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Abstract. This paper provides a finite-sample analysis of a passive stochastic gradient Langevin
dynamics algorithm (PSGLD) designed to achieve adaptive inverse reinforcement learning (IRL).
By passive, we mean that the noisy gradients available to the PSGLD algorithm (inverse learning
process) are evaluated at randomly chosen points by an external stochastic gradient algorithm (for-
ward learner) that aims to optimize a cost function. The PSGLD algorithm acts as a randomized
sampler to achieve adaptive IRL by reconstructing this cost function nonparametrically from the sta-
tionary measure of a Langevin diffusion. Previous work has analyzed the asymptotic performance of
this passive algorithm using weak convergence techniques. This paper analyzes the non-asymptotic
(finite-sample) performance using a logarithmic-Sobolev inequality and the Otto-Villani Theorem.
We obtain finite-sample bounds on the 2-Wasserstein distance between the estimates generated by
the PSGLD algorithm and the cost function. Apart from achieving finite-sample guarantees for adap-
tive IRL, this work extends a line of research in analysis of passive stochastic gradient algorithms to
the finite-sample regime for Langevin dynamics.

Key words. stochastic gradient Langevin dynamics, passive learning, inverse reinforcement
learning, finite-sample analysis, logarithmic-Sobolev inequality, Wasserstein distance

1. Introduction. We derive non-asymptotic bounds for a Langevin dynamics
algorithm performing real-time inverse reinforcement learning (IRL). Traditional IRL
[21], [12], [4] reconstructs the cost function of a Markov Decision Process by observing
decisions taken from an optimal policy, i.e., after an observed agent has completed
learning the optimal policy. Here, we consider real-time (adaptive) IRL. We observe
an agent (forward learner) performing stochastic gradient descent (e.g, policy gradient
reinforcement learning) on a cost function J , and attempt to reconstruct J in real-
time. Thus, this technique can be regarded as an inverse stochastic gradient algorithm.
It applies to IRL problems in several contexts such as adaptive Bayesian learning,
constrained Markov Decision Processes, and logistic regression classification [16].

To accomplish real-time IRL, we employ a passive stochastic gradient Langevin
dynamics (PSGLD) algorithm, initially proposed in [16]. Given observations of se-
quential stochastic gradient descent (SGD) evaluations on J , the PSGLD algorithm
acts as a Markov chain Monte Carlo (MCMC) sampler designed to reconstruct J .
Classical stochastic gradient Langevin dynamics [28], [10], evolves in the direction of
a stochastic gradient evaluation (of a cost function) at the current iterate, plus an
independent Gaussian perturbation. It asymptotically samples from the Gibbs mea-
sure encoding the cost function, and thus can be used to sample from probability
distributions in the context of e.g., Bayesian learning [28] or empirical risk minimiza-
tion [22]. Our PSGLD algorithm is considered passive because the stochastic gradient
evaluations are not directly controlled, but are provided by the observed SGD process.
Remarkably, [16] use stochastic approximation techniques to show that the PSGLD
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algorithm asymptotically samples from the Gibbs measure encoding the cost function
being optimized by the observed SGD process. So the PSGLD algorithm asymptoti-
cally achieves inverse reinforcement learning. Similar passive schemes and stochastic
approximation analyses have been investigated in [17], [30], [19].

In any practical IRL implementation it is necessary to understand how well the
PSGLD algorithm recovers this cost function after a finite run-time. In this work we
present a non-asymptotic analysis of this PSGLD algorithm; we provide finite-sample
bounds on the 2-Wasserstein distance between the law of the algorithm and that of
the Gibbs measure encoding the cost function. Non-asymptotic analysis of stochastic
gradient Langevin dynamics has been investigated in [22], [8], [6]. In our case the
algorithm is passive; so our analysis generalizes and extends previous works to handle
this complexity.

Main Result: Recall J denotes the cost function being optimized by the forward
learner, and which we aim to reconstruct. Denote πk the sampling measure of our
PSGLD algorithm at iterate k ∈ N, π∞ the Gibbs measure w.r.t. J (π∞ ∝ exp(−βJ),
with β a controllable PSGLD parameter), andW2(πk, π∞) the 2-Wasserstein distance
between these. Observe that sampling from π∞, achieved when W2(πk, π∞) = 0,
suffices to reconstruct J by taking the log-sample density. We obtain a bound on
W2(πk, π∞) that scales as O(kϵ

√
ϵ+exp(−kϵ)), where ϵ is the algorithm step size. So

we can choose kϵ fixed and large enough to diminish exp(−kϵ), then ϵ small enough
(with k simultaneously increasing to fix kϵ) to diminish kϵ

√
ϵ arbitrarily. Thus, for

any y > 0 we can choose the step size ϵ small enough and algorithmic iterate k large
enough such that W2(πk, π∞) ≤ O(y). The main result of this paper is a precise
formulation of this statement.

Proof Technique: We bound W2(πk, π∞) ≤ W2(πk, νkϵ) +W2(νkϵ, π∞), where νkϵ

is the measure, at time kϵ, of a particular continuous time diffusion with stationary
measure π∞. We obtain W2(πk, νkϵ) ≤ O(kϵ

√
ϵ) through a Girsanov change of mea-

sure technique and a weighted transportation cost inequality. We then show that
the diffusion satisfies a logarithmic-Sobolev inequality, allowing us to employ expo-
nential decay of entropy and the Otto-Villani Theorem to show exponential decay of
W2(νkϵ, π∞). This proof structure is mirrored in [22]. However, our algorithm neces-
sitates a non-trivial extension of the methods in [22]; we utilize both a generalized
stochastic gradient Langevin dynamics form and a weighting kernel to control the
external gradient evaluations. The generalized form disrupts absolute continuity of
measure between the algorithm and continuous time diffusion, necessitating the intro-
duction and control of an intermediate process in order to apply Girsanov’s Theorem.
It also necessitates control of the "sampling distribution" (from which initial SGD
and PSGLD points are taken) to decrease discretization error. However, this control
simultanesouly increases a relative entropy term appearing in the final 2-Wasserstein
bound; this is handled by a careful specification of other algorithmic parameters. Fi-
nally, the continuous time diffusion is also distinct from that in [22], so we must prove
logarithmic-Sobolev inequality satisfaction by a novel Lyapunov function. Further-
more, there are a host of supporting Lemmas, such as exponential integrability of the
generalized diffusion, which have been necessarily derived for our analysis.

Another motivation for our work is the extension of a line of research in analysis
of passive stochastic gradient algorithms. Such work [23] [13], [20], [31] has histori-
cally focused on passive stochastic approximation for e.g., sequential non-parametric
estimation of regression functions. Recently, [16] extended this analysis to stochas-
tic gradient Langevin dynamics in the passive regime. This paper serves as the first
finite-sample result for stochastic gradient Langevin dynamics in the passive regime.
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1.1. Organization. Section 2 provides background on passive stochastic gra-
dient Langevin dynamics and the asymptotic result of [16]. Section 3 discusses our
main result, a non-asymptotic 2-Wasserstein bound (Theorem 3.9), and provides an
example of how this IRL result interfaces with a canonical reinforcement learning al-
gorithm. In section 4 we provide additional mathematical background for the proof of
our bound, and section 5 provides details on the structure of our proof of Theorem 3.9.
The complete proof details appear in the supplementary material.

2. Background: Passive Langevin Dynamics. Motivating our finite-sample
analysis, this section introduces Langevin dynamics, presents the adaptive IRL setting
and discusses the weak convergence asymptotic analysis of the PSGLD algorithm
in [16].

2.1. Langevin Dynamics. The classical Langevin dynamics algorithm is given,
with step size ϵk, objective function J , noise parameter β, and i.i.d. standard N -
variate Gaussian noise wk, as

(2.1) θk+1 = θk − ϵk∇J(θk) +
√

2ϵβ−1wk, k ∈ N

Here θk ∈ RN is initialized by θ0 ∼ π0 for some sampling distribution π0 on RN .
The algorithm (2.1) is used primarily for either non-convex optimization [29] or to
sample from probability distributions via MCMC [28]. The former is accomplished by
treating (2.1) as a simulated annealer, and letting the step size ϵk and ’temperature’
β−1 decrease to zero as k → ∞. To accomplish the latter, the step size ϵk and
temperature β−1 are fixed for all k. This work considers the latter case of constant
step-size Langevin dynamics, with ϵk = ϵ ∀k ∈ N. It is well known that the Markov
process (2.1), with constant step-size, asymptotically samples from the Gibbs measure

(2.2) π∞(θ) = 1
Λ exp(−βJ(θ))

Here Λ =
∫
RN exp(−βJ(α))dα is a normalizing constant and J is called the poten-

tial function. Indeed, (2.1) corresponds to a discretization of the continuous-time
Langevin diffusion given by, with θ(t) ∈ RN and W (t) standard Brownian motion in
RN , the Itô stochastic differential equation (SDE)

(2.3) dθ(t) = −∇J(θ(t))dt +
√

2β−1dW (t), t ≥ 0

Under suitable conditions on J and β, this SDE has the Gibbs measure (2.2) as its
unique stationary measure [7]. Thus, the Langevin dynamics algorithm (2.1) can be
used as a MCMC algorithm to asymptotically sample from any probability distribu-
tion which can be expressed as (2.2) with some potential function J .

In [25] more general reversible diffusions of the form, with σ : RN → R differen-
tiable,

(2.4) dθ(t) =
[
−β

2∇J(θ)dt−∇σ(θ)dt + dW (t)
]

σ(θ)

are studied, and it is shown that (2.4) has the same stationary measure (2.2) as
the classical Langevin diffusion (2.3). The corresponding Euler-Maruyama time dis-
cretization results in the following discrete-time Markov process

θk+1 = θk − ϵ

[
β

2∇J(θk) +∇σ(θk)
]

σ(θk) +
√

ϵσ(θk)wk(2.5)

3
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which can thus equivalently be used as a MCMC sampler from (2.2). We will utilize
the generalized process (2.5), as opposed to the classical Langevin dynamics (2.1), for
our PSGLD algorithm1.

Active vs. Passive Gradient Evaluation: Notice that the above SGLD algorithms
utilize, at each time step, the gradient ∇J(θk) evaluated at the current iterate θk.
We term this active gradient evaluation, and distinguish this from passive gradient
evaluation, where the gradient is evaluated at a different (uncontrolled) point. The
following section introduces the adaptive IRL setting and motivates the need for
passive gradient evaluation in our PSGLD algorithm.

2.2. Adaptive IRL: Forward and Inverse Learning. This section motivates
the setting of adaptive IRL. An agent (forward learner) is in the process of optimizing
a cost function. An inverse learner passively observes sequential algorithmic iterates
of the forward learner, and attempts to reconstruct (learn) the cost function being
optimized. This paper provides non-asymptotic guarantees on the inverse learner’s
cost function reconstruction. Here we first introduce the dynamics of the forward
learner, then the inverse learning setting and PSGLD algorithm.

2.2.1. Forward Learner. The forward learner runs a stochastic gradient de-
scent (SGD) on a non-negative cost function

(2.6) J : RN → R+

where the initial point evaluation is sampled randomly from sampling distribution π0,γ

on RN . Examples include policy gradient reinforcement learning [26], neural network
optimization [24] and federated learning [14]. We define the sampling distribution
π0,γ as follows

(2.7) π0,γ(x) :=
π0( x

γ )∫
RN π0( x

γ )dx

where π0 is an arbitrary density function and γ is a scale parameter 2.
We assume the stochastic gradient algorithm (forward learner) resets after some

finite time, so that the SGD process repeats indefinitely. This can be motivated
by optimization of a non-convex function, in which re-initialization allows sufficient
exploration, or multiple agents each learning to optimize the same cost function. Thus
we have, for n ∈ N representing each "run" of the SGD, and τn stopping times:

θk+1 = θk − η∇̂J(θk), k ∈ {τn, . . . , τn+1 − 1}(2.8)

where each θτn

i.i.d.∼ π0,γ and η > 0 is a fixed step-size. Here ∇̂J(θk) is an unbiased
estimate of the true gradient ∇J(θk), with bounded variance, see 3.2. Algorithm 2.1
displays this randomly re-initializing stochastic gradient descent.

