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Abstract—We consider the setting where the nodes of an
undirected, connected network collaborate to solve a shared
objective modeled as the sum of smooth functions. We assume
that each summand is privately known by a unique node. NEAR-
DGD is a distributed first order method which permits adjusting
the amount of communication between nodes relative to the
amount of computation performed locally in order to balance
convergence accuracy and total application cost. In this work,
we generalize the convergence properties of a variant of NEAR-
DGD from the strongly convex to the nonconvex case. Under
mild assumptions, we show convergence to minimizers of a
custom Lyapunov function. Moreover, we demonstrate that the
gap between those minimizers and the second order stationary
solutions of the original problem can become arbitrarily small
depending on the choice of algorithm parameters. Finally, we
accompany our theoretical analysis with a numerical experiment
to evaluate the empirical performance of NEAR-DGD in the
nonconvex setting.

Index Terms—distributed optimization, decentralized gradient
method, nonconvex optimization, second-order guarantees.

I. INTRODUCTION

We focus on optimization problems where the cost function
can be modeled as a summation of n components,

min
x∈Rp

f(x) =

n∑
i=1

fi(x), (1)

where f : Rp → R is a smooth and (possibly) nonconvex
function.

Problems of this type frequently arise in a variety of
decentralized systems such as wireless sensor networks, smart
grids and systems of autonomous vehicles. A special case
of this setting involves a connected, undirected network of
n nodes G(V, E), where V and E denote the sets of nodes
and edges, respectively. Each node i ∈ V has private access
to the cost component fi and maintains a local estimate xi
of the global decision variable x. This leads to the following
equivalent reformulation of Problem (1),

min
xi∈Rp

n∑
i=1

fi(xi), s.t. xi = xj , ∀(i, j) ∈ E . (2)

One of the first algorithms proposed for the solution of
Problem (2) when the functions fi are convex is the Distributed
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(Sub)Gradient Descent (DGD) method [1], which relies on the
combination of two elements: i) local gradient steps on the
functions fi and ii) calculations of weighted averages of local
and neighbor variables xi. For the remainder of this work,
we will be referring to these two procedures as computation
and consensus (or communication) steps, respectively. While
DGD has been shown to converge to an approximate solution
of Problem (2) under constant steplengths, a subset of methods
known as gradient tracking algorithms [2]–[4] overcomes
this limitation by iteratively estimating the average gradient
between nodes.

The convergence of DGD when the function f is noncon-
vex has been studied in [5]. NEXT [6], SONATA [7], [8],
xFilter [9] and MAGENTA [10], are some examples of dis-
tributed methods that utilize gradient tracking and can handle
nonconvex objectives. Other approaches include primal-dual
algorithms [11], [12] (we note that primal-dual and gradient
tracking algorithms are equivalent in some cases [3]), the
perturbed push-sum method [13], zeroth order methods [14],
[15], and stochastic gradient algorithms [16]–[19].

Providing second order guarantees when Hessian informa-
tion is not available is a challenging task. As a result, the
majority of the works listed in the previous paragraph establish
convergence to critical points only. A recent line of research
leverages existing results from dynamical systems theory and
the structural properties of certain problems (which include
matrix factorization, phase retrieval and dictionary learning,
among others) to demonstrate that several centralized first
order algorithms converge to minimizers almost surely when
initialized randomly [20]. Specifically, if the objective function
satisfies the strict saddle property, namely, if all critical points
are either strict saddles or minimizers, then many first order
methods converge to saddles only if they are initialized in
a low-dimensional manifold with measure zero. Using similar
arguments, almost sure convergence to second order stationary
points of Problem (2) is proven in [8] for DOGT, a gradient
tracking algorithm for directed networks, and in [12] for the
first order primal-dual algorithms GPDA and GADMM. The
convergence of DGD with constant steplength to a neighbor-
hood of the minimizers of Problem (2) is also shown in [8].
The conditions under which the Distributed Stochastic Gradi-
ent method (D-SGD), and Distributed Gradient Flow (DGF),
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a continuous-time approximation of DGD, avoid saddle points
are studied in [21] and [22], respectively. Finally, the authors
of [13] prove almost sure convergence to local minima under
the assumption that the objective function has no saddle points.

Given the diversity of distributed systems in terms of com-
puting power, connectivity and energy consumption, among
other concerns, the ability to adjust the relative amounts of
communication and computation on a case-by-case basis is
a desirable attribute for a distributed optimization algorithm.
While some existing methods are designed to minimize overall
communication load (for instance, the authors of [9] employ
Chebyshev polynomials to improve communication complex-
ity), all of the methods listed above perform fixed amounts
of computation and communication at every iteration and lack
adaptability to heterogeneous environments.

A. Contributions

In this work, we extend the convergence analysis of the
NEAR-DGD method, originally proposed in [23], from the
strongly convex to the nonconvex setting. NEAR-DGD is a
distributed first order method with a flexible framework, which
allows for the exchange of computation with communication
in order to reach a target accuracy level while simultane-
ously maintaining low overall application cost. We design
a custom Lyapunov function which captures both progress
on Problem (1) and distance to consensus, and demonstrate
that under relatively mild assumptions, a variant of NEAR-
DGD converges to the set of critical points of this Lyapunov
function and to approximate critical points of the function f
of Problem (1). Moreover, we show that the distance between
the limit points of NEAR-DGD and the critical points of
f can become arbitrarily small by appropriate selection of
algorithm parameters. Finally, we employ recent results based
on dynamical systems theory to prove that the same variant
of NEAR-DGD almost surely avoids the saddle points of the
Lyapunov function when initialized randomly. Our analysis
is shorter and simpler compared to other works due to the
convenient form of our Lyapunov function. The implication
is that NEAR-DGD asymptotically converges to second order
stationary solutions of Problem (1) as the values of algorithm
parameters increase.

