?) (given that β = 10−7, P̂{x◦+,(t) 6=
(x?(t), 0)} /∈ [ε(s?(t)), ε(s

?
(t))] should occur in one case out of

10 billions on average). From the figure, it is apparent that
P̂{x◦+,(t) 6= (x?(t), 0)} gets smaller as Pmax grows. Indeed,

for large values of Pmax it is more likely to find a producer
that can cover a large amount of the load L so that the
number of employed producers tends to be moderate.

Similar comments apply to Figure 2b, where the results
for m = 200 and the same values for Pmax as before
are displayed. Notice that, as the number m of agents
increases, ε(k) and ε(k) approach each other, resulting in
a tighter assessment of P̂{x◦+,(t) 6= (x?(t), 0)}. Coherently,
the clouds of points have smaller vertical dispersion in these
simulations.

V. CONCLUDING REMARKS

In this paper we considered the class of multi-agent, linear
resource sharing problems, where the amount of resource to
be shared is fixed, and agents are subject to budget equality
constraints as well as local limits. Agents are heterogeneous,
and heterogeneity is modelled by means of a tuple of
parameters involving agents’ contributions to both the cost
and the constraints. These parameters follow a fixed but
possibly unknown multivariate probability distribution, and
the resource sharing problem is instantiated upon a multi-
extraction of these parameters.

In this context, we provided a confidence interval for a
probabilistic sensitivity index of the solution to the arrival
of a new agent, namely, we provided upper and lower
bounds for the probability that the optimal solution to the
resource sharing problem changes upon the arrival of a
new agent. Our bounds are a posteriori in the vein of
the recent “wait-and-judge” developments of the scenario
approach. The appealing feature of the proposed bounds
is that they can be determined by counting the number of
agents that are actually contributing to the solution of the
original problem, and are independent of all other problem
data. The efficacy of our results was demonstrated on an
economic dispatch example in power systems, where agents
were treated as generating units participating in the power
market. Current work concentrates towards extending the
class of resource sharing programs to more general convex
optimization problems.
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on the probability that the optimal solution changes upon the arrival of a new agent. Each cloud of points corresponds to a different choice of Pmax as
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