Remark: The forward learner is not necessarily restricted to implementing an
SGD algorithm; any process which provides sequential stochastic gradients of the
cost function J , including i.i.d. samples from measure π0,γ or sequential algorithmic
iterates with more sophisticated dependencies than (2.8) will suffice, see [16].

1see [16] for motivation
2This construction is purely for notational convenience.
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Algorithm 2.1 Randomly Re-Initializing SGD Process
initialize τ0 = n = 0
while n ≥ 0 do

generate τn+1 > τn, θτn

iid∼ π0,γ

for k = τn : τn+1 − 1 do
θk+1 ← θk − η∇̂J(θk)

end for
end while

2.2.2. Inverse Learning: PSGLD. In this paper we take the perspective of
an inverse learner who observes the SGD process (2.8), and attempts to reconstruct
the cost function J being optimized. We assume this observer knows the sampling
distribution π0,γ and can observe evaluations θk, k ∈ N. The agent recovers noisy
gradient evaluations ∇̂J(θk) = θk+1−θk

η .
Using only these sequential noisy gradient evaluations, how can the agent learn

J? This is accomplished via MCMC sampling, using the following passive stochastic
gradient Langevin dynamics (PSGLD) updates:

αk+1 = αk − ϵ

[
K∆(θk − αk)β

2 ∇̂J(θk) +∇π0,γ(αk)
]
π0,γ(αk) +

√
ϵπ0,γ(αk)wk

α0 ∼ π0,γ

(2.9)

Note that α0 is sampled randomly from the sampling distribution π0,γ of the SGD
process (2.8). Here {wk, k ≥ 0} is an i.i.d. sequence of standard N−variate Gaussian
random variables,

(2.10) K∆(θk − αk) := 1
∆N

K

(
θk − αk

∆

)
is the ∆-parametrized kernel function, and β is the inverse temperature parameter.
The algorithm is passive since the stochastic gradients ∇̂J(θk) and evaluation points
θk are passively observed from SGD process (2.8). The kernel3 function K(·) controls
for bias in these passive gradient evaluations, and can be chosen by the observer as
any function K : RN → R satisfying:

K(u) ≥ 0, K(u) = K(−u), sup
u

K(u) <∞,∫
RN

K(u)du = 1,

∫
RN

|u|2K(u) <∞
(2.11)

K∆ weights the relevance of stochastic gradient ∇̂J(θk) to the current iterate α(t).
We obtain K∆ by modulating K by the domain scaling parameter ∆ as (2.10). So
∆ modulates the degree to which samples θk at a fixed distance from current iterate
α(t) impact the algorithm’s evolution.

Algorithm 2.2 displays this passive stochastic gradient Langevin dynamics algo-
rithm, which takes as input the sequential evaluations θk made in Algorithm 2.1.

We claim that Algorithm 2.2 achieves adaptive inverse reinforcement learning, re-
constructing J by taking only ∇̂J(θk) as input. Next a background result is presented
which establishes this claim rigorously.

3An example kernel function is the multivariate normal N (0, σ2IN ) density with σ = ∆, i.e.,
1

∆N K( θ−α
∆ ) = (2π)−N/2∆−N exp(− ∥θ−α∥2

2∆2 )

5
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Algorithm 2.2 PSGLD
parameters: step size ϵ, inverse temperature β, kernel scale ∆, re-sampling distri-
bution scale γ
initialize α0 ∼ π0,γ

while k ≥ 0 do
obtain θk from a Algorithm 2.1
if k ≥ 1 then
∇̂J(θk) = 1

η (θk − θk−1), Kk−1 = 1
∆N K( θk−1−αk−1

∆ )
sample wk ∼ N (0, IN )

αk ← αk−1− ϵ

[
Kk−1

β
2 ∇̂J(θk) +∇π0,γ(αk−1)

]
π0,γ(αk−1) +

√
ϵπ0,γ(αk−1)wk

end if
end while

2.3. Passive SGLD: Asymptotic Convergence. [16] provides the following
result:

Proposition 2.1 (Weak Convergence [16]). Let αϵ(t) = αk for t ∈ [ϵk, ϵ(k + 1)]
be the continuous-time interpolation of PSGLD (2.9). Under assumptions (A1)-(A4)
of [16], the process αϵ(t) converges weakly to the solution of the stochastic differential
equation

dα(t) = −
[

β

2 π2
0,γ(α(t))∇J(α(t)) +∇π0,γ(α(t))π0,γ(α(t))

]
dt + π0,γ(α(t))dW (t)

α(0) = α0 ∼ π0,γ

(2.12)

where W (t) is standard N -dimensional Brownian motion. Furthermore, the stochastic
differential equation (2.12) has π∞ (2.2) as its stationary distribution.

Thus, we can use the algorithm (2.9) to generate asymptotic samples

αk ∼ π∞(α) ∝ exp(−βJ(α))

and reconstruct J from the sample log-density.
Motivation: Proposition 2.1 shows that Algorithm 2.2 asymptotically produces

samples αk ∼ π∞, and so the cost function J can be reconstructed from the loga-
rithm of the asymptotic sample density. However, in this paper we are interested in
quantifying how well this sampling algorithm approximates the Gibbs measure after a
finite run-time. Our main result gives non-asymptotic (finite-sample) bounds on the
2-Wasserstein distance between the distribution of the sampling density produced by
Algorithm 2.2 and the Gibbs measure π∞ (2.2).

3. Main Result. Non-Asymptotic Analysis of Passive Stochastic Gra-
dient Langevin Dynamics. Recall from the Introduction that πk is the sampling
measure of Algorithm 2.2 at iterate k, π∞ is the Gibbs measure proportional to
exp(−βJ), and W2(πk, π∞) is the 2-Wasserstein distance between these. Our main
result is as follows: for any y > 0 we can choose the step size ϵ small enough and
iteration number k large enough such thatW2(πk, π∞) ≤ O(y). In this section we for-
mulate this result precisely. We provide a brief overview of the 2-Wasserstein metric,
specify assumptions on the cost function J and sampling distribution π0,γ , provide
the main bound in the form of Theorem 3.9 , and discuss the application to adaptive
inverse reinforcement learning in a Markov Decision Process framework.

6
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3.1. 2-Wasserstein Distance. We provide a non-asymptotic bound on the con-
vergence of (2.9) to the Gibbs measure π∞ (2.2), in terms of the 2-Wasserstein dis-
tance:

(3.1) W2(µ, ν) := inf
γ∈Γ(µ,ν)

(
E(x,y)∼γ∥x− y∥2)1/2

Here Γ(µ, ν) is the set of all couplings of measures µ and ν, where a coupling γ is
a joint probability measure on RN × RN with marginals µ and ν, i.e., γ(A,RN ) =
µ(A), γ(RN , B) = ν(B),∀A, B ∈ B(RN ), where B(RN ) is the Borel σ-algebra of RN .
Notice that the Wasserstein distance (3.1) indeed satisfies all axioms of a metric on
the space of measures. The 2-Wasserstein distance is a more suitable metric for
assessing the quality of approximate sampling schemes [8], [22], than others such as
total-variation norm, since it gives direct guarantees on the accuracy of approximating
higher order moments [8]. However, it also precludes us from using SDE discretization
analysis presented in the seminal book [?], which utilizes total-variational norm.

3.2. Assumptions. Here we list several assumptions on the cost function J
(2.6) of the forward learner and the base sampling distribution π0, required for the
finite-sample analysis. Assumptions on J are standard and equivalent to those taken
in [22]. Assumptions on the base sampling distribution π0 hold for a wide class of
probability density functions, including Gaussian densities.

A 3.1 (J regularity). J is LJ -Lipschitz continuous and L∇J -smooth: ∃ LJ ,
L∇J > 0 such that for all x, y ∈ RN ,

∥J(x)− J(y)∥ ≤ LJ∥x− y∥, ∥∇J(x)−∇J(y)∥ ≤ L∇J∥x− y∥

A 3.2 (Dissipativity). J is (m, b)-dissipative:

∃ m > 0, b ≥ 0 : ⟨x,∇J(x)⟩ ≥ m∥x∥2 − b, ∀x ∈ RN

A 3.3 (Gradient Noise Variance). The noisy SGD gradient evaluation is unbi-
ased, i.e. E[∇̂J(x)] = ∇J(x) ∀x ∈ RN . Furthermore, the noise is additive such that
∇̂J(x) − ∇J(x) is i.i.d. with variance bounded uniformly in x, i.e., there exists a
constant ζ ≥ 0 such that

E[∥∇̂J(x)−∇J(x)∥2] ≤ ζ, ∀x ∈ RN

A 3.4 (π0 Exponential Decay). The base sampling distribution π0 has an expo-
nential tail decay and differential decay O(∥x∥−1), i.e.,

∃M ∈ N, C̃ > 0 : π0(x) ≤ exp(−∥x∥2) , ∥∇π0(x)∥ ≤ C̃

∥x∥
∀∥x∥ > M

A 3.5 (π0 Lipschitz-continuity).

∃Lπ0 > 0 : ∥π0(x)− π0(y)∥ ≤ Lπ0∥x− y∥ ∀x, y ∈ RN

A 3.6 (π0 Structure). π0 is unimodal and has support on RN .
A 3.7 (Kernel Structure). The kernel function K(·) satisfies (2.11).
A 3.8 (Feasible Parameter Ranges). Here ∧ denotes the min operator and ∨ the

max operator. Assume
i) η ∈ (0, 1 ∧ m

4L2
∇J

)

ii) ϵ ∈
(

0, 1 ∧
√

1
249 L−1

∇J

)
iii) β ≥ 1

4L2
∇J

∨
√

2π+4
m

√
L∇J

7
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θk+1 = θk − η∇̂J(θk)
SGD (2.8)

αk+1 = αk − ϵ

[
1

∆N K
(

θk−αk
∆

)
β
2 ∇̂J(θk) + ∇π0,γ(αk)

]
π0,γ(αk) +

√
ϵπ0,γ(αk)wk

PSGLD (2.9)

dα(t) = −
[

β
2 π2

0,γ(α(t))∇J(α(t)) + ∇π0,γ(α(t))π0,γ(α(t))
]

dt + π0,γ(α(t))dW (t)
Continuous-time Diffusion (2.12)

π∞(α) ∝ exp(−βJ(α))
Gibbs Measure (2.2)

W2(πk, νkϵ)

W2(νkϵ, π∞)

Figure 1: High level procedure for achieving inverse reinforcement learning. The forward
learning process is represented by a stochastic gradient descent (SGD), and the inverse learner
incorporates sequential SGD evaluations θk into its PSGLD algorithm to reconstruct J . The
PSGLD algorithm reconstructs J by approximately sampling from the Gibbs measure π∞
(then taking the log-sample density). We measure the proximity of the PSGLD algorithm
to π∞ by W2(πk, π∞), the 2-Wasserstein distance between the sample law of αk and the
measure π∞. We control this distance by bounding it by W2(πk, νkϵ) + W2(νkϵ, π∞), where
νkϵ is the law of α(t) at time t = kϵ.