B. Notation

In this paper, all vectors are column vectors. We will
use the notation v′ to refer to the transpose of a vector v.
The concatenation of local vectors vi ∈ Rp is denoted by
v = [v′i, ..., v

′
n]′ ∈ Rnp with a lowercase boldface letter. The

average of the vectors v1, ..., vn contained in v will be denoted
by v̄, i.e. v̄ = 1

n

∑n
i=1 vi. We use uppercase boldface letters

for matrices and will denote the element in the ith row and
jth column of matrix H with hij . We will refer to the ith

(real) eigenvalue in ascending order (i.e. 1st is the smallest)
of a matrix H as λi(H). We use the notations Ip and 1n for
the identity matrix of dimension p and the vector of ones of
dimension n, respectively. We will use ‖ · ‖ to denote the l2-

norm, i.e. for v ∈ Rp we have ‖v‖ =
√∑p

i=1 [v]
2
i where

[v]i is the i-th element of v. The inner product of vectors
v, u will be denoted by 〈v, u〉. The symbol ⊗ will denote the
Kronecker product operation. Finally, we define the averaging
matrix M :=

(
1n1
′
n

n ⊗ Ip
)

.

C. Organization

The rest of this paper is organized as follows. We briefly
review the NEAR-DGD method and list our assumptions for
the rest of this work in Section II. We analyze the convergence
properties of NEAR-DGD when the function f of Problem (1)
is nonconvex in Section III. Finally, we present the results of
a numerical experiment we conducted to assess the empirical
performance of NEAR-DGD in the nonconvex setting in
Section IV, and conclude this work in Section V.

II. THE NEAR-DGD METHOD

In this section, we list our assumptions for the remainder
of this work and briefly review the NEAR-DGD method,
originally proposed for strongly convex optimization in [23].
We first introduce the following compact reformulation of
Problem (2),

min
x∈Rnp

f (x) :=

n∑
i=1

fi(xi), s.t. (W ⊗ Ip)x = x, (3)

where x = [x′1, ..., x
′
n]′ in Rnp is the concatenation of the

local variables xi, f : Rnp → R and W ∈ Rn×n is a matrix
satisfying the following condition.

Assumption II.1. (Consensus matrix) The matrix W ∈ Rn×n
has the following properties: i) symmetry, ii) double stochas-
ticity, iii) wij > 0 if and only if (ij) ∈ E or i = j and wij = 0
otherwise and iv) positive-definiteness.

We can construct a matrix W̃ satisfying properties (i) −
(iii) of Assumption II.1 by defining its elements to be max
degree or Metropolis-Hastings weights [24], for instance. Such
matrices are not necessarily positive-definite, so we can further
enforce property (iv) using simple linear transformations (for
example, we could define W = (1− δ)−1(W̃ − δIn), where
δ < λ1(W̃) is a constant). For the rest of this work, we will
be referring to the 2nd largest eigenvalue of W as β, i.e.
β = λn−1(W).

We adopt the following standard assumptions for the global
function f of Problem 3.

Assumption II.2. (Global Lipschitz gradient) The global
objective function f : Rnp → R has L-Lipschitz continuous
gradients, i.e. ‖∇f(x)−∇f(y)‖ ≤ L‖x−y‖, ∀x,y ∈ Rnp.

Assumption II.3. (Coercivity) The global objective function
f : Rnp → R is coercive, i.e. limk→∞ f(xk) = ∞ for every
sequence {xk} such that ‖xk‖ → ∞.



A. The NEAR-DGD method

Starting from (arbitrary) initial points yi,0 = xi,0, the local
iterates of NEAR-DGD at node i ∈ V and iteration count k
can be expressed as,

xi,k =

n∑
j=1

w
t(k)
ij yj,k, (4a)

yi,k+1 = xi,k − α∇fi (xi,k) , (4b)

where {t(k)} is a predefined sequence of consensus rounds
per iteration, α > 0 is a positive steplength and w

t(k)
ij is the

element in the ith row and jth column of the matrix Wt(k),
resulting from the composition of t(k) consensus operations,

Wt(k) = W ·W · ... ·W︸ ︷︷ ︸
t(k) times

∈ Rn×n.

The system-wide iterates of NEAR-DGD can be written as,

xk = Zt(k)yk (5a)
yk+1 = xk − α∇f(xk), (5b)

where xk = [x′1,k, ..., x
′
n,k]′ ∈ Rnp, yk+1 =

[y′1,k+1, ..., y
′
n,k+1]′ ∈ Rnp and Zt(k) = (Wt(k) ⊗ Ip) ∈

Rnp×np.
The sequence of consensus rounds per iteration {t(k)}

can be suitably chosen to balance convergence accuracy and
total cost on a per-application basis. When the functions fi
are strongly convex, NEAR-DGD paired with an increasing
sequence {t(k)} converges to the optimal solution of Prob-
lem (3), and achieves exact convergence with geometric rate
(in terms of gradient evaluations) when t(k) = k [23].

III. CONVERGENCE ANALYSIS

In this section, we present our theoretical results on the
convergence of a variant of NEAR-DGD where the number
of consensus steps per iteration is fixed, i.e. t(k) = t in (4a)
and (5a) for some t ∈ N+. We will refer to this method
as NEAR-DGDt. First, we introduce the following Lyapunov
function, which will play a key role in our analysis,

Lt (y) = f
(
Zty

)
+

1

2α
‖y‖2Zt −

1

2α
‖y‖2Z2t . (6)

Using (6), we can express the xk iterates of NEAR-DGDt as,

xk+1 = xk − α∇Lt (yk) . (7)

We need one more assumption on the geometry of the Lya-
punov function Lt to guarantee the convergence of NEAR-
DGDt. Namely, we require Lt to be ”sharp” around its critical
points, up to a reparametrization. This property is formally
summarized below.

