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Abstract—We derive time and energy-optimal control policies
for a Connected Autonomous Vehicle (CAV) to complete lane
change maneuvers in mixed traffic. The interaction between
CAVs and Human-Driven Vehicles (HDVs) requires designing
the best possible response of a CAV to actions by its neighboring
HDVs. This interaction is formulated using a bilevel optimization
setting with an appropriate behavioral model for an HDV’s. Then,
an iterated best response (IBR) method is used to determine a
Nash equilibrium. However, we also show that when a common
and simple-to-detect condition applies, the optimal lane-changing
policy is in fact independent of HDV behavior with a CAV
changing lanes by cooperating with another CAV in the target
lane and always merging ahead of it. Thus, the dependence on the
interaction between CAVs and HDVs may be eliminated in such
cases. Simulation results are included to show the effectiveness of
our controllers in terms of cost, safety guarantees, and disruption
to the traffic flow when uncontrollable HDVs are present.

I. INTRODUCTION

The emergence of Connected Autonomous Vehicles (CAVs),
also known as “self-driving cars”, has the potential to sig-
nificantly transform the operation of transportation networks
and improve their performance by assisting drivers to make
decisions so as to reduce travel times, energy consumption,
air pollution, traffic congestion, and accidents. In highway
driving, this potential manifests itself in automating lane-
changing maneuvers through proper trajectory planning [1]
or accelerated maneuver evaluation using car-following models
[2]. The automated lane changing problem has attracted
increasing attention [3]–[5]. When controlling a single vehicle,
the feasibility of a maneuver depends on the state of nearby
traffic [6], and motion planning may be designed as in [7].
However, a lane change maneuver is often infeasible without
the cooperation of other vehicles, especially under heavier
traffic conditions. Several studies have addressed infeasibility
issues for CAVs to perform lane change maneuvers under
vehicle cooperation [8], [9]. Moreover, cooperation among
CAVs provides opportunities to perform automated lane change
maneuvers both safely [10] and optimally [11].

In our previous work, assuming a 100% CAV penetration
rate, we analytically derived cooperative joint time and energy-
optimal controllers [12] from the point of view of a CAV
executing a lane change maneuver. This “selfish” approach,
however, may adversely affect the overall traffic throughput,
a problem that was addressed in [13] by seeking to improve
the performance of the whole traffic network in terms of both
maximal throughput and minimal average maneuver time.
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However, 100% CAV penetration is not likely in the near
future, raising the question of how to benefit from the presence
of at least some CAVs in mixed traffic where CAVs must
interact with Human-Driven Vehicles (HDVs). This is a
challenging task that has become the focus of recent research.
For example, adaptive cruise controllers have been developed in
mixed traffic environments with platoon formulations for CAVs
in [14], while car-following models are implemented to have a
deterministic quantification of HDV states in [15]. In an effort
to accurately model human driver behavior, [16] defines the
concept of social value orientation for autonomous driving to
quantify an agent’s degree of prosocialness or individualism and
applies a game-theoretic formulation to predict human behavior.
Vehicle interactions are considered in [17], [18] by using bilevel
optimization to assist autonomous vehicles to apply the best
possible response to an opponent’s action. Towards the same
goal, learning-based techniques are used in [19], [20].

In this paper, we consider the joint time and energy-optimal
automated lane change problem in the presence of mixed traffic,
while at the same time limiting the overall traffic throughput
disruption. As shown in [13], a key step in this problem is
to determine the optimal pair of vehicles in the fast lane
that the lane-changing CAV can move in between, as shown
in Fig. 1. When the red vehicle is also a CAV, this triplet
can effectively cooperate leading to significant performance
improvements over a baseline of 100% HDVs. Clearly, such
cooperation cannot be guaranteed when the red vehicle is
an HDV in Fig. 1, therefore minimizing travel time, energy
consumption and traffic disruption can no longer be ensured.
The contribution of this paper is the computation of optimal
lane change trajectories for vehicle C in Fig. 1 along the
longitudinal traffic direction in a mixed traffic setting where
the two CAVs in the figure must interact with the HDV. We
limit ourselves to the triplets shown since they provide an
opportunity for two CAVs to cooperate while also interacting
with the HDV (if the relative position between HDV and CAV
1 is reversed, the problem is much simpler, while if both fast
lane vehicles are HDVs the problem is harder and the subject
of ongoing research). For CAV C to safely merge ahead of the
HDV, it must account for this driver’s behavior since the HDV
is otherwise uncontrollable. However, another option is for
CAV C to merge ahead of the cooperating CAV 1, in which
case the HDV is constrained to merely “follow” CAV 1. In the
former case, a game-theoretic framework is established for the
interactive decision-making process between the CAVs and the
HDV. We use bilevel optimization to formulate this interaction
in which the behavior of the HDV is estimated and considered
as a constraint in the two optimization problems for the two
CAVs. The latter case requires the cooperation of the CAVs
and is robust to the HDV behavior which, therefore, becomes
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Figure 1: The basic lane-changing maneuver process.
irrelevant, while safety can still be guaranteed for all vehicles
involved. We derive optimal controllers for CAVs 1 and 2 in
both cases which can then be compared to select the optimal
one in the sense of minimizing an appropriate cost function.
Moreover, we show that this optimal binary decision boils
down to exceeding or not a threshold on the distance between
the HDV and CAV 1 at the start of the maneuver. Intuitively,
when this distance is small, it is optimal for CAV C to simply
merge ahead of CAV 1; conversely, when the distance is large,
CAV C has adequate space to position itself between the HDV
and CAV 1 without causing any disruption to the HDV, hence
also all traffic that follows it.