3.2.1. Discussion of assumptions. A3.1 - A3.4 are equivalent to those taken
for the objective function in [22]. A3.1 is widely used in the literature on non-convex
optimization and sampling. A3.2 can be enforced through weight decay regulariza-
tion [18], see section 4 of [22] for more details. A3.3 is a standard assumption for
stochastic gradient evaluations. A3.4 - A3.6 admit a wide range of probability density
functions, including Gaussians. We note that for A3.8 to be satisfied in practice, the
inverse learner must have some knowledge of feasible ranges for Hessian bound L∇J

and dissipativity constant m; once these ranges are known then ϵ can be taken small
enough and β large enough so that (ii) and (iii) are satisfied. Notice that the feasible
range for η can always be satisfied; the SGD process (2.8) optimizing cost function J
with step η̂ ≥ (1∧ m

4L2
∇J

) is equivalent to another SGD with step η < m
4L2

∇J

which opti-
mizes η

η̂ J . So assuming η which satisfies A3.8 we can sample from π∞ ∝ exp(−η
η̂ βJ),

from which J can be recovered since the scale η
η̂ β disappears upon MCMC sample

measure normalization.

3.3. Main Result. Finite-Sample Bound. Letting

πk := Law(αk), νkϵ := Law(α(kϵ))

be the respective measures of the sampling density produced by iterates αk (2.9) and
the continuous time diffusion α(t) (2.12) at time t = kϵ, we may bound

W2(πk, π∞) ≤ W2(πk, νkϵ) +W2(νkϵ, π∞)

Figure 1 shows the high level procedure for achieving inverse reinforcement learning.
The forward learner is represented by a stochastic gradient descent (SGD) process

8
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which optimizes J . The PSGLD algorithm takes in sequential SGD evaluations θk

and produces samples αk which approximately sample from the Gibbs measure π∞,
allowing for reconstruction of J by taking the log-sample density. We measure this
approximation by the distanceW2(πk, π∞), which can be bounded by introducing the
intermediate continuous-time diffusion (2.12), since PSGLD (2.9) is an approximate
discretization of (2.12) and (2.12) has Gibbs measure (2.2) as its stationary measure.

We present our Wasserstein bound in a way that explicitly depends on a hyper-
parameter δ, e.g., W2(πk, π∞) ≤ f(δ) for some function f which is monotonically
increasing and has limδ→0 f(δ) = 0. Both the Wasserstein bound and certain algo-
rithmic parameters have a functional dependence on δ: for decreasing δ (decreasing
W2(πk, π∞)), we require e.g., increasing the algorithmic iterations and decreasing the
step size. Specifically, our main result states that for any arbitrarily small f(δ), we
can choose the step size ϵ small enough, algorithmic iterations k large enough, kernel
scale parameter ∆ small enough, and sampling distribution scale parameter γ small
enough, such that W2(πk, π∞) ≤ f(δ). Next these qualitative parameter specifica-
tions are shown explicitly, as functions of control hyperparameter δ. Then our main
bound on W2(πk, π∞) is presented in Theorem 3.9.

3.3.1. Algorithmic Parameter Specifications. Here we show the depen-
dence of algorithmic parameters on the hyperparameter δ, which controls the main
Wasserstein bound presented in Theorem 3.9. δ acts as a one-dimensional "knob"
that can be turned, which reveals the step size ϵ, iteration number k, etc., required
to achieve a 2-Wasserstein bound proportional to δ. The main idea is that Theo-
rem 3.9 presents a (monotonically increasing) function f(δ), with limδ→0 f(δ) = 0,
such that for any δ > 0 we can take algorithmic parameters as follows to obtain
W2(πk, π∞) ≤ f(δ).

Step Size:

(3.2) ϵ ≤

(
δ

log
( 1

δ

))2

∧ 1

Algorithmic Iterations:

(3.3) kϵ ≥ β cLS log
(

1
δ

)
where cLS is the logarithmic-Sobolev constant of diffusion (2.12), explicitly bounded
in (5.5).

Kernel Scale: Recalling, for general α ∈ R+, Kα(·) = 1
αN K( ·

α ), define K̂α :=
supx∈RN Kα(x). Also let K−1 denote the inverse of K and K−2 denote the inverse of
K2, both mapping to the non-negative orthant, i.e., for x ∈ R, K−1(x) := {y ∈ RN

+ :
K(y) = x}, K−2(x) := {y ∈ RN

+ : K2(y) = x} where RN
+ is the set of N -dimensional

vectors with all non-negative elements. This definition is without loss of generality,
since K is chosen to be symmetric by (2.11). Then take

(3.4) ∆ ≤ inf
x∈[ϵ,K̂ϵ]

K−1( K̂1
√

2π
2ϵ ex2/2)

K−2(xϵ2N )

Sampling Distribution Scale: Choose the base sampling distribution π0 such that
π̄0 := supx π0(x) = 1, and sampling distribution scale parameter γ as

(3.5) γ ∈ [ϵ2, ϵ3/2]
9
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3.3.2. Main 2-Wasserstein Bound.
Theorem 3.9 (Finite-Sample 2-Wasserstein Bound). Consider the PSGLD Al-

gorithm 2.2 with iterates αk ∈ RN . Recall cLS is the logarithmic-Sobolev constant for
Itô diffusion (2.12), bounded in (5.5). For any

(3.6) δ ∈
[
0, exp

(
− 1

βcLS

)]
choose step size ϵ according to (3.2), number of iterations k according to (3.3), ker-
nel scale ∆ according to (3.4), and sampling distribution π0,γ with γ satisfying (3.5).
Then, under assumptions (A3.1)-(A3.8), the 2-Wasserstein distance between the dis-
tribution πk, generated by the PSGLD algorithm, and the Gibbs measure π∞ (2.2),
satisfies:

W2(πk, π∞) ≤ δ
[
C4 +

√
2cLSC3

]
+ δ
√

10cLSN log (1/δ)(3.7)

C3, C4 are constants dependent on structural specifications of J and the process (2.9),
provided explicitly in supplementary material 7.1. cLS is the logarithmic-Sobolev con-
stant bounded explicitly in Proposition 5.3.

Bound Discussion: For any α > 0, δ
√

α log (1/δ) is monotonically increasing in
δ for δ ∈ (0, 0.607) and

lim
δ→0

δ
√

α log (1/δ) = 0

So, W2(πk, π∞) is monotonically increasing in δ for δ ∈ (0, 0.607) and

lim
δ→0
W2(πk, π∞) = 0

Thus, Theorem 3.9 asserts that, through hyperparameter δ, we can control the number
of iterations k as (3.3), step size ϵ as (3.2), kernel scale ∆ as (3.4) and sampling
distribution scale γ as (3.5), such that the PSGLD algorithm (2.9) is within any
arbitrarily small desired 2-Wasserstein distance (3.7) to the Gibbs distribution (2.2).
Here δ acts as a precision parameter; smaller δ yields a tighter approximation (3.7)
at the expense of larger number of iterations k and smaller step size ϵ, kernel scale ∆
and sampling distribution scale γ.

Recalling π∞(α) ∝ exp(−βJ(α)), the cost function J can be approximately re-
constructed as the logarithm of sample density produced by αk. This reconstruction
approaches the true cost function J as δ → 0. This result generalizes the nonasymp-
totic bound obtained in [22] (equation 3.3) to our passive stochastic gradient Langevin
dynamics algorithm.

Parameter Specifications Discussion: Observe the parameter specifications (3.2) -
(3.5) necessary for acheiving a given Wasserstein bound (3.7). Specifications (3.2) and
(3.3) are intuitive; as we decrease the step size ϵ we should decrease the discretization
error between algorithm (2.9) and continuous diffusion (2.12), and as we increase the
iterations k we will decrease the distance from the diffusion (2.12) to its stationary
measure π∞.

However, the algorithm (2.9) is not an exact discretization of diffusion (2.12), as
it has a gradient term governed by the external SGD process (2.8). The weighting
kernel K is introduced to control for biases in this SGD-evaluated gradient, but for
any non-zero variance of K there will still be biased gradient evaluations entering
the algorithm (2.9) which prevent it from converging to π∞. To minimize these,

10
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the kernel scale ∆ can be reduced; however note that this should come at the cost
of increasing the time needed to reach a specified Wasserstein bound, since "useful"
gradient information will be integrated into the passive algorithm less often. We see
this as an unavoidable tradeoff, one which necessitates taking ∆ as (3.4), but which
has not been fully quantified in this work.

Note that we also require decreasing the sampling distribution scale γ to obtain
a tighter Wasserstein bound. This has arisen as a quantitative necessity in obtaining
bounds in Lemma 5.1 and Lemma 5.2 (which are key developments in the proof
of Theorem 3.9). The intuition is as follows: this specification allows us to control
E∥π0,γ(αk)∥2 and E∥∇π0,γ(αk)∥2, such that the influence of π0,γ(αk) in the algorithm
(2.9) does not outweigh that of K∆(θk, αk)∇̂J(θk); (as in the previous paragraph
explanation) as ∆ gets smaller, K∆(θk, αk)∇̂J(θk) contributes less often (but is more
accurate when it does), and the contribution of π0,γ(αk) should balance this. Notice
that we also must choose the base distribution π0 wide enough (such that π̄0 = 1),
and scale parameter not too small (lower bounded by ϵ2), so that there is always some
non-zero probability of sampling from any point in the domain, allowing for sufficient
exploration.

3.4. Example. Adaptive MDP Inverse Reinforcement Learning. As dis-
cussed in [16], the PSGLD algorithm can be applied to a variety of settings including
constrained MDPS, adaptive Bayesian inference, and logistic regression classification.
Here we illustrate how the PSGLD algorithm (Alg 2.2), and finite-sample guarantees
of Theorem 3.9, interface with a well-known practical reinforcement learning (RL) al-
gorithm. We first outline the details of the forward RL procedure, then show how our
PSGLD algorithm can be used to achieve inverse RL with nonasymptotic accuracy
guarantees.

3.4.1. Forward Reinforcement Learning: Policy Gradient. Here we pres-
ent one canonical and well-established algorithm for reinforcement learning (RL), the
Reinforce algorithm. Consider the following notation

- discount factor γ ∈ (0, 1), discrete-time index t ∈ N
- states st ∈ S, actions at ∈ A, cost ct = C(st, at), C : S ×A → R+
- state transition probabilities P a

s,s′ = P (st+1 = s′|st = s, at = a)
- initial state probability distribution ρ0(s) = P(s0 = s)
- policy function π(s, a; θ) = P[at = a|st = s; θ] under policy parameter θ ∈ Rd

Now let

J(θ) := Eπ

[ ∞∑
t=0

γtct

]
: Rd → R+

be the expected cost objective, where the expectation is taken with respect to the
probability distribution of trajectories (s0, a0, . . . , st, at, . . . ) induced by ρ0, P a

(s,s′),

and π(s, a; θ). The reinforcement learning goal is to find a policy parameter θ such
that J(θ) is minimized. This minima can be achieved by sequentially updating θ
via stochastic gradient descent on J(θ). This is the methodology of the canonical
Reinforce algorithm, which has sequential policy parameter updates given by

(3.8) θk+1 = θk − η

T∑
t=0

[
γt∇θ log π(st, at; θ)

T∑
k=t

γk−t rk

]
= θk − η∇̂J(θ)

where, crucially, ∇̂J(θ) is an unbiased estimate of ∇J(θ) by the Policy Gradient
Theorem [26].