Definition 1. (Kurdyka-Łojasiewicz (KL) property) [25] A
function h : Rp → R ∪ {+∞} has the KL property at x? ∈
dom(∂h) if there exists η ∈ (0,+∞], a neighborhood U of
x?, and a continuous concave function φ : [0, η) → R+ such
that: i) φ(0) = 0, ii) φ is C1 (continuously differentiable)
on (0, η), iii) for all s ∈ (0, η), φ′(s) > 0, and iv) for all

x ∈ U ∩ {x : h(x?) < h(x) < h(x?) + η}, the KL inequality
holds:

φ′(h(x)− h(x?)) · dist(0, ∂h(x)) ≥ 1.

Proper lower semicontinuous functions which satisfy the KL
inequality at each point of dom(∂h) are called KL functions.

Assumption III.1. (KL Lyapunov function) The Lyapunov
function Lt : Rnp → R is a KL function.

Assumption III.1 covers a broad range of functions, in-
cluding real analytic, semialgebraic and globally subanalytic
functions (see [26] for more details). For instance, if the
function f is real analytic, then Lt is the sum of real analytic
functions and by extension KL.

A. Convergence to critical points

In this subsection, we demonstrate that the yk iterates of
NEAR-DGDt converge to a critical point of the Lyapunov
function Lt (6). We assume that Assumptions II.1-II.3 and
Assumption III.1 hold for the rest of this work. We begin
our analysis by showing that the sequence {Lt(yk)} is non-
increasing in the following Lemma.

Lemma III.2. (Sufficient Descent) Let {yk} be the sequence
of NEAR-DGDt iterates generated by (5b) and suppose that
the steplength α satisfies α < 2/L, where L is defined in
Assumption II.2. Then the following inequality holds for the
sequence {Lt(yk)},

Lt (yk+1) ≤ Lt (yk)− ρ ‖yk+1 − yk‖2 ,

where ρ = (2α)−1 mini (λti(Z) (1 + (1− αL)λti(Z))) > 0.

Proof. Combining (5a) and (6), we obtain for k ≥ 0,

Lt(yk) = f(xk) +
1

2α
〈yk,xk〉 −

1

2α
‖xk‖2. (8)

Let dx := xk+1 − xk. Assumption II.2 then yields
f(xk+1) ≤ f(xk) + 〈∇f(xk),dx〉 + L

2 ‖dx‖
2 = f(xk) −

1
α 〈yk+1 − xk,dx〉 + L

2 ‖dx‖
2, where we acquire the last

equality from (5b). Substituting this relation in (8) applied
at the (k + 1)th iteration, we obtain,

Lt(yk+1) ≤ f(xk)− 1

2α
〈yk+1 − xk,dx〉+

L

2
‖dx‖2

+
1

2α
〈yk+1,xk+1〉 −

1

2α
‖xk+1‖2

= Lt(yk)− 1

2α
〈yk,xk〉+

1

2α
‖xk‖2 −

1

α
〈yk+1 − xk,dx〉

+
L

2
‖dx‖2 +

1

2α
〈yk+1,xk+1〉 −

1

2α
‖xk+1‖2,

where we obtain the equality after further application of (8).
After setting dy := yk+1−yk and re-arranging the terms, we



obtain,

Lt(yk+1) ≤ Lt(yk)− 1

2α
〈yk,xk〉+

1

α
〈yk+1,xk〉

− 1

2α
〈yk+1,xk+1〉 −

(
1

2α
− L

2

)
‖dx‖2

= Lt(yk)− 1

2α
‖yk‖2Zt +

1

α
〈yk+1,yk〉Zt

− 1

2α
‖yk+1‖2Zt −

(
1

2α
− L

2

)
‖dx‖2

= Lt(yk)− 1

2α
‖dy‖2Zt −

(
1

2α
− L

2

)
‖dx‖2.

Let H := (2α)−1Zt (I + (1− αL)Zt), which is a positive
definite matrix due to Assumption II.1 and the fact that
α < 2/L. Moreover, ‖dx‖2 = ‖dy‖2Z2t by Eq. (5a). We can
then re-write the immediately previous relation as Lt(yk+1) ≤
Lt(yk)−‖yk+1−yk‖2H. Applying the definition of ρ = λ1(H)
concludes the proof.

An important consequence of Lemma III.2 is that NEAR-
DGDt can tolerate a bigger range of steplengths than previ-
ously indicated (α < 2/L vs. α < 1/L in [23]). Moreover,
Lemma III.2 implies that the sequence {Lt(yk)} is upper
bounded by Lt(y0). We use this fact to prove that the iterates
of NEAR-DGDt are also bounded in the next Lemma.

Lemma III.3. (Boundedness) Let {xk} and {yk} be the
sequences of NEAR-DGDt (t(k) = t) iterates generated
by (5a) and (5b), respectively, from initial point y0 and under
steplength α < 2/L. Then the following hold: i) the sequence
{Lt(yk)} is lower bounded, and ii) there exist universal
positive constants Bx and By such that ‖xk‖ ≤ Bx and
‖yk+1‖ ≤ By for all k ≥ 0 and t ∈ N+.

Proof. By Assumption II.3, the function f is lower bounded
and therefore Lt is also lower bounded (sum of lower bounded
functions). This proves the first claim of this Lemma.