The rest of the paper is organized as follows. Section II
presents the formulation of the vehicle dynamics and problem
constraints. In Sections III and IV respectively, complete
optimal control solutions are provided for the policy of merging
ahead of the HDV (by solving a bilevel optimization problem)
and for merging ahead of the cooperating CAV 1. Section V
provides simulation results for several representative examples
and we conclude with Section VI.

II. PROBLEM FORMULATION
The lane change maneuver is triggered by CAV C when

an obstacle (e.g.,. slow-moving vehicle) ahead is detected or
at any arbitrary time set by the CAV. We aim to minimize
the maneuver time and energy expended, while alleviating any
disruption to the fast lane traffic. Moreover, considering the
presence of HDVs, C also needs to be aware of the behavior
of its surrounding HDVs in order to guarantee safety, which
requires estimating and predicting the HDV’s behavior.

For every vehicle in Fig. 1, indexed by i = 1, C,H , its
dynamics take the form

ẋi(t) = vi(t), v̇i(t) = ui(t) (1)

where xi(t) is the current longitudinal position measured with
respect to a given origin, vi(t) and ui(t) are the speed and
(controllable) acceleration of vehicle i at time t, respectively.
The actions of vehicles 1, C,H are initiated at time t0, where
xC(t0) is the initial position of CAV C, and tf is the terminal
time when the longitudinal maneuver is completed. In this
paper, we do not include the lateral component of the lane
change maneuver, in which C solves a decentralized optimal
control problem seeking to jointly minimize the time and energy
consumed, since this is no different than the one presented in
[12]. The control input and speed for all vehicles are constrained
as follows:

uimin
≤ ui(t) ≤ uimax

, ∀t ∈ [t0, tf ]

vimin
≤ vi(t) ≤ vimax

, ∀t ∈ [t0, tf ] (2)

where uimin
< 0 and uimax

> 0 denote the minimum and
maximum acceleration for vehicle i, vimin > 0 and vimax > 0
are vehicle i’s allowable minimum and maximum speed, which
are determined by given traffic rules.

Safety Constraints. Let di(vi(t)) be the minimum speed-
dependent safe distance of vehicle i with respect to its
immediately preceding vehicle in the same lane:

di(vi(t)) = ϕvi(t) + δ (3)

where ϕ is the reaction time (generally adopted as ϕ = 1.8s
[21]), δ is a constant, and di(vi(t)) is specified from the center
of vehicle i to the center of its preceding vehicle. All vehicles
i = 1, C,H in Fig. 1, must satisfy the following constraints to
guarantee safety during any lane change maneuver:

x1(t)− xH(t) ≥ dH(vH(t)), ∀t ∈ [t0, tf ] (4a)
xC(tf )− xH(tf ) ≥ dH(vH(tf )), (4b)
x1(tf )− xC(tf ) ≥ dC(vC(tf )). (4c)

where (4a) is the rear-end safety constraint between CAV 1
and the HDV for all t ∈ [t0, tf ], whereas (4b),(4c) provide
safety guarantees needed only at the terminal time tf .

Traffic Disruption. We adopt the disruption metric intro-
duced in [22] which includes both a position and a speed
disruption each measured relative to its corresponding value
under no maneuver. In particular, for any vehicle i, the position
disruption dix, speed disruption div , and total disruption Di(t)
at time t are given by

dix(t) =

®
(xi(t)− x̄i(t))2 , if xi(t) < x̄i(t)

0, otherwise.
(5a)

div(t) = (vi(t)− vd,i)2 (5b)

Di(t) = γxd
i
x(t) + γvd

i
v(t) (5c)

where x̄i(t) = xi(t0) + vi(t0)(t − t0) is the position of i
when it maintains a constant speed vi(t0) and vd,i ≤ vmax

is the desired speed of vehicle i which matches the fast lane
traffic flow. The weights γx, γv are selected to form a convex
combination emphasizing one or the other term to reflect the
total disruption generated by vehicle i.

Referring to Fig. 1, we assume that CAV C has already
determined that it will overtake the HDV and perform the
lane change either ahead of it or ahead of CAV 1. In either
case, CAVs C and 1 can cooperate so that the maneuver
time is minimized while each CAV also minimizes its energy
consumption and the disruption caused to the HDV (hence,
all traffic behind it, if any). In the next two sections, each of
these two decisions by CAV C is analyzed and the optimal
trajectories are designed. By comparing the overall costs
resulting from each decision, we may then determine the
optimal one. We note that the latter maneuver can be executed
without any knowledge of the HDV behavior; the only possible
effect such a maneuver has on the HDV is causing some
disruption if HDV has to decelerate to maintain a safe distance
from CAV1.
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Figure 2: The relative position of triplet from t0 to t1
III. CAV C MERGES AHEAD OF HDV

Let us assume that at the start of the maneuver t0, we have
xC(t0) < xH(t0) < x1(t0). Thus, we begin by separating the
maneuver into two phases, [t0, t1) and [t1, tf ], where t1 is
defined as

t1 = min{t | t ≥ t0, xH(t) ≤ xC(t)} (6)

Specifically, t1 denotes the first time instant that the HDV
considers any possible reaction to CAV C (if xC(t0) ≥ xH(t0),
then t1 = t0). In other words, there is no interaction between
CAV C and the HDV until t1. The relative position of the
triplet over the two phases is shown in Fig. 2. In Phase I, CAV
C plans a trajectory which jointly minimizes t1 and its energy
consumption over [t0, t1). In Phase II, CAV C estimates the
behavior of the HDV and solves a bilevel optimization problem
leading to a solution based on an iterated best response (IBR)
algorithm.