11
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3.4.2. Adaptive Inverse Reinforcement Learning: PSGLD. Observe that
the RL algorithm 3.8 works by employing a stochastic gradient descent in the space
of policies. This suggests that we can employ our PSGLD algorithm, taking as input
the sequential policy evaluations and outputting the expected cost function.

Suppose we observe an agent performing policy gradient RL by enacting sequential
sample paths {(s0, a0, . . . , sT , aT )k ∼ π(·, ·; θk)}K

k=1, and updating θk according to
Algorithm 3.8. Notice that by observing a sample path (s0, a0, . . . , sT , aT ) ∼ π(·, ·; θ)
we can obtain an unbiased estimate θ̂ of θ by simply taking the empirical distribution
of observed state-action pairs. Then form ∇̃J(θk) = θ̂k−θ̂k−1

η , and notice that

E
[
∇̃J(θk)| θk, θk−1

]
= ∇̂J(θk)

i.e., ∇̃J(θk) is a second order stochastic gradient estimate; it is an unbiased estimate
of the stochastic gradient ∇̂J(θk), and ∇̂J(θk) is fully determined by the (random)
evaluations θk, θk+1. So we have

E
[
∇̃J(θk)

]
= E

[
E
[
∇̃J(θk)| θk, θk+1

]]
= ∇J(θk)

and thus ∇̃J(θk) can be utilized in our passive stochastic gradient Langevin dynamics
algorithm (Alg 2.2) since it is an unbiased estimate of ∇J(θk). Thus, Theorem 3.9
applies and we can control the non-asymptotic Wasserstein distance arbitrarily. Fixing
any δ > 0, Algorithm 2.2, with parameters specified by (3.2) and with θk replaced by
θ̂k above, produces iterates αl, l ≥ k, that sample from a measure π with

W2(π.π∞) ≤ O(δ + δ
√

log(1/δ)), π∞(θ) ∝ exp(−βJ(θ))

Then J can be approximately recovered by taking the logarithm of MCMC sample
density.

Note that traditional IRL methods aim to reconstruct C(s, a), rather than J(θ),
given optimal policy demonstrations. In our case C(s, a) can be recovered up to a
constant multiplicative factor once J(θ) and the MDP transition dynamics are known,
since J(θ) is the expectation of C(s, a) with respect to the stationary measure induced
by the policy π(·, ·; θ) and the dynamics P a

s,s′ . Furthermore, in contrast to traditional
methods [32], [21], we operate in the transient regime where the observed agent is in
the process of learning an optimal policy.

4. Preliminaries for Bound Proof. Since finite-sample bounds for stochastic
diffusions may not be widely known in the stochastic control community, this short
section briefly summarizes the main tools required for the proof of Theorem 3.9.

4.1. Infinitesimal Generator. Let Xt be an RN -valued diffusion defined by
the stochastic differential equation

(4.1) dXt = b(Xt) dt + σ(Xt) dW (t), X0 = x ∈ RN

where b : RN → RN is the drift function, σ : RN → R is the volatility function, and
W (t) is standard N -dimensional Brownian motion. Fixing a point x ∈ RN , let P x

denote the law of Xt given X0 = x, and Ex denote expectation with respect to P x. Let
L be the infinitesimal generator of Xt, defined by its action on compactly-supported
C2 functions f : RN → R in domain D(L) ⊆ C2(RN ), as

Lf(x) = lim
t↓0

Ex[f(Xt)− f(x)]
t

=
n∑

i=1
bi(x) ∂f

∂xi
(x) + 1

2
∑
i,j

σ2(x) ∂2f

∂xi∂xj
(x)(4.2)
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where bi(x) is the i’th element of b(x) ∈ RN . Thus L is an operator acting on
f ∈ C2(RN ) as

Lf = 1
2σ2∆f + ⟨b,∇f⟩

where ∆ := ∇ ·∇ denotes the standard Laplacian operator. We say π is an invariant
probability measure w.r.t L if and only if

∫
RN Lgdπ = 0 for all g ∈ D(L).

In this work we consider the diffusion which solves the stochastic differential
equation (2.12), which has:

b(x) = −β

2 π2
0,γ(x)∇J(x)− π0,γ(x)∇π0,γ(x), σ(x) = π0,γ(x)

Thus, the infinitesimal generator of our diffusion process (2.12) is given as

(4.3) Lf = 1
2π2

0,γ∆f − β

2 π2
0,γ⟨∇J,∇f⟩ − π0,γ⟨∇π0,γ ,∇f⟩

and note that by assumptions (A2),(A6) and by Theorem 2.5 of [15], we have that
(2.12) admits a unique strong solution.

4.2. Poincaré and logarithmic Sobolev inequalities. Considering a general
infinitesimal generator L, with stationary measure π, we can define the Dirichlet form

E(g) := −
∫
RN

gLgdπ

and the spectral gap λ as

λ := inf
{∫RN E(g)dπ∫

RN g2dπ
: g ∈ C1(RN ) ∩ L2(π), g ̸= 0,

∫
RN

gdπ∞ = 0
}

(4.4)

Let us consider a Markov process Xt with unique invariant distribution π and
infinitesimal generator L. We say that π satisfies a Poincaré (spectral gap) inequality
with constant c if

(4.5) χ2(µ||π) ≤ c E

(√
dµ

dπ

)

for all probability measures µ≪ π (µ absolutely continuous w.r.t π), where
χ2(µ||π) := ||dµ

dπ−1||2L2(π) is the χ2 divergence between µ and π. If (4.5) is satisfied for
some c, then we have 1

c ≤ λ where λ is the spectral gap given in (4.4). In particular,
letting cP denote the Poincaré constant, given as the smallest c such that (4.5) holds,

cP = inf{c : χ2(µ||π) ≤ c E

(√
dµ

dπ

)
∀µ≪ π}

where ≪ denotes absolute continuity, then we have 1
cP

= λ, and the eigenspectrum
of −L is contained in {0} ∪ [ 1

cP
,∞).

We say that π satisfies a logarithmic Sobolev inequality with constant c if

D(µ||π) ≤ 2 c E

(√
dµ

dπ

)
13
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for all µ≪ π, where D(µ||π) =
∫

dµ log dµ
dπ is the Kullback-Leibler divergence.

One of the main efforts of this work will be to show that the diffusion (2.12)
satisfies a log-Sobolev inequality; this then allows us to utilize several useful properties
in the non-asymptotic analysis. Specifically, letting {X(t)}t≥0 be a Markov process
with stationary distribution π and Dirichlet form E , then we have:

Lemma 4.1 (Exponential decay of entropy [2], Th. 5.2.1). Let µt := Law(X(t)).
If π satisfies a logarithmic-Sobolev inequality with constant c, then

(4.6) D(µt||π) ≤ D(µ0||π)e−2t/c

Lemma 4.2 (Otto-Villani theorem [2], Th. 9.6.1). If π satisfies a logarithmic-
Sobolev inequality with constant c, then, for any µ≪ π

(4.7) W2(µ, π) ≤
√

2cD(µ||π)

The following two results give sufficient conditions for a measure π to satisfy
Poincare and logarithmic-Sobolev inequalities, using Lyapunov function criteria.

Proposition 4.3 (Bakry 2008 [1]). Let π(dx) = exp(−H(x))dx be a probability
measure on RN with H ∈ C2(RN ) and lower bounded. Let L be the infinitesimal gen-
erator of a Markov process with stationary measure π. Suppose there exist constants
κ0, ζ0 > 0, r ≥ 0 and a C2 function V : RN → [1,∞) such that

(4.8) LV (w)
V (w) ≤ −ζ0 + κ01{∥w∥ ≤ r}

Then π satisfies a Poincaré inequality with constant

(4.9) cP ≤
1
ζ0

(
1 + Cκ0r2 exp(Or(H))

)
where C > 0 is a universal constant and Or(H) := max∥w∥≤r H(w)−min∥w∥≤r H(w)

Proposition 4.4 (Cattiaux et. al. (2010) [5]). Let π(dx) = exp(−H(x))dx
be a probability measure on RN with H ∈ C2(RN ) and lower bounded. Let L be the
infinitesimal generator of a Markov process with stationary measure π. Suppose the
following conditions hold:

1. There exist constants κ, γ > 0 and a C2 function V : Rd → [1,∞) such that

(4.10) LV (w)
V (w) ≤ κ− γ∥w∥2 ∀w ∈ Rd

2. π∞ satisfies a Poincaré inequality with constant cP .
3. There exists some constant K ≥ 0, such that ∇2H ≽ −KId

Let Z1, Z2 be defined, for some ζ > 0 as

(4.11) Z1 = 2
γ

(
1
ζ

+ K

2

)
+ ζ, Z2 = 2

γ

(
1
ζ

+ K

2

)(
κ + γ

∫
RN

∥w∥2π(dw)
)

Then π satisfies a logarithmic Sobolev inequality with constant cLS = Z1 +(Z2 +2)cP .
We will be interested in showing that the invariant (Gibbs) measure π∞ (2.2) of

our particular diffusion (2.12) satisfies a log-Sobolev inequality, so that we can apply
Lemmas 4.1 and 4.2 to obtain exponential convergence of W2(νkϵ, π∞). To show the
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log-Sobolev inequality holds, we will show that the conditions of Proposition 4.4 hold,
using Proposition 4.3 as an intermediate step. More details on this procedure will be
outlined in Section 5.

The following result is unrelated to Poincaré and log-Sobolev inequalities, but
gives a way to bound a general Wasserstein distance once a KL-divergence is known.
We will utilize this in the bound on W2(πk, νkϵ).

Corollary 4.5 (Bolley and Villani 2005 [3] Cor. 2.3). For any two Borel
probability measures µ, ν on RN ,

W2(µ, ν) ≤ 2 inf
λ>0

(
1
λ

(
3
2 + log

∫
RN

eλ∥w∥2
ν(dw)

))1/2
[√

D(µ||ν) +
(

D(µ||ν)
2

)1/4
]

5. Proof of Main Result (Theorem 3.9). Outline. Here we provide the
proof structure for our bound on W2(πk, π∞), provided as (3.7) in Theorem 3.9
(complete proofs can be found in the supplementary material). The block dia-
gram in Figure 2 displays the relations between our main supporting results in the
proof of Theorem 3.9. The high level proof structure is as follows: We bound
W2(πk, π∞) ≤ W2(πk, νkϵ)+W2(νkϵ, π∞), i.e., we first control the discretization error
between passive algorithm 2.2 and diffusion 2.12, then control the convergence rate
of this diffusion to its stationary distribution π∞.

In order to achieve a useful bound on the former, scaling as O(kϵ
√

ϵ), we employ
a Girsanov change of measure (controlling the KL-divergence), given as Lemma 5.2,
followed by Corollary 4.5 (to relate back to 2-Wasserstein distance), as in [22]. This
procedure relies crucially on the exponential integrability of the diffusion (2.12), which
we prove as Lemma 7.3. To handle lack of measure absolute continuity, as discussed
below, we must introduce an intermediate process (with law γkϵ), perform the above
procedure on the error between γkϵ and νkϵ, then bound W2(πk, νkϵ) ≤ W2(πk, γkϵ) +
W2(γkϵ, νkϵ). The result providing a bound onW2(πk, γkϵ), completing this approach,
is given as Lemma 5.1.

To bound W2(νkϵ, π∞), we first show that π∞ satisfies a logarithmic-Sobolev in-
equality, by satisfying the conditions of Proposition 4.4 [5]. This result is given as
Proposition 5.3. We then apply exponential decay of entropy [2], given as Lemma 4.1,
and the Otto-Villani Theorem [1], given as 4.2. This procedure provides an exponen-
tially decaying bound on W2(νkϵ, π∞).