To prove the second claim, we first notice that Lemma III.2
implies that the sequence {Lt(yk)} is upper bounded by
Lt(y0). Let us define the set X0 := {Zty0, t ∈ N+}. The
set X0 is compact, since ‖Zty0‖ ≤ ‖y0‖ for all t ∈ N+ due
to the non-expansiveness of Z. Hence, by the continuity of
f and the Weierstrass Extreme Value Theorem, there exists
x̂0 ∈ X0 such that f(x0) ≤ f(x̂0) for all x0 ∈ X0. Moreover,
Assumption II.1 yields ‖y0‖2Zt(I−Zt) ≤ ‖y0‖2 for all positive
integers t, and therefore Lt(y0) ≤ L̂ for all t ∈ N+, where
L̂ = f(x̂0) + (2α)−1‖y0‖2.

Since L̂ ≥ Lt(y0) ≥ Lt(yk) ≥ f(Ztyk) = f(xk) for all
k ≥ 0 and t > 0, the sequence {f(xk)} is upper bounded.
Hence, by Assumption II.3, there exists positive constant Bx
such that ‖xk‖ ≤ Bx for k ≥ 0 and t > 0. Moreover, Assump-
tion II.2 yields f(yk+1) ≤ f(xk) + 〈∇f(xk),yk+1 − xk〉 +
L
2 ‖yk+1 − xk‖2 = f(xk)−α‖∇f(xk)‖2 + α2L

2 ‖∇f(xk)‖2 =
f(xk)−α

(
1− αL

2

)
‖∇f(xk)‖2 ≤ f(xk), where we obtain the

first equality from (5b) and last inequality from the fact that
α < 2/L. This relation combined with Assumption II.3 im-

plies that there exists constant By > 0 such that ‖yk+1‖ ≤ By
for k > 0 and t > 0, which concludes the proof.

Next, we use Lemma III.3 to show that the distance between
the local iterates generated by NEAR-DGDt and their average
is bounded.

Lemma III.4. (Bounded distance to mean) Let xi,k and yi,k
be the local NEAR-DGDt iterates produced under steplength
α < 2/L by (4a) and (4b), respectively, and define the average
iterates x̄k := 1

n

∑n
i=1 xi,k and ȳk := 1

n

∑n
i=1 yi,k. Then the

distance between the local and the average iterates is bounded
for i = 1, ..., n and k = 1, 2, ..., i.e.

‖xi,k − x̄k‖ ≤ βtBy, and ‖yi,k − ȳk‖ ≤ By,

where By is a positive constant defined in Lemma III.3.

Proof. Multiplying both sides of (5a) with M =
(

1n1
′
n

n ⊗ Ip
)

yields x̄k = ȳk. Moreover, we observe that ‖vk −Mvk‖2 =∑n
i=1 ‖vi,k − v̄k‖

2 for any vector v ∈ Rnp. Hence,

‖xi,k − x̄k‖ = ‖xi,k − ȳk‖ ≤ ‖xk −Myk‖
≤
∥∥Ztyk −Myk

∥∥ ≤ βt‖yk‖,
where we derive the last inequality from the spectral properties
of Z and M (we note that the matrix 1n1′n/n has a single non-
zero eigenvalue at 1 associated with the eigenvector 1np).

Similarly, for the local iterates yi,k we obtain,

‖yi,k − ȳk‖ ≤ ‖yk −Myk‖ = ‖(I −M)yk‖ ≤ ‖yk‖.

Applying Lemma III.3 to the two preceding inequalities com-
pletes the proof.

We are now ready to state the first Theorem of this section,
namely that there exists a subsequence of {yk} that converges
to a critical point of Lt.

Theorem III.5. (Subsequence convergence) Let {yk} be
the sequence of NEAR-DGDt iterates generated by (5b) with
steplength α < 2/L. Then {yk} has a convergent subsequence
whose limit point is a critical point of (6).

Proof. By Lemma III.3, the sequence {yk} is bounded and
therefore there exists a convergent subsequence {yks}s∈N →
y∞ as s → ∞. In addition, recursive application of
Lemma III.2 over iterations 0, 1, ..., k yields,

Lt (yk) ≤ Lt (y0)− ρ
k−1∑
j=0

‖yj+1 − yj‖2 ,

where the sequence {Lt (yk)} is non-increasing and bounded
from below by Lemmas III.2 and III.3.

Hence, {Lk (yk)} converges and the above relation implies
that

∑∞
k=1 ‖yk+1 − yk‖2 < +∞ and ‖yk+1 − yk‖ → 0.

Moreover, ‖xk+1 − xk‖ = ‖yk+1 − yk‖Z2t ≤ ‖yk+1 − yk‖
by the non-expansiveness of Z and thus ‖xk+1 − xk‖ → 0.
Finally, Eq. 7 yields ‖∇Lt (yk) ‖ = α−1‖xk+1 − xk‖ → 0.
We conclude that ‖∇Lt (yks)‖ → 0 as s→∞ and therefore
∇Lt (y∞) = 0.



We note that Assumption III.1 is not necessary for Theo-
rem III.5 to hold. However, Theorem III.5 does not guarantee
the convergence of NEAR-DGDt; we will need Assump-
tion III.1 to prove that NEAR-DGDt converges in Theo-
rem III.8. Before that, we introduce the following two pre-
liminary Lemmas that hold only under Assumption III.1.

Lemma III.6. (Bounded difference under the KL property)
Let xk and yk be the NEAR-DGDt iterates generated by (5a)
and (5b), respectively, under steplength α < 2/L. Moreover,
suppose that the KL inequality with respect to some point y? ∈
Rnp holds at yk, i.e.,

φ′(Lt(yk)− Lt(y?))‖Lk(yk)‖ ≥ 1. (9)

Then the following relation holds,

‖vk+1 − vk‖ ≤
1

αρ
(φ (lk)− φ (lk+1)) ,

where ‖vk+1−vk‖ can be ‖xk+1−xk‖ or ‖yk+1−yk‖ and
lk := Lt(yk)− Lt(y?).