A. Optimal Trajectory for CAV C in Phase I

Assuming that CAV 1 and HDV travel with constant speed
in Phase I, CAV C can solve the following optimal control
problem termed OCP[t0,t1]:

JIC,1 = min
t1,uC(t)

∫ t1

t0

[αt +
αu
2
u2C(t)]dt+ αv(vC(t1)− vd,1)2

(7a)
s.t. (1), (2)

xC(t1) = xH(t1) (7b)
t0 ≤ t1 ≤ T (7c)

The cost (7a) combines the travel time t1 − t0 and an
energy term u2C(t) along with a terminal cost on the speed
vC(t1), where α{u,t,v} are adjustable non-negative [properly
normalized weights. Constraint (7b) follows from the definition
of t1, and (7c) gives a maximum allowable time T for CAV
C to perform lane change maneuvers. If (7c) is violated, the
maneuver is aborted at t0.

However, OCP[t0,t1] may be infeasible if the initial states
are such that vH(t0) > vC(t0), xH(t0) > xC(t0) and the
allowable maneuver time T is small. To allow for such possible
infeasibility, we consider two additional policies that CAV C
can adopt. The first is to simply speed up with a constant
acceleration uimax so that

uC(t) =

{
uCmax

, ∀t ∈ [t0,
vCmax−vC(t0)

uCmax
]

0, ∀t ∈ [
vCmax−vC(t0)

uCmax
, t1]

(8)

which allows for the possibility that the maximum speed
vCmax

is achieved before t1, which is obtained from xC(t1) =

xH(t0) + vH(t0)(t1 − t0). Using the same cost function as
(7a) with uC(t) in (8) we obtain the cost JIC,2 for this constant
acceleration policy.

The second alternative policy exploits the cooperation
capabilities between CAVs, so that CAV 1 may decelerate
to induce a deceleration of HDV due to the safety requirement
(4a). If HDV decelerates, the time for C to catch up with HDV
is reduced. The resulting OCP can be formulated as

JIC,3 = min
t1,u1(t),uC(t)

∫ t1

t0

[
αu
2
u21(t) +

αu
2
u2C(t) + αt]dt

+ αv[(vC(t1)− vd,C)2 + (v1(t1)− vd,1)2] (9a)
s.t. (1), (2), (7c)

x1(t1) = xC(t1) + dH(vH(t1)) (9b)

Different from (7a), here (9a) minimizes travel time, energy,
and speed disruption for both CAVs 1 and C. The constraint
(9b) ensures that the rear-end safety constraint (4a) is activated
by CAV 1’s action. Note that (7b) is used in (9b) to eliminate
any dependence on xH(t) and we set dH(vH(t1)) = ϕvH(t0)+
δ. Thus, the third cost JIC,3 is obtained.

The solution to OCPs (7) and (9) can be analytically
obtained through standard Hamiltonian analysis similar to OCPs
formulated and solved in [12]. Thus, we omit the details. In
summary, the non-cooperative OCP (7), constant acceleration
formulation (8), and cooperative OCP (9) provide three different
control policies for CAV C and we can select the optimal one
through

JIC = min{JIC,1, JIC,2, JIC,3}, (10)

Consequently, we can also determine the optimal time t∗1
marking the end of Phase I for CAV C.

B. Optimal Trajectory for CAV C in Phase II

The ideal optimal trajectory for CAV C in Phase II in order
to merge ahead of the HDV is obtained by an OCP we term
OCP[t∗1 ,tf ]

, since it shares the same cost function as OCP[t0,t1]

in (7a) except for the new time interval. It also shares the
vehicle dynamics (1), speed and control limits (2), and (7c)
which becomes t∗1 ≤ tf ≤ T . It differs only in the terminal
state constraint which is now the rear-end safety requirement:

xC(tf ) ≥ xH(t∗1) + vH(t∗1)(tf − t∗1) + dH(vH(t∗1)) (11)

The solution is “ideal” because it assumes the HDV travels at
constant speed in (11), hence ignoring any reaction that the
human driver might have when detecting the lane change action
of CAV C. In reality, for C to complete this maneuver safety
and optimally, it has to estimate the behavior of H and adjust its
own trajectory based on H’s response. Similarly, H then needs
to adjust its trajectory by reacting to C’s response. In order to
model this process, we formulate a bilevel optimization problem
for each i = 1, C,H in the following three subsections. We
emphasize that this problem is solved by CAV C and describe
its structure in Fig. 3.



Figure 3: Bilevel optimization problem solved by CAV
C. Initialization consists of solving OCP[t0,t1] to obtain
t∗1 and OCP[t∗1 ,tf ]

to obtain t∗f , x
∗
C(t), v∗C(t). In addition,

x∗1(t) = x1(t∗1) + v1(t∗1)(t∗f − t∗1), v∗1(t) = v1(t∗1). Upon
convergence, the lane change maneuver is executed with the
final x∗C(t), v∗C(t), t ∈ [t∗1, t

∗
f ].

1) Estimate HDV Trajectory (OCP-HDV): We estimate the
trajectory of an HDV by assuming that a human driver considers
three factors: (i) maintaining a constant speed that minimally
deviates from some desired value vd,H , (ii) if it needs to change
speeds, it does so by minimizing its acceleration/deceleration,
which also saves fuel, (iii) guaranteeing its safety (collision
avoidance). To model the latter, we define a safety function
s(·) as a decreasing function in xC(t)− xH(t) since a closer
distance between H and C corresponds to a higher collision
risk. We adopt the sigmoid function:

s(xC(t)− xH(t)) =
1

1 + µ exp (µ(xC(t)− xH(t)− d))
(12)

where µ is adjustable to capture different unsafe regions for
different drivers. The effect of µ is shown in Fig. 4. One can
also adjust d to define the size of the unsafe region.