5.1. 2-Wasserstein Bound for Diffusion Approximation. Here we obtain a
bound onW2(πk, νkϵ). Consider the continuous-time interpolation of the process (2.9):

ᾱ(t) = α0 −
∫ t

0

[
K∆(θs̄, ᾱ(s̄))β

2 ∇̂J(θs̄) +∇π0,γ(ᾱ(s̄))
]

π0,γ(ᾱ(s̄))ds

+
∫ t

0
π0,γ(ᾱ(s̄))dW (s)

(5.1)

where s̄ = ⌊s/ϵ⌋ϵ, and θs̄ := θk for k = ⌊s/ϵ⌋. Note that, for each k, ᾱ(kϵ) and αk

have the same probability law πk. We aim to relate this process to the diffusion (2.12)
through a Girsanov change of measure; but the process (5.1) is not Markovian and is
therefore not an Itô diffusion. However, by the result of [11], the process ᾱ(t) has the
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Diffusion Approximation

W2(πk, νkϵ) ≤ . . .

Lemma 5.1
W2(πk, γkϵ) ≤ . . .

Corollary 4.5 [3]

W2(γkϵ, νkϵ) ≤ C f(D(γkϵ∥νkϵ))

Lemma 7.3
C ≤ . . .

Lemma 5.2
D(γkϵ∥νkϵ) ≤ . . .

Diffusion Convergence

W2(νkϵ, π∞) ≤ . . .

Lemma 4.2 [2]

W2(νkϵ, π∞) ≤
√

2cLSD(νkϵ∥π∞)

Lemma 4.1 [2]

D(νkϵ||π∞) ≤ D(π0,γ ||π∞)e−2kϵ/βcLS

Proposition 5.3
π∞ satisfies log-Sobolev inequality, with cLS ≤ . . .

Main result (Theorem 3.9)

W2(πk, π∞) ≤ . . .

Figure 2: Theorem 3.9 proof structure. First the 2-Wasserstein distance between discrete-
time algorithm (2.9) (with measure πk) and continuous-time diffusion (2.12) (with measure
νkϵ) is bounded. We must introduce an intermediate process (with law γkϵ). Lemma 5.1
bounds the Wasserstein distance between πk and γkϵ. Lemma 5.2 bounds the KL-divergence
between πk and γkϵ. Corollary 4.5 is then used, along with Lemma 7.3 to relate this KL
bound to a 2-Wasserstein bound. Proposition 5.3 is the key tool in bounding W2(νkϵ, π∞),
establishing that π∞ satisfies a log-Sobolev inequality. We then employ exponential decay
of entropy (Lemma 4.1) and the Otto-Villani Theorem (Lemma 4.2) to obtain exponential
decay of W2(νkϵ, π∞).

same one-time marginals as the Itô process Y (t), where

Y (t) = α0 −
∫ t

0
gs(θs̄, Y (s))ds +

∫ t

0
E [π0,γ(ᾱ(s̄)) | ᾱ(s) = Y (s)] dW (s)

gs(θs̄, Y (s)) = E
[(

K∆(θs̄, ᾱ(s̄))β

2 ∇̂J(θs̄) +∇π0,γ(ᾱ(s̄))
)

π0,γ(ᾱ(s̄))
∣∣∣∣ ᾱ(s) = Y (s)

](5.2)

i.e., Law(Y (kϵ)) = πk ∀k ∈ N, and it is apparent that (5.2) is Markovian. However,
we cannot apply Girsanov’s formula to relate (5.2) and (2.12) because the volatility
functions are different; so the measures πk and νkϵ are not absolutely continuous.

To solve this, we introduce the intermediate process

(5.3) X(t) = α0 −
∫ t

0
ĝs(θs̄, X(s))ds +

∫ t

0
π0,γ(X(s))dW (s)

where ĝs(θs̄, X(s)) =
(

K∆(θs̄, X(s)) β
2 ∇̂J(θs̄) +∇π0,γ(X(s))

)
π0,γ(X(s)). Let γkϵ

denote the law of (5.3) at time t = kϵ. This process (5.3) is similar enough to (5.2) to
allow a tractable bound onW2(πk, γkϵ), and since (5.3) has the same volatility function
as (2.12) we can relate these two via Girsanov’s formula to obtain a desirable bound
on W2(γkϵ, νkϵ). Then we simply bound W2(πk, νkϵ) ≤ W2(πk, γkϵ) +W2(γkϵ, νkϵ).

The following Lemma provides a bound on W2(πk, γkϵ).
Lemma 5.1. Fixing the step size ϵ and time horizon kϵ, take the kernel scale

parameter ∆ small enough to satisfy (3.4), and sampling distribution scale parameter
γ small enough to satisfy (3.5). Then we have

W2(πk, γkϵ) ≤ 6(kϵ)ϵ
√

12C0 + 3 + 3
√

2(kϵ)ϵ
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where C0 is a constant provided in supplementary material 7.1, Mθ is a uniform bound
on E∥θk∥2, see Lemma 7.4, L∇J is the Lipchitz constant for ∇J , see Assumption 3.1,
B = ∥∇J(0)∥, and ζ is the uniform noise variance bound in Assumption 3.3. Now,
the following Lemma provides a bound on D(γkϵ∥νkϵ), the Kullback-Leibler (KL)
divergence between measures γkϵ and νkϵ, using a similar Girsanov change of measure
as presented in [22].

Lemma 5.2. Fixing the step size ϵ and time horizon kϵ, taking the kernel scale
parameter ∆ small enough to satisfy (3.4), and sampling distribution scale parameter
γ small enough to satisfy (3.5). Then we have:

D(γkϵ∥νkϵ) ≤ (kϵ)3 ϵ3
[
4βL2

∇J

(
72C0 + 6

√
C0 + 18 +

√
2
)]

+ (kϵ) ϵ (2L2
J + 4C0)

Now we relate this KL divergence to a Wasserstein distance through Corollary 4.5,
with µ = γkϵ, ν = νkϵ, λ = 1. By Lemma 7.3 we have exponential integrability of the
diffusion 2.12:

log
∫
RN

eλ∥w∥2
νkϵ(dw) ≤ κγ

0 + ((βb + N)2ϵ + 2I ′)kϵ

Now, since kϵ ≥ 1 by (3.6) and (3.3), and κγ
0 ≤ κ0, we can bound

W2(γkϵ, νkϵ) ≤ 2
√

3
2 + (κ0 + (βb + N)2ϵ + 2I ′)kϵ

(√
D(γkϵ||νkϵ) + (D(γkϵ||νkϵ))1/4

)
Applying Lemma 5.2, we have:

W2(γkϵ, νkϵ) ≤ 4
√

3
2 + C1kϵ

√
kϵ
√

ϵ

(
4
√

βL2
∇JC2 + 2

√
2L2

J + 4C0

)
with C0, C1, C2 in supplementary material 7.1. So finally,

W2(πk, νkϵ) ≤ kϵ
√

ϵ

[
6
√

12C0 + 3 + 3
√

2 + 4
√

3/2 + C1

(
4
√

C2 + 2
√

2L2
J + 4C0

)](5.4)

So we achieve a discretization error bound W2(πk, νkϵ) which scales as O(kϵ
√

ϵ). In
fact, this is tighter than the bound obtained in [22], which scales as O(kϵ ϵ1/4). We
represent this bound in terms of distinct units kϵ and

√
ϵ (rather than kϵ3/2) since

in our final analysis we will take kϵ large enough (but fixed), then ϵ small enough, so
that W2(πk, νkϵ) decreases arbitrarily. We will need to first take kϵ large enough to
control the diffusion (2.12) convergence to the Gibbs measure. The following presents
this convergence in terms of exponentially decaying distance W2(νkϵ, π∞).

5.2. 2-Wasserstein Distance for Diffusion Convergence. Here we describe
the method to bound W2(νkϵ, π∞). The strategy is as follows:

i) Show that π∞ satisfies a logarithmic-Sobolev inequality.
ii) Apply exponential decay of entropy, given as Lemma 4.1, with the relative

entropy bound in Lemma 7.2, to derive a bound on D(νkϵ∥π∞)
iii) Apply the Otto-Villani Theorem, given as Lemma 4.2, to relate this to a

bound on W2(νkϵ, π∞).
We accomplish (i) in the following proposition, establishing that the Gibbs measure
π∞ satisfies a log-Sobolev inequality:
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Proposition 5.3. For β satisfying Assumption 3.8, the Gibbs measure π∞ sat-
isfies a logarithmic Sobolev inequality with constant cLS:

0 ≤ cLS ≤
2βL∇J

γ
+ 2

βL∇J
+ 1

λ

(
2βL∇J

γ

(
κ + γ

(
κ0 + (βb + N)π̄0,γ + 2I

(mβ)π̄0,γ

))
+ 2
)(5.5)

where

1
λ
≤ 1

2κ

(
1 + 4Cκ2

γ
exp
(

β

(
(L∇J + B)κ

γ
+ A + B

)))
κ =

(
1
2βmN + βmI

)
+ 1

2

[
β2mb + (βmM)2

]
, γ = 1

2

(
(βm)2 +

(
1− 1

π̄2
0 + 1

))
(5.6)

and π̄0,γ = supx π0,γ(x), π̄0 = supx π0(x).
Proof Sketch: The full proof is available in supplementary material 7.4. The key tool
we use is the main Theorem in [5], reproduced as Proposition 4.4. To satisfy condition
(1) of Proposition 4.4 we show that the Lyapunov function

V (w) = exp
(

βm∥w∥2

2(π̄2
0,γ + 1)

)
and the infinitesimal generator (4.3) satisfy (4.10), with κ and γ given in (5.6). Then,
Proposition 4.3 is used to show that condition (2) is satisfied. Condition (3) is satisfied
with K = βL∇J by assumption 3.1.

Now since D(ν0||π∞) = D(π0||π∞) < ∞ by Lemma 7.2, we can apply the expo-
nential decay of entropy (Lemma 4.1) to obtain

(5.7) D(νt||π∞) ≤ D(π0,γ ||π∞)e−2t/βcLS

Then by the Otto-Villani Theorem and Lemma 7.2, we have

W2(νt, π∞) ≤
√

2cLSD̄γ
0 e−t/βcLS(5.8)

where D̄γ
0 is the relative entropy bound given in (7.2) and cLS is bounded in (5.5).

5.3. Controlling the 2-Wasserstein Distance. Combining the bounds (5.4)
and (5.8) yields

W2(πk, π∞) ≤ kϵ
√

ϵ

[
6
√

12C0 + 3 + 3
√

2 + 4
√

3
2 + C1

(
4
√

C2 + 2
√

2L2
J + 4C0

)]

+
√

2cLSD̄γ
0 e−kϵ/βcLS

(5.9)

The strategy to control (5.9) is to take kϵ large enough so that the exponential
term dies away, then (fixing kϵ) take ϵ small enough so that the first term decreases
arbitrarily. However, we encounter a subtle problem: the term D̄γ

0 may depend
inconveniently on γ, and thus on ϵ, since we take γ satisfying (3.5) in order to obtain
Lemmas 5.1, 5.2.