Proof. Lemma III.2 yields ρ ‖yk+1 − yk‖2 ≤ Lt (yk) −
Lt (yk+1) = lk − lk+1 for k ≥ 0. We can multiply
both sides of this relation with φ′ (lk) > 0 to obtain
ρφ′ (lk) ‖yk+1 − yk‖2 ≤ −φ′ (lk) (lk+1 − lk) ≤ φ (lk) −
φ (lk+1) , where we derive the last inequality from the con-
cavity of φ. In addition, using Eq. 7, we can re-write (9) as
α−1φ′(lk)‖xk+1 − xk‖ ≥ 1. Combining these relations, we
acquire,

αρ ‖yk+1 − yk‖2

‖xk+1 − xk‖
≤ φ (lk)− φ (lk+1) .

Observing that ‖xk+1 − xk‖ ≤ ‖yk+1 − yk‖ due to the non-
expansiveness of Z and re-arranging the terms of the relation
above yields the final result.

In the next Lemma, we show that if NEAR-DGDt is initial-
ized from an appropriate subset of Rnp and Assumption III.1
holds, then the sequence {yk} converges to a critical point of
the Lyapunov function Lt.

Lemma III.7. (Local convergence) Let {yk} be the sequence
of iterates generated by (5b) from initial point y0 and with
steplength α < 2/L. Moreover, let U and η be the objects in
Def. 1 and suppose that the following relations are satisfied
for some point y? ∈ Rnp,

(αρ)−1φ (Lt(y0)− Lt(y?)) + ‖y0 − y?‖ < r, (10)
Lt(y?) ≤ Lt(yk) < Lt(y?) + η, k ≥ 0, (11)

where r is a positive constant and B(y?, r) ⊂ U .
Then the sequence {yk} has finite length, i.e.

∑∞
j=0 ‖yj+1−

yj‖ <∞, and converges to a critical point of (6).

Proof. In the trivial case where Lt(yk) = Lt(y?),
Lemma III.2 combined with (11) yield Lt(yk+1) = Lt(yk) =
Lt(y?) and ‖yk+1 − yk‖ = 0. Let us now assume that
Lt(yk) ∈

(
Lt(y?),Lt(y?) + η

)
and yk ∈ B(y?, r) up to

and including some index τ ∈ N+, which implies that (9)

holds for all k ≤ τ . Applying the triangle inequality twice,
we obtain,

‖yτ+1 − y?‖ ≤ ‖yτ+1 − y0‖+ ‖y0 − y?‖

=

∥∥∥∥∥∥
τ∑
j=0

(yj+1 − yj)

∥∥∥∥∥∥+ ‖y0 − y?‖

≤
τ∑
j=0

‖yj+1 − yj‖+ ‖y0 − y?‖.

Application of Lemma III.6 then yields ‖yk+1 − yk‖ ≤
(αρ)−1 (φ (lk)− φ (lk+1)), for k ≤ τ . Substituting this in the
preceding relation, we acquire,

‖yτ+1 − y?‖ ≤ 1

αρ
(φ (l0)− φ (lτ+1)) + ‖y0 − y?‖

≤ φ (l0)

αρ
+ ‖y0 − y?‖ < r.

The above result implies that yτ+1 ∈ B(y?, r). Given the fact
that that ‖y0−y?‖ < r and thus y0 ∈ B(y?, r), we have yk ∈
B(y?, r) and ‖yk+1 − yk‖ ≤ (αρ)−1 (φ (lk)− φ (lk+1)) for
all k ≥ 0. Hence,

∞∑
j=0

‖yj+1 − yj‖ ≤
1

αρ

∞∑
j=0

(φ(lk)− φ(lk+1))

≤ 1

αρ
(φ(l0)− φ(l∞)) ≤ φ(l0)

αρ
.

Thus, the sequence {yk} is finite and Cauchy (convergent),
and {yk} → ỹ, where ỹ is a critical point of (6) by
Theorem III.5.

Next, we combine our previous results to prove the global
convergence of the yk iterates of NEAR-DGDt in Theo-
rem III.8.

Theorem III.8. (Global Convergence) Let {yk} be the
sequence of NEAR-DGDt iterates produced by (5b) under
steplength α < 2/L and let y∞ be a limit point of a
convergent subsequence of {yk} as defined in Theorem III.5.

Then under Assumption III.1 the following statements hold:
i) there exists an index k0 ∈ N+ such that the KL inequality
with respect to y∞ holds for all k ≥ k0, and ii) the sequence
{yk} converges to y∞.

Proof. We first observe that by Lemma III.2 the sequence
{Lt(yk)} is non-increasing, and therefore Lt(y∞) ≤ Lt(yk)
for all k ≥ 0. If Assumption III.1 holds, then the objects U
and η in Def. 1 exist and by the continuity of φ, it is possible
to find an index k0 that satisfies the following relations,

(αρ)−1φ (Lt(yk0)− Lt(y∞)) + ‖yk0 − y∞‖ < r,

Lt(yk) ∈ [Lt(y∞),Lt(y∞) + η), ∀k ≥ 0,

where B(y∞, r) ⊂ U .
Applying Lemma III.7 to the sequence {yk}k≥k0 with

y? = y∞ establishes the convergence of {yk}. Finally, since
y∞ is the limit point of a subsequence of {yk} and {yk} is
convergent, we conclude that {yk} → y∞.



Since Z is a non-singular matrix, Theorem III.8 implies that
the sequence {xk} also converges. Moreover, using arguments
similar to [27], we can prove the following result on the
convergence rate of {xk}.