Figure 4: Sigmoid safety functions, d = 20

We can now formulate OCP-HDV as the problem whose
solution is the estimated trajectory that CAV C uses in adjusting
its own response by updating uC(t):

min
uH(t)

∫ t∗f

t∗1

[
βu
2
u2H(t) + βv(vH(t)− vd,H)2

+ βss(x
∗
C(t)− xH(t))]dt (13a)

s.t. (1), (2)

x∗1(t)− xH(t) ≥ dH(vH(t)), ∀t ∈ [t∗1, t
∗
f ] (13b)

where β{u,v,s} are the non-negative appropriately normalized
weights that describe the characteristics of the HDV, i.e., the
behavior of the driver. Constraint (13b) denotes the safety
constraint between the HDV and its current preceding vehicle
CAV 1 for all t ∈ [t∗1, t

∗
f ]. We immediately note that x∗C(t) and

x∗1(t) are unknown to the HDV (except in the first iteration in
Fig. 3 where the initial “ideal” trajectories are used). In fact,
these are determined by the two lower-level problems (14) and
(15) defined next, in response to the HDV’s behavior expressed
through x∗H(t), v∗H(t), t ∈ [t∗1, t

∗
f ] from (13).

2) Update CAV C Trajectory (OCP-CAVC): Similar to
OCP-HDV, we formulate a bilevel optimization problem
OCP-CAVC for CAV C:

min
uC(t)

∫ t∗f

t∗1

αu
2
u2Cdt+ αv(vC(t∗f )− vd,C)2 (14a)

s.t. (1)(2)

xC(t∗f ) ≥ x∗H(t∗f ) + dH(v∗H(t∗f )) (14b)

The position x∗H(t∗f ) in safety constraint (14b) is the optimal
terminal position of H given by (13). Problem (14) then
provides the best response strategy of CAV C and determines
x∗C(t), v∗C(t), u∗C(t), t ∈ [t∗1, t

∗
f ]. Note that this information can

now be provided to OCP-CAVC as shown in Fig. 3.
3) Update CAV 1 Trajectory (OCP-CAV1): Since CAV 1

is cooperating with CAV C, CAV 1’s strategy is based on
the optimal policy of CAV C by applying a similar bilevel
optimization problem OCP-CAV1:

min
u1(t)

∫ t∗f

t1

αu
2
u21(t)dt+ αv(v1(t∗f )− vd)2 (15a)

s.t. (1)(2)

x1(t∗f )− x∗C(t∗f ) ≥ dC(v∗C(t∗f )). (15b)

The position x∗C(t∗f ) in safety constraint (15b) is the optimal
terminal position of C from OCP-CAVC. The solution of (15)
provides the optimal trajectories x∗1(t), v∗1(t), u∗1(t), t ∈ [t∗1, t

∗
f ]

for CAV 1. Note that this information can now be provided to
OCP-CAVC as shown in Fig. 3.

4) Iterated Best Response: The solution to each of the
problems (13), (14) and (15) is complicated by the fact that
it is coupled to the others through safety constraint or safety
cost. Nonetheless, the problems can be jointly solved through
an iterated best response (IBR) process [23] as shown in Fig.
3 to obtain a Nash equilibrium and the corresponding optimal
trajectory of CAV C, x∗C(t), v∗C(t), t ∈ [t∗1, t

∗
f ]. This, in turn,

provides the optimal cost for Phase II, JIIC . Combining this
with JIC in (10) yields the optimal cost of the CAV C policy
“merge ahead of HDV”, JC,H = JIC + JIIC . The IBR process
is summarized in Algorithm 1.

Note that problems (14) and (15) can be solved analytically
through standard Hamiltonian analysis as in [12]. The solution
of (13) is complicated by the presence of the nonlinear safety
function, but can be numerically solved.

IBR convergence. The convergence of IBR processes as
in Fig. 3 is generally hard to establish. However, the specific
structure of the problems here facilitates such analysis. In
particular, convergence depends on the initial states of the



Algorithm 1 Iterated Best Response Process
input : Initial Conditions xi(t∗1), vi(t

∗
1), i = 1, C,H , Relax-

ation Constant λ,Desired speed vd,i, Maximum Time
T , Iteration rounds N , Error Tolerance ε.

output : t∗f , Optimal Longitudinal Trajectories:
x∗i (t), v

∗
i (t), u∗i (t), t ∈ [t∗1, t

∗
f ], i = 1, C

begin
t∗f , xC,1(t), vC,1(t), t ∈ [t∗1, t

∗
f ]← Solve OCP[t∗1 ,t

∗
f ]

x1,1(t) = x1(t∗1) + v1(t∗1)(t− t∗1),
v1,1(t) = v1(t∗1), t ∈ [t∗1, t

∗
f ],

while t∗f ≤ T do
for k = 1 to N do

xH,k(t∗f ), vH,k(t∗f )← Solve OCP-HDV (13)
if k ≥ 2 then

if ||u∗C,k(t)− u∗C,k−1(t)|| ≤ ε then
break

else
xC,k+1(t), vC,k+1(t), uC,k+1(t),← Solve
OCP-CAVC (14)
x1,k+1(t), v1,k+1(t), u1,k+1(t),← Solve
OCP-CAV1 (15)
k = k + 1