Let us investigate this. Lemma 7.2, with γ ≤ 1 and π̄0,γ expanded, gives

D̄γ
0 ≤ log(π̄0) + log 1

γN
+ N

2 log 3π

mβ
+ βb

2 log 3 + β

(
L∇J

3 κ0 + B
√

κ0 + A

)
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so we see that D̄γ
0 depends on γ as N log

(
1
γ

)
. Observe that taking kϵ as (3.3) and ϵ

as (3.2) yields

W2(πk, π∞) ≤ δ

[
6
√

12C0 + 3 + 3
√

2 + 4
√

3
2 + C1

(
4
√

C2 + 2
√

2L2
J + 4C0

)]

+ δ

√
2cLSN log

(
1
γ

)
+ δ

√
2cLSC3

(5.10)

where C3 := log(π̄) + N
2 log 3π

mβ + βb
2 log 3 + β

(
L∇J

3 κ0 + B
√

κ0 + A
)
. Then, since

γ ∈ [ϵ2, ϵ3/2] and ϵ ≤
(

δ
log(1/δ)

)2
we have

log( 1
γ

) ≤ log
(

1
ϵ2

)
≤ log

(
log(1/δ)

δ

)4
≤ log

(
1
δ5

)
= 5 log (1/δ)

where we use that
(

log(1/δ)
δ

)4
≤ δ−5 for all δ ≤ 1, satisfied by the feasible δ range

(3.6). Then we obtain the bound displayed in Theorem 3.9.

6. Conclusion. We derived non-asymptotic (finite-sample) bounds for a passive
stochastic gradient Langevin dynamics algorithm. These results complement recent
asymptotic weak convergence analysis of the passive Langevin algorithm in [16]. The
passive Langevin algorithm analyzed in this paper uses sequential evaluations of a
stochastic gradient descent by an external agent (forward learner), and reconstructs
the cost function being optimized. Thus it achieves real-time (adaptive) inverse rein-
forcement learning, in that we (the inverse learner) reconstruct the cost function while
it is in the process of being optimized. Specifically, we have provided finite-sample
bounds on the 2-Wasserstein distance between the sample distribution induced by
our algorithm and the Gibbs measure encoding the cost function to be reconstructed.
Our paper builds on the seminal paper [22] and utilizes techniques in the analysis of
Markov Diffusion Operators [2] to achieve the bound.
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7. Supplementary Material.

Glossary of Symbols.

θk SGD (2.8) iterate, θk ∈ RN

αk PSGLD (2.9) iterate, αk ∈ RN

ϵ PSGLD step size
π0,γ sampling distribution (2.7), maximum value: π̄0,γ

β PSGLD inverse temperature parameter
K PSGLD kernel function
∆ PSGLD kernel function scale parameter
J cost function, J : RN → R+
π∞ Gibbs measure (π∞ ∝ exp(−βJ))
α(t) solution of Itô diffusion (2.12)
W (t) standard Brownian motion
cLS diffusion (2.12) log-Sobolev constant
cP diffusion (2.12) Poincarê constant
L∇J ∇J Lipschitz constant
(m, b) J dissipativity constants
ζ uniform stochastic gradient ∇̂J(·) variance bound
Lπ0 π0 Lipschitz constant
Mθ uniform SGD bound, Mθ := supk≥0 E∥θk∥2

κγ
0 κγ

0 := logEπ0,γ

[
exp(∥x∥2)

]
<∞ (κ0 := κγ

0 |γ=1)
I (7.6) inner product bound 1
I ′ (7.6) inner product bound 2
A |J(0)|
B ∥∇J(0)∥
∥ · ∥ l2 norm

7.1. Bound Constants.

C0 := 3L2
∇J(Mθ + 2B2Mθ) + B2 + ζ

C1 := κ0 + (βb + N)2ϵ + 2I ′)

C2 := βL2
∇J

(
72C0 + 6

√
C0 + 18 +

√
2
)

C3 := log(π̄) + N

2 log 3π

mβ
+ βb

2 log 3 + β

(
L∇J

3 κ0 + B
√

κ0 + A

)
C4 :=

[
6
√

12C0 + 3 + 3
√

2 + 4
(

3
2 + C1

)1/2(
4
√

C2 + 2
√

2L2
J + 4C0

)]

Mθ = κ0 + 2
(

1 ∨ 1
m

)(
b + 2B2)

7.2. Technical Results. Here we present several technical Lemmas which are
necessary for the results derived in Section 5.

The proofs for all of these can be found in supplementary material 7.3.We denote
π̄0 := supx π0(x) and π̄0,γ := supx π0,γ(x). A = ∥J(0)∥, B = ∥∇J(0)∥, and I, I ′ are
constants provided in Lemma 7.11.

Lemma 7.1 (π0,γ exponential integrability). For all γ ≤ 1, π0,γ has a bounded
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and strictly positive density with respect to the Lebesgue measure on RN , and

(7.1) κγ
0 := log

∫
RN

e∥x∥2
dπ0,γ(x) <∞

and denote κ0 := κγ
0 |γ=1 so that κγ

0 ≤ κ0 ∀γ ≤ 1.
Lemma 7.2 (relative entropy bound).

D̄γ
0 := D(π0,γ ||π∞) ≤ log π̄0,γ + N

2 log 3π

mβ
+ βb

2 log 3

+ β

(
L∇J

3 κγ
0 + B

√
κγ

0 + A

)(7.2)

Lemma 7.3 (exponential integrability of Langevin diffusion).

logE[e∥α(t)∥2]] ≤ κγ
0 + ((βb + N)2ϵ + 2I ′)t

where κ0 is given in (7.1) and I ′ is given in (7.6).
Lemma 7.4 (uniform L2 bound on SGD). For η ∈ (0, 1 ∧ m

4L2
∇J

),

(7.3) sup
k≥0

E∥θk∥2 ≤ κ0 + 2
(

1 ∨ 1
m

)(
b + 2B2) =: Mθ

Lemma 7.5 (L2 bound on Langevin diffusion).

E∥α(t)∥2 ≤ κγ
0 + (βb + N)π̄0,γ + 2I

(mβ)π̄0,γ

Lemma 7.6. Taking

(7.4) ∆ ≤ inf
x∈[ϵ,K̂ϵ]

K−1( K̂1
√

2π
2ϵ ex2/2)

K−2(xϵ2N )

gives
E∥K∆(θk, αk)∇̂J(θk)∥2 ≤ 12ϵ(L2

∇J(Mθ + 2B2Mθ) + B2 + ζ)

Lemma 7.7. Taking π0 such that π̄0 = 1, and

γ ≤ ϵ3/2(7.5)

gives
E∥π0,γ(αk)∥2 ≤ ϵ, E∥∇π0,γ(αk)∥2 ≤ ϵ

Lemma 7.8. Let R be an N -dimensional random variable on the same probability
space as ᾱ(s). Then

E∥π0,γ(ᾱ(s))R∥2 ≤ 2E
[
|π0,γ(ᾱ(s))|2

]
E
[
∥R∥2]

Lemma 7.9 (π0,γ Quadratic Decay). π0,γ has tail value decay O(∥x∥−2) and
differential decay O(∥x∥−1). Specifically,

∃M ∈ N, C̃ > 0 : π0,γ(x) ≤ 2
(βm∗)2∥x∥2 , ∥∇π0,γ(x)∥ ≤ C̃

∥x∥
∀∥x∥ > M
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Lemma 7.10 (quadratic bounds on J). For all w ∈ Rd,

∥∇J(w)∥ ≤ L∇J∥w∥+ B

and
m

3 ∥w∥
2 − b

2 ≤ J(w) ≤ L∇J

2 ∥w∥2 + B∥w∥+ A

Lemma 7.11 (Uniform Gradient Inner Product Bound). We have

∃I > 0 : ∥⟨x,∇π0,γ(x)⟩∥ ≤ I ∀x ∈ RN , γ ∈ R+

∃I ′ > 0 : ∥⟨x, π0,γ(x)∇π0,γ(x)⟩∥ ≤ I ′ ∀x ∈ RN , γ ∈ R+
(7.6)

7.3. Proofs of Technical Lemmas.
Proof of Lemma 7.1.
Proof. This follows from Assumption 3.4.
Proof of Lemma 7.2.
Proof. Recall π∞(w) := 1

Λ exp(−βJ(w)), where Λ =
∫
RN exp(−βJ(w))dw. Since

π∞ > 0 everywhere, we can write

D(π0,γ ||π∞) =
∫
RN

π0,γ(x) log
(

π0,γ(x)
π∞(x)

)
dx

=
∫
RN

π0,γ(x) log π0,γ(x)dx + log Λ + β

∫
RN

π0,γ(x)J(x)dx

≤ log ∥π0,γ∥∞ + log Λ + β

∫
RN

π0,γ(x)J(x)dx

≤ log π̄0,γ + log Λ + β

∫
RN

π0,γ(x)J(x)dx

First let us upper bound the normalization constant:

Λ =
∫
RN

e−βJ(x)dx

≤ e
1
2 βb log 3

∫
RN

e− mβ∥x∥2
3 dx

= 3βb/2
(

3π

mβ

)N/2

where the inequality follows from Lemma 7.10. Thus,

log Λ ≤ N

2 log 3π

mβ
+ βb

2 log 3

By Lemma 7.10 we also have∫
RN

J(x)π0,γ(x)dx ≤
∫
RN

π0,γdx

(
L∇J

3 ∥x∥2 + B∥x∥+ A

)
≤ L∇J

3 κγ
0 + B

√
κγ

0 + A

Thus

D(π0,γ ||π∞) ≤ log π̄0,γ + N

2 log 3π

mβ
+ βb

2 log 3 + β

(
L∇J

3 κγ
0 + B

√
κγ

0 + A

)
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Proof of Lemma 7.3.
Proof. Let us denote αt := α(t) for notational convenience, and define L(t) :=

e∥αt∥2 . Similarly denote Lt = L(t). By Itô’s Lemma we have

dLt = {(∇αt
Lt)T µt + 1

2Tr[GT
t (Hαt

Lt)Gt]}dt + (∇αt
Lt)T GtdW (t))

where from (2.12) we have

µt = −β

2 π2
0,γ(αt)∇J(αt)− π0,γ(αt)∇π0,γ(αt), Gt = π0,γ(αt)

Thus,

(∇αt
Lt)T µt = −β⟨αtLt, π2

0,γ(αt)∇J(αt)⟩ − 2⟨αtLt, π0,γ(αt)∇π0,γ(αt)⟩

and
1
2Tr[GT

t (HαtLt)Gt] = 1
2Tr[π2

0,γ(αt)HαtLt] = π2
0,γ(αt)(∥αt∥2Lt + NLt)

and
(∇αt

Lt)T Gt = 2α∗
t π0,γ(αt)Lt

Putting these together and integrating,

Lt = L(0)− β

∫ t

0
⟨αsLs, π2

0,γ(αs)∇J(αs)⟩ds− 2
∫ t

0
⟨αsLs, π0,γ(αs)∇π0,γ(αs)⟩ds

+
∫ t

0
π2

0,γ(αs)(∥αs∥2Ls + NLs)ds +
∫ t

0
2α∗

sπ0,γ(αs)LsdW (s)

= L(0) +
∫ t

0
(π2

0,γ(αs)∥αs∥2 − β⟨αs, π2
0,γ(αs)∇J(αs)⟩)Lsds

− 2
∫ t

0
⟨αsLs, π0,γ(αs)∇π0,γ(αs)⟩ds +

∫ t

0
NLsπ2

0,γ(αs)ds

+
∫ t

0
2α∗

sπ0,γ(αs)LsdW (s)

Now, from the dissipativity condition 3.2, we can obtain the following bound:

π2
0,γ(αs)(∥αs∥2 − β⟨αs,∇J(αs)⟩) ≤ π2

0,γ(αs)(∥αs∥2 + β[−m∥αs∥2 + b])
= ∥αs∥2(π2

0,γ(αs)− βm) + π2
0,γ(αs)βb ≤ π2

0,γ(αs)βb

Making this substitution, we now work with

Lt ≤ L(0) + (βb + N)
∫ t

0
π2

0,γ(α(s))Lsds− 2
∫ t

0
⟨αsLs, π0,γ(αs)∇π0,γ(αs)⟩ds

+
∫ t

0
2α∗

sπ0,γ(αs)LsdW (s)

It can be shown (e.g., proof of Corollary 4.1 in [9]) that
∫ T

0 E∥Ltα(t)∥2dt <∞ ∀T ≥ 0.
Therefore the Itô integral

∫
Lsα∗

sdW (s) is a zero-mean martingale. Thus, taking
expectations leaves us with

24

This manuscript is for review purposes only.