Lemma III.9. (Rates) Let {xk} be the sequence of iterates
produced by (5a), x∞ = Zty∞ where y∞ is the limit
point of the sequence {yk} and suppose φ(s) = cs1−θ in
Assumption III.1 for some constant c > 0 and θ ∈ [0, 1)
(for a discussion on φ, we direct readers to [26]). Then the
following hold:

1) If θ = 0, {xk} converges in a finite number of iterations.
2) If θ ∈ (0, 1/2], then constants c > 0 and Q ∈ [0, 1)

exist such that ‖xk − x∞‖ ≤ cQk.
3) If θ ∈ (1/2, 1), then there exists a constant c > 0 such

that ‖xk − x∞‖ ≤ ck−
1−θ
2θ−1 .

Proof. i) θ = 0: From the definition of φ and θ = 0 we have
φ′(lk) = c(1− θ)l−θk = c. Let I := {k ∈ N : xk+1 6= xk} (by
the non-singularity of Z, it also follows that yk+1 6= yk for
k ∈ I). Then for large k the KL inequality holds at yk and
we obtain ‖∇Lt(yk)‖ ≥ c−1, or equivalently by (7), ‖xk+1−
xk‖ ≥ αc−1. Application of Lemma III.2 combined with the
fact that ‖xk+1 − xk‖ ≤ ‖yk+1 − yk‖ yields Lt(yk+1) ≤
Lt (yk) − ρα2c−2. Given the convergence of the sequence
{Lt}, we conclude that the set I is finite and the method
converges in a finite number of steps.
ii) θ ∈ (0, 1): Let Sk :=

∑∞
j=k ‖xj+1 − xj‖ where x∞ =

Zty∞. Since ‖xk−x∞‖ ≤ Sk, it suffices to bound Sk. Using
Lemma III.6 with y? = y∞ and for k ≥ k0, where k0 is
defined in Theorem III.8, we obtain,

Sk ≤
1

αρ

∞∑
j=k

(φ(lj)− φ(lj+1)) =
1

αρ
φ(lk) =

1

ν
l1−θk , (12)

where ν = αρ/c.
Moreover, Eq. 7 yields ‖∇Lt (yk)‖ = α−1 ‖xk+1 − xk‖ =

α−1 (Sk − Sk+1). Using this relation and the definition of φ,
we can express the KL inequality as,

µl−θk (Sk − Sk+1) ≥ 1, (13)

where µ = α−1c(1− θ).
If θ ∈ (0, 1/2], raising both sides of the preceding in-

equality to the power of γ = 1−θ
θ > 1 and re-arranging the

terms yields µγ (Sk − Sk+1)
γ ≥ l1−θk . Due to the fact that

Sk − Sk+1 = α‖∇Lt(yk)‖ → 0, there exists some index k
such that Sk − Sk+1 > (Sk − Sk+1)

γ and µγ (Sk − Sk+1) ≥
l1−θk . Combining this relation with (12), we obtain νSk ≤
µγ (Sk − Sk+1)⇔ Sk+1 ≤

(
1− ν

µγ

)
Sk.

If θ ∈ (1/2, 1), raising both sides of (12) to the power
of θ/(1 − θ) > 1 yields S

θ/(1−θ)
k ≤ ν−θ/(1−θ)lθk. After

substituting this relation in (13) and re-arranging we obtain
1 ≤ C (Sk − Sk+1) (S

θ/(1−θ)
k )−1, where C = µν−θ/(1−θ).

Define h : (0,+∞) → R to be h(s) = s−θ/(1−θ). The
preceding relation then yields 1 ≤ C(Sk − Sk+1)h(Sk) ≤
C
∫ Sk
Sk+1

h(s)ds = Cζ−1
(
Sζk − S

ζ
k+1

)
, where ζ = (1 −

2θ)/(1 − θ) < 0. After setting C̃ = −C−1ζ > 0 and re-
arranging, we obtain C̃ ≤ Sζk+1 − S

ζ
k . Summing this relation

over iterations k = k0, ..., t−1 yields (t−k0)C̃ ≤ Sζt −S
ζ
k0
⇔

St ≤
(

(t− k0)C̃ + Sζk0

)1/ζ
≤ ct1/ζ , for some c > 0.

We conclude this subsection with one more result on the
distance to optimality of the local xi,k iterates of NEAR-DGDt

and their average x̄k = 1
n

∑n
i=1 xi,k as k →∞.

Corollary III.10. (Distance to optimality) Suppose that
{yk} → y∞ and let x∞ = Zty∞. Moreover, let x̄∞ = ȳ∞ =
1
n

∑n
i=1 x

∞
i . Then x̄∞ is an approximate critical point of f ,

‖∇f(x̄∞)‖ ≤ βt
√
nLBy

where By is a positive constant defined in Lemma III.3.

Proof. We observe that M∇f(My∞) = 1
n · 1n ⊗ ∇f(ȳ∞)

and hence ‖M∇f(My∞)‖ = n−1‖1n ⊗ ∇f(ȳ∞)‖ =
(
√
n)−1‖∇f(ȳ∞)‖, where we obtain the last equality due to

the fact that ‖1n ⊗ v‖2 = n‖v‖2 for any vector v.
Moreover, y∞ is a critical point of (6) and therefore satisfies
∇Lt(y∞) = Zt∇f(Zty∞) + 1

αZ
ty∞ − 1

αZ
2ty∞ = 0. From

the double stochasticity of Z, multiplying the above relation
with M yields M∇Lt(y∞) = M∇f(Zty∞) = 0. After
combining all the preceding results, we obtain,

‖∇f(x̄∞)‖ =
√
n‖M∇f(My∞)−M∇f(Zty∞)‖

≤
√
nL‖My∞ − Zty∞‖ ≤ βt

√
nL‖y∞‖,

where used the spectral properties of M and Assumption II.2
to get the first inequality and the spectral properties of Z to
get the second inequality. Applying Lemma III.3 yields the
result of this Corollary.