if ||u∗C,N (t)− u∗C,N−1(t)|| > ε then
t∗f = λt∗f

vehicles. Since the process starts with (13), observe that its
solution depends on x∗1(t) only through the constraint (13b)
and on x∗C(t) through the safety function s(xC(t) − xH(t)).
Therefore, if the distance between vehicles 1 and H is
larger than the minimum safety distance of the HDV, the
constraint (13b) remains inactive and the dependence on
x∗1(t) is eliminated. Similarly, if C’s speed is greater than
H at t1, their relative distance will increase and the value of
s(xC(t)−xH(t)) becomes zero, leading to the solution of (13)
becoming independent of x∗C(t) as well, hence leading to the
convergence of the iteration process. Conversely, if vehicles
1 and H are close, or the speed of the HDV exceeds that of
C, the dependence on x∗1(t) and x∗c(t) may not vanish, hence
reducing the rate of convergence. In this case, however, as
we will see next, the optimal action of CAV C becomes that
of merging ahead of CAV 1, thus rendering the IBR process
irrelevant.

A formal convergence analysis of the IBR process has yet to
be carried out. In practice, to implement the IBR process, we
predetermine a number of iterations N and error tolerance ε. If
the process has not converged within ε after N iterations, we
relax the terminal time and repeat the process. If the terminal
time reaches a given threshold, we end the process and apply
the final u∗C(t) as the CAV C control.

IV. CAV C MERGES AHEAD OF CAV 1

In this section, we consider the alternative CAV C policy to
merge ahead of CAV 1 rather than the HDV. We immediately

see that if this policy leads to an optimal cost JC,1 such
that JC,1 ≤ JC,H , this makes it not only optimal but also
independent of the HDV behavior, since the HDV’s action
cannot affect CAV C and the HDV is limited to maintaining a
safe distance from CAV 1.

The optimal trajectory in this case is obtained jointly with
that of the cooperating CAV 1 by solving the problem:

min
tf ,u1,uC

∫ tf

t0

[
αu
2

(u21(t) + u2C(t)) + αt]dt

+
αv
2

[(vC(tf )− vd,C)2 + (v1(tf )− vd,1)2] (16a)

s.t. (1)(2)

xC(tf )− x1(tf ) = d1(v1(tf )). (16b)

where α{t,u,v} are adjustable properly normalized weights
for travel time, energy, and speed deviation, respectively.
The problem (16) can be analytically solved by standard
Hamiltonian analysis.

Let xi(t) := (xi(t), vi(t)) and λi(t) = (λxi (t), λvi (t))
T be

the state and costate vector for vehicles i = 1, C, respec-
tively. The Hamiltonian for (16) with state constraint, control
constraint adjoined is

H(xC, λC, uC ,x1, λ1, u1) =
1

2
u2C +

1

2
u21 + αt

+ λxCvC + λvCuC + λx1v1 + λv1u1

+ µ1(v1min
− v1) + µ2(v1 − v1max

)

+ µ3(u1min
− u1) + µ4(u1 − u1max

)

+ η1(vCmin
− vC) + η2(vC − vCmax

)

+ η3(uCmin
− uC) + η4(uC − uCmax

). (17)

The Lagrange multipliers µ1, µ2, µ3, µ4, η1, η2, η3, η4 are posi-
tive when their corresponding constraints are active and become
0 when the constraints are inactive. The problem has an
unspecified terminal time tf , and the terminal position of
vehicles 1, C are constrained by a function ψ := xC(tf ) −
x1(tf )−ϕv1(tf )− δ = 0. Beside, the problem has a terminal
cost φ := αv

2 [(v1(tf )−vd,1)2+(vC(tf )−vd,C)2]. The terminal
constraint and cost are not the explicit function of time. The
transversality condition is given as

H(xC, λC, uC ,x1, λ1, u1)|t=tf = 0, (18)

with λ(tf ) = (∂φ∂x + νT ∂ψ∂x )T |t=tf as the costate boundary
conditions, where ν denotes a Lagrange multiplier. The Euler-
Lagrange equations become

λ̇xC = − ∂H
∂xC

= 0,

λ̇vC = − ∂H
∂vC

= −λxC + η1 − η2,

λ̇x1 = − ∂H
∂x1

= 0,

λ̇v1 = −∂H
∂v1

= −λx1 + µ1 − µ2, (19)



and the necessary conditions for optimality are

∂H

∂uC
= αuuC(t) + λvC(t)− η3 + η4 = 0,

∂H

∂u1
= αuu1(t) + λv1(t)− µ3 + µ4 = 0. (20)

Suppose all the constraints are inactive for t ∈ [t1, tf ], we have
µ1 = µ2 = µ3 = µ4 = η1 = η2 = η3 = η4 = 0. Apply the
Eular-Lagrange equations in (19), we get λ̇x1 = λ̇xC = 0 and
λ̇v1 = −λx1(t), λ̇vC = −λxC(t) which imply that λx1 = a1, λ

x
C =

aC and λv1 = −(a1t + b1), λvC = −(aCt + bC), respectively.
The parameters a1, b1, aC , bC here are integration constants.
From the optimality condition (20),we have

αuu1(t) + λv1 = 0, (21a)
αuuC(t) + λvC = 0. (21b)