E[Lt] ≤ E[L(0)] + E[(βb + N)
∫ t

0
π2

0,γ(α(s))Lsds]

− E[2
∫ t

0
⟨αs, π0,γ(αs)∇π0,γ(αs)⟩Lsds]

= E[L(0)] + (βb + N)
∫ t

0
E[π2

0,γ(α(s))Ls]ds

− 2
∫ t

0
E⟨αs, π0,γ(αs)∇π0,γ(αs)⟩Lsds]

≤ E[L(0)] + (βb + N)2ϵ

∫ t

0
E[Ls]ds + 2I ′

∫ t

0
E[Ls]ds

= E[L(0)] + ((βb + N)2ϵ + 2I ′)
∫ t

0
E[Ls]ds

= eκγ
0 + ((βb + N)2ϵ + 2I ′)

∫ t

0
E[Ls]ds

By application of the Gronwall Inequality, we obtain

E[Lt] ≤ exp(κγ
0 +

∫ t

0
((βb + N)2ϵ + 2I ′)ds

= exp(κγ
0 + ((βb + N)2ϵ + 2I ′)t)

Thus,
logE[e∥α(t)∥2]] ≤ κγ

0 + ((βb + N)2ϵ + 2I ′)t

Proof of Lemma 7.4.
Proof. See Lemma 3 of [22], with β =∞.
Proof of Lemma 7.5.
Proof. We consider the diffusion given by (2.12). Letting Y (t) = ∥α(t)∥2, Itô’s

Lemma gives

dY (t) =
[
−2⟨α(t), β

2 π2
0,γ(α(t))∇J(α(t)) + π0,γ(α(t))∇π0,γ(α(t))⟩+ Nπ2

0,γ(α(t))
]
dt

+ π0,γ(α(t))α(t)∗dW (t)

where α(t)∗dW (t) :=
∑N

i=1 αi(t)dWi(t). Letting m := mβ
2 π̄2

0,γ , we then form

d(e2mtY (t)) = 2me2mtY (t) + e2mtdY (t)

=
[
−2e2mt⟨α(t), β

2 π2
0,γ(α(t))∇J(α(t)) + π0,γ(α(t))∇π0,γ(α(t))⟩

+ Nπ2
0,γ(α(t))e2mt + 2me2mtY (t)

]
dt

+ e2mtπ0,γ(α(t))α(t)∗dW (t)

Then integrating yields

Y (t) = e−2mtY (0)− 2
∫ t

0
e2m(s−t)⟨α(s), β

2 π2
0,γ(α(s))∇J(α(s))

25

This manuscript is for review purposes only.



+ π0,γ(α(s))∇π0,γ(α(s))⟩ds

+ 2m

∫ t

0
e2m(s−t)Y (s)ds +

∫ t

0
Nπ2

0,γ(α(s))e2m(s−t)ds

+ 2
∫ t

0
e2m(s−t)π0,γ(α(s))α(s)∗dW (s)

Then using the dissipativity condition 3.2 we get

Y (t) ≤ e−2mtY (0) + β

∫ t

0
π2

0,γ(α(s))e2m(s−t)(b−mY (s))ds

+ 2
∫ t

0
π0,γ(α(s))e2m(s−t)Ids

+ mβ

∫ t

0
π̄2

0,γe2m(s−t)Y (s)ds +
∫ t

0
Nπ̄2

0,γe2m(s−t)ds

+ 2
∫ t

0
e2m(s−t)π0,γ(α(s))α(s)∗dW (s)

≤ e−2mtY (0) + βb

∫ t

0
π̄2

0,γe2m(s−t)ds + 2I

∫ t

0
π̄0,γe2m(s−t)ds

+
∫ t

0
Nπ̄2

0,γe2m(s−t)ds

Then grouping terms and evaluating the integral yields

Y (t) ≤ e−2mtY (0) +
(βb + N)π̄2

0,γ + 2Iπ̄0,γ

2m

(
1− e−2mt

)
+ π̄0,γ

∫ t

0
e2m(s−t)α(s)∗dW (s)

Now taking expectations, and by the Martingale property of the Itô integral, we have

E[∥α(t)∥2] ≤ e−2mtE∥α(0)∥2 +
(βb + N)π̄2

0,γ + 2Iπ̄0,γ

2m

(
1− e−2mt

)
≤ e−2mtE∥α(0)∥2 +

(βb + N)π̄2
0,γ + 2Iπ̄0,γ

2m

and from (7.1), and using m = mβ
2 π̄2

0,γ , and taking the maximum over t > 0 gives

E∥α(t)∥2 ≤ κγ
0 + (βb + N)π̄0,γ + 2I

(mβ)π̄0,γ

Proof of Lemma 7.6.
Proof.

E∥K∆(θk, αk)∇̂J(θk)∥2 = E|K∆(θk, αk)|2∥∇̂J(θk)∥2

≤ E|K∆(θk, αk)|2E∥∇̂J(θk)∥2 +
[
Cov

(
|K∆(θk, αk)|2, ∥∇̂J(θk)∥2

)]
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By Cauchy-Schwarz,

Cov
(
|K∆(θk, αk)|2, ∥∇̂J(θk)∥2

)
≤ Var

(
|K∆(θk, αk)|2

)
Var

(
∥∇̂J(θk)∥2

)
≤ E

[
|K∆(θk, αk)|2

]
E
[
∥∇̂J(θk)∥2

]
≤ E|K∆(θk, αk)|2E∥∇̂J(θk)∥2

so
E∥K∆(θk, αk)∇̂J(θk)∥2 ≤ 2E|K∆(θk, αk)|2E∥∇̂J(θk)∥2

Then we bound

E
[
∥∇̂J(θk)∥2

]
≤ 3(E∥L∇J |θk|+ B∥2 + ζ) = 3(E

[
L2

∇J |θk|2
]

+ 2E sup
k∈N

[
L2

∇JB2|θk|2
]

+ B2 + ζ)

≤ 3(L2
∇J(Mθ + 2B2Mθ) + B2 + ζ) =: C0

and thus we have

E∥K∆(θk, αk)∇̂J(θk)∥2 ≤ 6E∥K∆(θk, αk)∥2 (L2
∇J(Mθ + 2B2Mθ) + B2 + ζ

)
(7.7)

so we can control this quantity directly by controlling E∥K∆(θk, αk)∥2, which is done
as follows: Notice that

P
(

1
∆2N

K2
(
|θk − αk|

∆

)
> x

)
= P

(
K(θk, αk) > K(∆K2−1

(x∆2N ))
)

By Markov’s Inequality we have

P
(

K(θk, αk) > K(∆K2−1
(x∆2N )))

)
≤ E∥K(θk, αk)∥

K(∆K2−1(x∆2N )))
≤ K̂

K(∆K2−1(x∆2N )))

Then, for all x ∈ [ϵ, K̂ϵ], by choosing ∆ as (7.4) we have

P
(

1
∆2N

K2
(
|θk − αk|

∆

)
> x

)
≤ 2ϵ√

2π
e−x2

So now observe

E∥K∆(θk, αk)∥2 = E
[

1
∆2N

K2
(
|θk − αk|

∆

)]
=
∫ ∞

0
P
(

1
∆2N

K2
(
|θk − αk|

∆

)
> x

)
dx

=
∫ ϵ

0
P
(

1
∆2N

K2
(
|θk − αk|

∆

)
> x

)
dx +

∫ K̂ϵ

ϵ

P
(

1
∆2N

K2
(
|θk − αk|

∆

)
> x

)
dx

≤ ϵ +
∫ K̂ϵ

ϵ

2ϵ√
2π

e−x2
dx ≤ 2 ϵ
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Proof of Lemma 7.7.
Proof.

E
[
∥π0,γ(αk)∥2] =

∫ ∞

0
P
(
π2

0,γ(αk) > x
)

dx

We define the level set
∆γ

x := {y ∈ RN : π2
0,γ(y) > x}

so that
P
(
π2

0,γ(αk) > x
)

= P(αk ∈ ∆γ
x)

Now split this term as

P(αk ∈ ∆γ
x) = P(αk ∈ ∆γ

x|αk−1 ∈ ∆γ
x)P(αk−1 ∈ ∆γ

x)
+ P(αk ∈ ∆γ

x|αk−1 /∈ ∆γ
x)P(αk−1 /∈ ∆γ

x)
≤ P(αk ∈ ∆γ

x|αk−1 ∈ ∆γ
x) + P(αk ∈ ∆γ

x|αk−1 /∈ ∆γ
x)

Now, from (2.9), denote

∇k := ϵ

[
K

(
θk − αk

∆

)
β

2 ∇̂J(θk) +∇π0,γ(αk)
]
π0,γ(αk), w̃k :=

√
ϵπ0,γ(αk)wk

so that w̃k ∼ N (0, ϵπ0,γ(αk)2). Then observe that, given w̃k is symmetric with mean
zero,

P(αk ∈ ∆γ
x|αk−1 ∈ ∆γ

x) = P(αk−1 −∇k−1 + w̃k ∈ ∆γ
x|αk−1 ∈ ∆γ

x)
≤ P(αk ∈ ∆γ

x|αk−1 −∇k−1 ∈ ∆γ
x)

Similarly,

P(αk ∈ ∆γ
x|αk−1 /∈ ∆γ

x) ≤ P(αk ∈ ∆γ
x|αk−1 −∇k ∈ ∆γ

x)

so that
P(αk ∈ ∆γ

x) ≤ 2P(αk ∈ ∆γ
x|αk−1 −∇k−1 ∈ ∆γ

x)
Now, let ζϵ,γ

z := (ϵπ2
0,γ(z))−1, define

∆̂γ
x(z) := {y ∈ RN : y/z ∈ ∆γ

x}

and notice that
P (αk ∈ ∆γ

x|αk−1 −∇k−1 ∈ ∆γ
x)

= P
(

ζϵ,γ
αk−1

αk ∈ ∆̂γ
x(ζϵ,γ

αk−1
) | ζϵ,γ

αk−1
αk−1 − ζϵ,γ

αk−1
∇k−1 ∈ ∆̂γ

x(ζϵ,γ
αk−1

)
)

= P
(

ζϵ,γ
αk−1

(αk−1 −∇k−1 +
√

ϵπ0,γ(αk−1)wk) ∈ ∆̂γ
x(ζϵ,γ

αk−1
) |

ζϵ,γ
αk−1

(αk−1 −∇k−1) ∈ ∆̂γ
x(ζϵ,γ

αk−1
)
)

Then, since ζϵ,γ
αk−1

√
ϵπ0,γ(αk−1)wk ∼ N (0, (ζϵ,γ

αk−1
)2 ϵ π2

0,γ(αk−1)) we have that,

P (αk ∈ ∆γ
x|αk−1 −∇k−1 ∈ ∆γ

x)