B. Second order guarantees

In this subsection, we provide second order guarantees for
the NEAR-DGDt method. Specifically, using recent results
stemming from dynamical systems theory, we will prove that
NEAR-DGDt almost surely avoids the strict saddles of the
Lyapunov function Lt when initialized randomly. Hence, if
Lt satisfies the strict saddle property, NEAR-DGDt converges
to minima of Lt with probability 1. We begin by listing a
number of additional assumptions and definitions.

Assumption III.11. (Differentiability) The functions f is C2.

Assumption III.11 implies that the function Lt is also C2.

Definition 2. (Differential of a mapping) [Ch. 3, [28]] The
differential of a mapping g : X → X , denoted as Dg(x), is
a linear operator from T (x) → T (g(x)), where T (x) is the
tangent space of X at point x. Given a curve γ in X with
γ(0) = x and dγ

dt (0) = v ∈ T (x), the linear operator is
defined as Dg(x)v = d(g◦γ)

dt (0) ∈ T (g(x)). The determinant
of the linear operator det(Dg(x)) is the determinant of the
matrix representing Dg(x) with respect to an arbitrary basis.



Definition 3. (Unstable fixed points) The set of unstable fixed
points A?g of a mapping g : X → X is defined as A?g = {x ∈
X : g(x) = x,maxi |λi(Dg(x))| > 1}.

Definition 4. (Strict saddles) The set of strict saddles X ? of a
function f : X → R is defined as X ? = {x? ∈ X : ∇f(x?) =
0, λ1(∇2f(x?)) < 0}.

We can express NEAR-DGDt as a mapping g : Rnp → Rnp,

g(y) = Zty − α∇f(Zty),

with Dg(y) = Zt
(
I − α∇2f(Zty)

)
. Let us define the set

of unstable fixed points A?g of NEAR-DGDt and the set
of strict saddles Y? of the Lyapunov function (6) following
Def. 3 and 4, respectively. Corollary 1 of [20] implies that if
det(Dg(y)) 6= 0 for all y ∈ Rnp and Y? ⊂ A?g , then NEAR-
DGDt almost surely avoids the strict saddles of (6). We will
show that this is indeed the case in Theorem III.12.

Theorem III.12. (Convergence to 2nd order stationary
points) Let {yk} be the sequence of iterates generated by
NEAR-DGDt under steplength α < 1/L. Then if the Lyapunov
function Lt satisfies the strict saddle property, {yk} converges
almost surely to 2nd order stationary points of Lt under
random initialization.

Proof. We begin this proof by showing that det(Dg(y)) 6=
0 for every y ∈ Rnp. Let λi(∇2f(Zty)) be the eigen-
values of the Hessian ∇2f(Zty). Assumption II.2 im-
plies that λi(∇2f(Zty)) < L for all i ∈ {1, ..., np}.
Using standard properties of the determinant, we ob-
tain, det (Dg(x)) = det(Zt) det(I − α∇2f(Zty)) =
(
∏
i λ

t
i(Z))

(∏
i(1− αλi(∇2f(Zty))

)
. Thus, det (Dg(x)) 6=

0 by the positive-definiteness of Z and α < 1/L.
We will now confirm that Y? ⊂ A?g . Every critical point y?

of (6) satisfies ∇Lt(y?) = 0, namely Zt∇f(Zty?)+ 1
αZ

ty?−
1
αZ

2ty? = 0. Since Z is positive-definite and by extension
non-singular, we can multiply both sides of the equality above
with αZ−t and re-arrange the resulting terms to obtain y? =
g(y?). Finally, the Hessian of (6) at y? is given by,

∇2Lt(y?) = Zt∇2f(Zty?)Zt +
1

α
Zt(I − Zt)

=
1

α
(I −Dg(y?))Zt.

(14)

We define the matrix P := αZ−
t
2∇2Lt(y?)Z−

t
2 . Using

the positive-definiteness of Z, we obtain from (14) I −
Dg(y?) = α∇2Lt(y?)Z−t = Z

t
2PZ−

t
2 , which implies that

(I −Dg(y?)) and P are similar matrices and have identi-
cal spectrums. Moreover, the matrix Z−

t
2 is symmetric by

Assumption II.1. Hence, P and
(
α∇2Lt(y?)

)
are congruent

and by Sylvester’s law of inertia [Theorem 4.5.8, [29]] they
have the same number of negative eigenvalues. Given that
∇2Lt(y?) has at least one negative eigenvalue by Def. 4, we
conclude that so does P and there exists index i such that
1 − λi(Dg(y?)) < 0 or λi(Dg(y?)) > 1. Applying [Corol-
lary 1, [20]] establishes the desired result.

Before we conclude this section, we make one final remark
on the asymptotic behavior of NEAR-DGDt as the parameter
t becomes large.

Corollary III.13. (Convergence to SOS) Let {xk} and {yk}
be the sequences of NEAR-DGDt iterates produced by (5a)
and (5b), respectively, from initial point y0 with t(k) = t ∈
N+ and steplength α < 1/L. Moreover, suppose that y∞

is the limit point of NEAR-DGDt and let x∞ = Zty∞ =
[(x∞1 )′, ..., (x∞n )′]′. Then x∞i = x∞j for all i 6= j and
x∞i approaches the 2nd order stationary solutions (SOS) of
Problem 1 as t→∞ for all i ∈ V .