Consequently, we obtain the following optimal solutions

u∗1(t) =
1

αu
(a1t+ b1), (22a)

u∗C(t) =
1

αu
(aCt+ bC), (22b)

v∗1(t) =
1

αu
(
1

2
a1t

2 + b1t+ c1), (22c)

v∗C(t) =
1

αu
(
1

2
aCt

2 + bCt+ cC), (22d)

x∗1(t) =
1

αu
(
1

6
a1t

3 +
1

2
b1t

2 + c1t+ d1), (22e)

x∗C(t) =
1

αu
(
1

6
aCt

3 +
1

2
bCt

2 + cCt+ dC), (22f)

where c1, d1, cC , dC are also integration constants. Moreover,
considering the boundary condition of the costate vector at
time tf , we have λx1(tf ) = a1, λ

x
C(tf ) = aC and

λx1(tf ) = (
∂φ

∂x1
+ ν

∂ψ

∂x1
)|t=tf = −ν, (23a)

λv1(tf ) = (
∂φ

∂v1
+ ν

∂ψ

∂v1
)|t=tf = αv(v1(tf )− vd,1)− νϕ,

(23b)

λxC(tf ) = (
∂φ

∂xC
+ ν

∂ψ

∂xC
)|t=tf = ν, (23c)

λvC(tf ) = (
∂φ

∂vC
+ ν

∂ψ

∂vC
)|t=tf = αv(vC(tf )− vd,C).

(23d)

The transversality condition (18) gives the following relation-
ship

αu
2
u2C(tf ) +

αu
2
u21(tf ) + αt + λxC(tf )vC(tf )

+ λvC(tf )uC(tf ) + λx1(tf )v1(tf ) + λv1(tf )u1(tf ) = 0
(24)

Therefore, combining all the equations (21)-(24), we can solve
the following nonlinear algebraic equations for ai, bi, ci, di, i =

1, C and tf , ν:

a1 = −ν, (25a)
ac = ν, (25b)
a1tf + b1 = αv(vd,1 − v1(tf )) + νϕ, (25c)
aCtf + bC = αv(vd,C − vC(tf )), (25d)
1

αu
(
1

2
a1t

2
1 + b1t1 + c1) = v1(t1), (25e)

1

αu
(
1

2
aCt

2
1 + bCt1 + cC) = vC(t1), (25f)

1

αu
(
1

6
a1t

3
1 +

1

2
b1t

2
1 + c1t1 + d1) = x1(t1), (25g)

1

αu
(
1

6
aCt

3
1 +

1

2
bCt

2
1 + cCt1 + dC) = xC(t1), (25h)

xC(tf )− x1(tf ) = ϕv1(tf ) + δ, (25i)

− 1

2
(b2C + a2C) + αuαt + (aCcC + a1c1) = 0. (25j)

A solution for t∗f and x∗i (t), v
∗
i (t), u∗i (t), i = 1, C for t ∈

[t0, t
∗
f ] can be analytically obtained. The corresponding cost is

denoted by JC,1. Clearly, if JC,1 ≤ JC,H then CAV C selects
this policy which depends only on the cooperation between
CAVs 1 and C, thus making it independent of the HDV’s
behavior. Lastly, the HDV trajectory, in this case, is estimated
using (13) with βs = 0, since CAV C would not merge ahead
of the HDV.

V. SIMULATION RESULTS

This section provides simulation results illustrating the time
and energy optimal lane changing trajectories for each CAV in
mixed traffic and illustrates when CAV C should merge ahead
of CAV 1 so as to render the maneuver independent of the
HDV behavior. Our simulation setting is that of Fig.1. The
allowable speed range is v ∈ [15, 35]m/s, and the acceleration
of vehicles is limited to u ∈ [−7, 3.3]m/s2. The desired speed
for the CAVs is considered as the traffic flow speed, which is
set to 30m/s. The desired speed for HDV is assumed to be the
same as its initial speed. To guarantee safety, the inter-vehicle
safe distance is given by δ = 1.5m, and the reaction time is
ϕ = 0.6s. The disruption in (5c) is evaluated with parameters
γx = 0.5, γv = 0.5. When any of the problems (13), (14), or
(15) is infeasible or whenever the optimal trajectory of C does
not converge, we relax the terminal time with a relaxation rate
λ = 1.8. The numerical solutions to the optimization problems
are obtained using an interior point optimizer (IPOPT) on an
Intel(R) Core(TM) i7-8700 3.20GHz.

“Merge ahead of HDV” policy. As discussed in Section
III, in order for CAV C to evaluate the cost of this policy, it
breaks down its trajectory into two phases if its initial position
is behind the HDV. Thus, in Phase I, we solve problems (7),
(9), and (8) to obtain the minimum cost, hence the optimal
trajectory for Phase I. The weights α{t,u,v} in (7) and (9) are
set to 0.55, 0.2, and 0.25, respectively. The maximum maneuver
time is set as T = 15s. If any of the OCPs is infeasible in this
phase, its corresponding cost is set as “Inf”. The results are
shown in Table I, where we see that, in this case, it is optimal
for CAV C to travel with constant acceleration and t∗1 = 3.53s.



Table I: Vehicle C Sample Results in Phase I.