Proof. By Theorems III.8 and III.12, we have {yk} → y∞,
where y∞ is a minimizer of Lt. Since Z is non-singular, we
also have {xk} → x∞ = Zty∞. As t → ∞, Lemmas III.4
and III.10 yield ‖x∞i − x̄∞‖ → 0 and ‖∇f(x̄∞)‖ →
0, respectively, implying that x∞i and x̄∞ approach each
other and the critical points of f . Finally, ∇2Lt(y∞) � 0
by Theorem III.12, where ∇2Lt(y∞) = Zt∇2f(x∞)Zt +
α−1Zt(I−Zt). Multiplying this relation with the matrix M on
both sides, we obtain M∇2Lt(y∞)M = M∇2f(x∞)M. As
t→∞, Lemma III.4 yields M∇2Lt(y∞)M→M∇2f(1n⊗
x̄∞)M = n−21n1′n ⊗ ∇2f(x̄∞). Therefore, ∇2f(x̄∞) � 0
by Sylvester’s law of inertia for congruent matrices [Theorem
4.5.8, [29]]. Based on the above, we conclude that NEAR-
DGDt approaches the 2nd order stationary solutions of Prob-
lem 1 as t→∞.

IV. NUMERICAL RESULTS

We evaluate the empirical performance of NEAR-DGD on
the following regularized quadratic problem,

min
x∈Rp

f(x) =
1

2

n∑
i=1

(
‖x‖2Qi

)
+

1

4
‖x‖4DI ,

where I ∈ {1, ..., p} is some positive index and Qi ∈ Rp×p
and DI ∈ Rp×p are diagonal matrices constructed as follows:
qijj < 0 if j = I and qijj > 0 otherwise, and DI = c · eIe′I ,
where c > 0 is a constant and eI is the indicator vector for the
Ith element. It is easy to check that f has a unique saddle point
at x = 0 and two minima at x? = ± 1

c

(√∑n
i=1−qiII

)
eI .

We can distribute this problem to n nodes by setting fi(x) =
1
2‖x‖

2
Qi+

1
4n‖x‖

4
DI

. Moreover, each fi has Lipschitz gradients
in any compact subset of Rp.

We set p = I = 4 for the purposes of our numerical
experiment. The matrices Qi were constructed randomly with
qijj ∈ (−1, 0) for j = I and qijj ∈ (0, 1) otherwise, and the
parameter c of matrix DI was set to 1. We allocated each fi
to a unique node in a network of size n = 12 with ring graph
topology. We tested 6 methods in total, including DGD [1],
[5], DOGT (with doubly stochastic consensus matrix) [8],
and 4 variants of the NEAR-DGD method: i) NEAR-DGD1

(one consensus round per gradient evaluation), ii) NEAR-
DGD5 (5 consensus rounds per gradient evaluation), iii) a
variant of NEAR-DGD where the sequence of consensus
rounds increases by 1 at every iteration, and to which we will



(a) Objective function error (b) Distance to x = 0 (saddle)

Fig. 1: Distance to f? (left) and to saddle point (right)

refer as NEAR-DGD+, and iv) a practical variant of NEAR-
DGD+, where starting from one consensus round/iteration, we
double the number of consensus rounds every 100 gradient
evaluations. We will refer to this last modification as NEAR-
DGD+

100. All algorithms were initialized from the same ran-
domly chosen point in the interval [−1, 1]np. The stepsize was
manually tuned to α = 10−1 for all methods.

In Fig. 1, we plot the objective function error f(x̄k) − f?
where f? = f(x?) (Fig. 1a) and the distance ‖x̄k‖ of the
average iterates to the saddle point x = 0 (Fig. 1b) versus the
number of iterations/gradient evaluations for all methods. In
Fig. 1a, we observe that convergence accuracy increases with
the value of the parameter t of NEAR-DGDt, as predicted
by our theoretical results. NEAR-DGD1 performs comparably
to DGD, while the two variants of NEAR-DGD paired with
increasing sequences of consensus rounds per iteration, i.e.
NEAR-DGD+ and NEAR-DGD+

100, achieve exact conver-
gence to the optimal value with faster rates compared to
NEXT. All methods successfully escape the saddle point of
f with approximately the same speed (Fig. 1b). We noticed
that the trends in Fig. 1b were very sensitive to small changes
in problem parameters and the selection of initial point.

In Fig. 2, we plot the objective function error f(x̄k) − f?
versus the cumulative application cost (per node) for all
methods, where we calculated the cost per iteration using the
framework proposed in [23],

Cost = cc ×#Communications + cg ×#Computations,

where cc and cg are constants representing the application-
specific costs of one communication and one computation
operation, respectively. In Fig. 2a, the costs of communication
and computation are equal (cc = cg) and NEXT outperforms
NEAR-DGD+ and NEAR-DGD+

100 since it requires only two
communication rounds per gradient evaluation to achieve exact
convergence. Conversely, in Fig. 2b, the cost of communica-
tion is relatively low compared to the cost of computation
(cc = 10−2cg). In this case, NEAR-DGD+ converges to the
optimal value faster than the remaining methods in terms of
total application cost.

(a) cg = 1, cc = 1 (b) cg = 1, cc = 10−2

Fig. 2: Objective function error as a function of cumulative
application cost (per node)

V. CONCLUSION

NEAR-DGD [23] is a distributed first order method that per-
mits adjusting the amounts of computation and communication
carried out at each iteration to balance convergence accuracy
and total application cost. We have extended to the nonconvex
setting the analysis of NEAR-DGDt, a variant of NEAR-
DGD performing a fixed number of communication rounds at
every iteration, which is controlled by the parameter t. Given
a connected, undirected network with general topology, we
have shown that NEAR-DGDt converges to minimizers of a
customly designed Lyapunov function and locally approaches
the minimizers of the original objective function as t becomes
large. Our numerical results confirm our theoretical analysis
and indicate that NEAR-DGD can achieve exact convergence
to the 2nd order stationary points of Problem (1) when the
number of consensus rounds increases over time.
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