OCPs
States XC(t0)

[m, m/s]
X1(t0)
[m, m/s]

XH(t0)
[m, m/s] cost I t1

[s]

(7) [0,23] [30,28] [10,26] Inf Inf
(9) [0,23] [30,28] [10,26] 2.99 4.18
(8) [0,23] [30,28] [10,26] 2.73 3.53

Table II: Vehicle C sample results for complete maneuvers

Cases
States XC(t0)

[m, m/s]
X1(t0)
[m, m/s]

XH(t0)
[m, m/s] cost tf

[s]
dist
[m]

C merges ahead of HDV [0,23] [30,28] [10,26] 4.47 5.74 27.07
C merges ahead of CAV 1 [0,23] [30,28] [10,26] 6.84 6.06 27.07
C merges ahead of HDV [0,24] [20,28] [0,24] 4.37 3.41 20
C merges ahead of CAV 1 [0,24] [20,28] [0,24] 3.99 5.29 20

Proceeding to Phase II, the initial conditions are xC(t∗1) =
101.92m, vC(t∗1) = 34.67m/s, x1(t∗1) = 128.99m, v1(t∗1) =
28m/s, xH(t∗1) = 101.92m, vH(t∗1) = 26m/s. We now solve
problems (13), (14), and (15) followed by the IBR process
described in Fig. 3. The weights for OCP-HDV in (13a) are
set to βu = 0.9, βv = 0.1, βs = 0.1. Additionally, we define
µ = 1, d = 0 in (12) when CAV C is in the unsafe region of
the HDV. We set the maximum number of iterations for the IBR
process to N = 5 (for the set of simulations results considered
here, the process always converged within 5 iterations).

“Merge ahead of CAV 1” policy. Similar to the previous
case, we evaluate the cost of this policy by solving problem
OCP (16) using the same initial conditions as for the “Merge
ahead of HDV” policy.

Computational cost. Even though an analytical solution
of (16) can be obtained, we considered here the “worst case”
from a computational cost perspective and solved this problem
numerically where our results took an average of 204 ms. We
also note that the OCPs (13), (14), (15) each took an average
of 50 ms to solve.

The optimal trajectories over t0, t∗f for all vehicles with the
initial states defined in Table I are shown in Fig. 5. In Fig. 5(a),
when CAV C merges ahead of the HDV, we observe that the
purple line (CAV C) intersects the red line (HDV) at t∗1 = 3.53s.
The purple line overlaps the yellow line (safe distance ahead
of HDV) around the terminal time t∗f = 5.74s. This illustrates
the safety guarantee throughout the lane change maneuver. In
Fig. 5(b), when CAV C merges ahead of CAV 1, the blue line
(CAV 1) overlaps the yellow line, which indicates that the HDV
is forced by CAV 1 to decelerate. At the terminal time, when
CAV C merges into the fast lane, the safety requirement is also
guaranteed (the gap between the purple and blue lines at t∗f ).
The total optimal costs and maneuver times for the two policies
are summarized in Table II. It can be seen that the optimal
policy depends on the distance dist := x1(t1) − xH(t1): as
expected, when this distance is large, it is optimal for CAV C
to merge ahead of the HDV, otherwise it is optimal to merge
ahead of CAV 1, in which case the HDV behavior is irrelevant
to execute an optimal maneuver.

A. Optimal CAV C Policy Criterion

In this section, we seek a “simple-to-detect” criterion for
CAV C to determine an optimal policy while also taking into
account the traffic disruption as defined in (5c). Moreover,
we explore the effect of various parameters that characterize

the HDV behavior on policy determination. Specifically, the
weight βs on the safety component of the HDV cost function
in (13); the HDV’s desired speed vd,H ; and the parameter µ
in the safety cost (12).

In what follows, we omit Phase I and focus on the phase
of the maneuver that includes the interaction between the
HDV and the two CAVs. The initial speeds of vehicles are
set as v1(t1) = 28m/s, vC(t1) = vH(t1) = 24m/s, and, for
simplicity, the initial positions of CAV C and H are xH(t1) =
xC(t1) = 0. The cost weights are set as αu = 0.2, αv = 0.8,
βu = 0.9, βv = 0.1. Fixing βs = 0.1, µ = 1, Table III
summarizes the vehicle costs, disruption to the HDV, and
maneuver time under each of the two CAV C policies and for
different values of dist. The total cost is defined as the sum
of each of the costs from every vehicle (CAV 1, CAV2, and
HDV). Observe that when dist increases from 20m to 40m,
the optimal policy for CAV C switches from “merge ahead of
CAV 1” to “merge ahead of HDV” if C aims to complete a
minimal cost maneuver without taking disruption into account.
Note that the maneuver time for CAV C in the “merge ahead
of HDV” policy remains constant, which means dist does not
affect the feasibility and optimality of the maneuver under the
current settings. The unchanged maneuver time corresponds to
a fixed optimal policy for C under different dist. Therefore, the
cost for each vehicle i also remains constant. The total cost for
CAV C to “merge ahead of CAV 1” is monotonically increasing
with respect to dist, since completing the maneuver incurs a
higher effort by the CAVs with a larger x1(t1)− xC(t1). As
for the disruption to the HDV, observe that “merge ahead of
HDV” leads to some small HDV disruption while the policy
“merge ahead of CAV 1” causes no disruption at all.

The total cost and disruption comparison of CAV C merges
ahead of HDV and CAV C merges ahead of CAV 1 with respect
to dist under different βs, vd,H , µ are illustrated in Fig. 6, in
which the dashed lines represent the “merge ahead of HDV”
policy, while the straight lines represent the “merge ahead of 1”
policy. In Fig. 6(a), when increasing βs, the total cost will also
increase since a larger βs corresponds to a more conservative
driver. Once it is feasible for CAV C to change lanes under a
safety weight, continuing increasing βs will cause redundant
braking while consuming more energy. vd,H is the desired
speed of HDV, and a higher vd,H means both C and HDV
have to accelerate more to complete the maneuver safely and
to achieve the desired speed. The parameter µ represents how
the HDV defines its safe region. A larger µ corresponds to a
smaller safe region. Hence, decreasing µ means extending the
safe region. Similarly, by increasing µ the cost for the OCP
will also increase. Since all the parameters βs, vH,d, µ are
contained in HDV’s problem, which is irrelevant to the CAVs
if C chooses to merge ahead of 1. The total cost is independent
of all the above parameters and monotonically increases when
increasing the dist. The reason is that a larger dist means that
CAV C needs to spend more time and energy to merge ahead
of CAV 1 while forcing CAV 1 to decelerate harder to decrease
C’s travel time. Thus, a potential deceleration can lead to a
higher total cost. It is also worth noting that the dashed line
intersects with other lines. The intersections provide thresholds
for the relative distance between vehicles at the initial time



(a) Case 1: CAV C merges ahead of HDV (b) Case 2: CAV C merges ahead of CAV 1

Figure 5: Sample Optimal Trajectories for Vehicles 1, C,H

Table III: Cost and Disruption Comparison with βs = 0.1. Total Cost=
∑

i=1,C,H

Cost i, CAVs=
∑

i=1,C

Cost i

Cost HDV disruption Maneuver time [s]

C merges ahead of H C merges ahead of 1dist
[m] Total CAV1 CAVC HDV Total CAVs HDV

C merges
ahead of 1

C merges
ahead of H

C merges
ahead of 1

C merges
ahead of H

20 4.37 0.07 3.04 1.26 3.99 3.99 0.00 0.07 0.00 3.41 5.29
30 4.37 0.07 3.04 1.26 4.35 4.35 0.00 0.07 0.00 3.41 5.86
40 4.37 0.07 3.04 1.26 4.69 4.69 0.00 0.07 0.00 3.41 6.40
50 4.37 0.07 3.04 1.26 5.01 5.01 0.00 0.07 0.00 3.41 6.90
60 4.37 0.07 3.04 1.26 5.32 5.32 0.00 0.07 0.00 3.41 7.39
70 4.37 0.07 3.04 1.26 5.62 5.62 0.00 0.07 0.00 3.41 7.85
80 4.37 0.07 3.04 1.26 5.91 5.91 0.00 0.07 0.00 3.41 8.29
90 4.37 0.07 3.04 1.26 6.19 6.19 0.00 0.07 0.00 3.41 8.72
100 4.37 0.07 3.04 1.26 6.46 6.46 0.00 0.07 0.00 3.41 9.14

(a) Total cost under different parameters βs, vd,H , µ (b) Disruption of HDV under different parameters βs, vd,H , µ

Figure 6: Cost and disruption comparison



Table IV: Baseline Results Comparison

Scenarios TotalCost HDV disruption Maneuver Time [s]

Baseline 22.371 678.05 7.3825
C merges ahead of H 2.847 0.165 2.923
C merges ahead of 1 3.917 0 6.388

such that CAV C can choose a better strategy to complete the
lane change maneuvers with minimal cost.

As for the HDV disruption in Fig. 6(b), “merge ahead of
HDV” (dashed lines) leads to a higher disruption than “merge
ahead of CAV 1” (straight line). The reason is that for C to
“merge ahead of HDV” requires extra deceleration than “merge
ahead of CAV 1”. Thus, when increasing βs, the HDV has
to brake harder to guarantee safety with respect to CAV C,
causing a higher disruption. If the HDV aims to reach a higher
desired speed vd,H , the disruption will increase according to
(5c). With a similar analysis, a larger safe region represents a
more conservative driver, so the cost will increase as well. Note
that when CAV C merges ahead of 1, the response from HDV
becomes irrelevant. No matter how aggressive or conservative
the HDV is, the disruption to HDV will be unchanged. For the
“merge ahead of 1” case, CAV 1 can recover to a higher terminal
speed of 30m/s optimally while minimizing the disruption to
HDV.

B. Comparison with Human-Driven Vehicles

We use the standard car-following models in SUMO to sim-
ulate lane change maneuvers involving HDVs only (baseline).
In this case, vehicles 1 and H are defined as C’s immediate
left leader and left follower, respectively at the time when C
decides to change its lane. In the baseline case, it is worth
noting that no HDV chooses to merge ahead of vehicle 1
because there is no cooperation between vehicle 1 and C. In
this case, C has to accelerate harder and consume energy to
overtake vehicle 1 and perform the maneuver with collision
risks. The comparison of the costs and disruptions for the
100% HDV case are shown in Table. IV. With the given initial
states, the “merge ahead of H” policy provides a lower cost
and shorter maneuver time than the “merge ahead of 1” policy.
However, “merge ahead of 1” still has 0 disruptions to vehicle
H, so as to the following fast lane traffic. Our policies can save
more than 80% in cost and almost eliminate the disruption to
the fast lane traffic.

VI. CONCLUSIONS AND FUTURE WORK

We have developed optimal control strategies for a CAV
to complete lane change maneuvers while minimizing the
travel time, energy and speed disruption to the traffic flow
in mixed traffic. Vehicle interactions and cooperation have
been considered to help optimally perform the maneuver. The
simulation results show the effectiveness of the proposed
controllers and provide a criterion for C to always choose
a policy with minimal cost. The limitation of this work is to
assume the objectives and dynamics of HDVs are known to
CAVs, and that there are no disturbances or uncertainties in the
network, which are difficult to achieve in the real world. Our

ongoing works aim to figure out the characteristics of different
drivers in real-time and extend the lane change maneuvers
in the mixed traffic scenario from a single vehicle to multi
vehicles. Besides, how to increase the probability of HDVs
cooperating with CAVs is also a promising way to explore.
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