≤
∫

∆̂γ
x(ζϵ,γ

αk−1 )
N (γ; ĉ, (ζϵ,γ

αk−1
)2 ϵ π2

0,γ(αk−1))dγ =
∫

∆̂γ
x(ζϵ,γ

αk−1 )
N (γ; ĉ, ζϵ,γ

αk−1
)dγ
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Now, crucially, observe that the volume of ∆̂γ
x(ζϵ,γ

z ) scales, w.r.t z, at the same rate
as the variance of N (·, ĉ, ζϵ,γ

z ). Thus we have∫
∆̂γ

x(ζϵ,γ
z1 )
N (γ; ĉ, ζϵ,γ

z1
)dγ =

∫
∆̂γ

x(ζϵ,γ
z2 )
N (γ; ĉ, ζϵ,γ

z2
)dγ ∀ z1, z2 > 0

In particular, take z such that ζϵ,γ
z = (ϵπ2

0,γ(z))−1 = ϵ2. Note that this necessitates
π̄0,γ ≥ ( 1

ϵ )3/2, which is given from the condition γ ≤ π̄0 ϵ3/2. Then we have

P (αk ∈ ∆γ
x|αk−1 −∇k−1 ∈ ∆γ

x) ≤
∫

∆̂γ
x(ϵ2)

N (γ; ĉ, ϵ2)dγ

≤
∫

∆̂γ
x(ϵ2)

1
ϵ
√

2π
dγ =

∫
∆̂γ

x(1)

ϵ√
2π

dγ

Then

E
[
∥π0,γ(αk)∥2] =

∫ ∞

0
P(π2

0,γ(αk) > x)dx

≤ 2
∫ ∞

0

∫
∆γ

x

ϵ√
2π

dγdx =
√

2
π

ϵ

∫ ∞

0

∫
RN

1{π0,γ(γ) >
√

x}dγdx

but observe that, for γ ≤ 1,∫ ∞

0

∫
RN

1{π0,γ(γ) >
√

x}dγ dx ≤
∫ ∞

0

∫
RN

1{π0(γ) >
√

x}dγ dx

So now

E
[
∥π0,γ(αk)∥2] ≤√ 2

π
ϵ

∫ ∞

0

∫
RN

1{π0(γ) >
√

x}dγ dx

=
√

2
π

ϵ

[∫ 1

0

∫
RN

1{π0(γ) >
√

x}dγ dx

+
∫ π̄2

0,γ

1

∫
RN

1{π0(γ) >
√

x}dγ dx

]
≤
√

2
π

ϵ

[∫ 1

0

∫
RN

1{π0(γ) > x}dγ dx + π̄2
0,γ V ({π0 > 1})

]
≤ ϵ [1 + V ({π0 > 1})] =: ϵV1

where V ({π0 > 1}) is shorthand for
∫
RN 1{π0(γ) > 1}dγ.

Define, analagously,

Γγ
x = {y ∈ RN : ∥∇π0,γ(y)∥2 > x}

By the same procedure as above, we can obtain

P(αk ∈ Γγ
x) ≤ 2

∫
Γγ

x

ϵ√
2π

dγ

and so

E∥∇π0,γ(αk)∥2 =
∫ ∞

0
P(∥∇π0,γ(αk)∥2 > x)dx ≤ 2

∫ ∞

0

∫
Γγ

x

√
2
π

ϵdγdx

≤ ϵ [1 + π̄′
0V ({∥∇π0∥ > 1})] =: ϵV2
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where π̄′
0 = supx∈RN ∇π0(x), V ({∥∇π0∥ > 1}) =

∫
RN 1{∥∇π0(γ)∥ > 1}dγ Taking π0

such that π̄0 = 1 gives

E
[
∥π0,γ(αk)∥2] ≤ ϵ, E∥∇π0,γ(αk)∥2 ≤ ϵ

Proof of Lemma 7.8.
Proof. First take

E∥π0,γ(ᾱ(s))R∥2 = E
[
|π0,γ(ᾱ(s))|2∥R∥2]

= E
[
|π0,γ(ᾱ(s))|2

]
E
[
∥R∥2]+ Cov

(
|π0,γ(ᾱ(s))|2, ∥R∥2)

By Cauchy-Schwarz,

Cov
(
|π0,γ(ᾱ(s))|2, ∥R∥2) ≤ Var

(
|π0,γ(ᾱ(s))|2

)
Var

(
∥R∥2)

≤ E
[
|π0,γ(ᾱ(s))|2

]
E
[
∥R∥2]

So we have

E∥π0,γ(ᾱ(s))R∥2 ≤ 2E
[
|π0,γ(ᾱ(s))|2

]
E
[
∥R∥2](7.8)

Proof of Lemma 7.9.
Proof. This follows from Assumption 3.4

Proof of Lemma 7.10.
Proof. Lemma 7.10 equivalent to Lemma 2 of [22], and follows from Assumptions

A1, A2, and A3.

Proof of Lemma 7.11.
Proof. First note that for all x ∈ RN we have ∇π0,γ(x) = ∇π0(x)

γ , so

arg max
y∈RN

∥⟨y, ∇π0,γ(y)⟩∥ = arg max
y∈RN

∥⟨γy,
∇π0(y)

γ
⟩∥ = arg max

y∈RN
∥⟨y, ∇π0(y)⟩∥

and

arg max
y∈RN

∥⟨y, π0,γ(y)∇π0,γ(y)⟩∥ = arg max
y∈RN

∥⟨γy, π0,γ(y)∇π0(y)
γ
⟩∥

= arg max
y∈RN

∥⟨y, π0(y)∇π0(y)⟩∥

Thus (7.6) is equivalent to:

∃I > 0 : ∥⟨x,∇π0(x)⟩∥ ≤ I ∀x ∈ RN(7.9)

∃I ′ > 0 : ∥⟨x, π0(x)∇π0(x)⟩∥ ≤ I ′ ∀x ∈ RN(7.10)

Now we prove by reductio ad absurdum: Suppose (7.9), (7.10) do not hold. Then we
have:

∀y > 0 ∃x ∈ RN : ∥⟨x,∇π0(x)⟩∥ > y

∀y > 0 ∃x ∈ RN : ∥⟨x, π0(x)∇π0(x)⟩∥ > y
(7.11)
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Recall M as defined in Assumption 3.4. Denote

D1 = {x ∈ RN : ∥x∥ ≤M ∨ 1}, D2 = DC
1 = RN\D1

Recall that we assume Lipshitz-continuity of π0(·) in (A3.5), with Lipschitz constant
Lπ0 . Thus, ∥∇π0(x)∥ is bounded by Lπ0 for all x ∈ RN . In particular notice that
since ∥∇π0(x)∥, ∥π0(x)∥, and ∥x∥ are bounded for x ∈ D1, there exists some M∗,M∗∗

such that
∥⟨x,∇π0(x)⟩∥ ≤M∗ ∀x ∈ D1

∥⟨x, π0(x)∇π0(x)⟩∥ ≤M∗∗ ∀x ∈ D1

Then (7.11) requires both:

∀y > M∗ ∃x ∈ D2 : ∥⟨x,∇π0(x)⟩∥ > y

∀y > M∗∗ ∃x ∈ D2 : ∥⟨x,∇π0(x)∇π0(x)⟩∥ > y
(7.12)

But by assumption 7.9 ∇π0(x) decays as O(∥x∥−1) for x ∈ D2, and in Lemma 7.9
π0(x) decays as O(∥x∥−2). Specifically, there exists C̃ such that

∥∇π0(x)∥ ≤ C̃

∥x∥−1 , ∥π0(x)∥ ≤ 2
(βm∗)2∥x∥2 , ∀x ∈ D2

Thus we have that
∥⟨x,∇π0(x)⟩∥ ≤ C̃ ∀x ∈ D2

∥⟨x, π0(x)∇π0(x)⟩∥ ≤ 2C̃

(βm∗)2 ∀x ∈ D2

which contradicts (7.12) and thus (7.11) is refuted. So (7.6) holds.

7.4. Proofs of Section 5 Results.

Proof of Lemma 5.1.
Proof. We begin by bounding this Wasserstein distance by the mean-square error

between the processes (5.2) and (5.3). Recall that Y (kϵ) has probability law πk.

W2(πk, γkϵ) = inf
γ∈Γ(πk,γkϵ)

(
E(x,y)∼γ∥x− y∥2)1/2

≤
√
Ex∼πk, y∼γkϵ

∥x− y∥2

Then we take t = kϵ, and bound

E∥Y (t)−X(t)∥2

≤ 3E∥
∫ t

0
gs(θs̄, Y (s))− ĝs(θs̄, X(s))ds∥2

+ 3E∥
∫ t

0
E [π0,γ(ᾱ(s̄))|ᾱ(s) = Y (s)]− π0,γ(X(s))dW (s)∥2

(7.13)

First we bound, using Jensen’s inequality:

E∥
∫ t

0
gs(θs̄, Y (s))− ĝs(θs̄, X(s))ds∥2
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= E∥
∫ t

0
E
[(

K∆(θs̄, ᾱ(s̄))β

2 ∇̂J(θs̄) +∇π0,γ(ᾱ(s̄))
)

π0,γ(ᾱ(s̄)) | ᾱ(s) = Y (s)
]

− E
[(

K∆(θs̄, ᾱ(s̄))β

2 ∇̂J(θs̄) +∇π0,γ(ᾱ(s̄))
)

π0,γ(ᾱ(s̄))|ᾱ(s) = X(s)
]

ds∥2

≤ E∥
∫ t

0

√
E
[
∥K∆(θs̄, ᾱ(s̄))β

2 ∇̂J(θs̄)π0,γ(ᾱ(s̄))∥2|ᾱ(s) = Y (s)
]

−

√
E
[
∥K∆(θs̄, ᾱ(s̄))β

2 ∇̂J(θs̄)π0,γ(ᾱ(s̄))∥2|ᾱ(s) = X(s)
]

+
√

E [∥π0,γ(ᾱ(s̄))∇π0,γ(ᾱ(s̄))∥2|ᾱ(s) = Y (s)]

−
√
E [∥π0,γ(ᾱ(s̄))∇π0,γ(ᾱ(s̄))∥2|ᾱ(s) = X(s)]ds∥2

≤ E∥
∫ t

0
4 ϵ
√

2C0 + 2
√

2 ϵds∥2 ≤ (kϵ)2 ϵ2 (96C0 + 24)

We bound the second term, using the Itô Isometry:

E∥
∫ t

0
E [π0,γ(ᾱ(s̄))|ᾱ(s) = Y (s)]− π0,γ(X(s))dW (s)∥2

= E∥
∫ t

0
E [π0,γ(ᾱ(s̄))− π0,γ(X(s))|ᾱ(s) = Y (s)] dW (s)∥2

= E
[∫ t

0
E
[
∥π0,γ(ᾱ(s̄))− π0,γ(X(s))∥2|ᾱ(s) = Y (s)

]
ds

]
≤ 6E

[∫ t

0
ϵds

]
= 6 kϵ2

Thus, we have

W2(πk, γkϵ) ≤
√

72(kϵ)2 ϵ2 (4C0 + 1) + 18(kϵ)ϵ

≤ 6 (kϵ)ϵ
√

12C0 + 3 + 3
√

2 (kϵ)ϵ

Proof of Lemma 5.2.
Proof. Let Pt

X := Law(X(s) : 0 ≤ s ≤ t) for X(s) in 5.3 and Pt
A := Law(α(s) :

0 ≤ s ≤ t) for α(t) in 2.12. The Radon-Nikodym derivative of Pt
A with respect to Pt

X

is given by the Girsanov formula:

dPt
A

dPt
X

(X) = exp{
∫ t

0
(G(X(s))− gs(θs̄, X(s)))∗

π0,γ(X(s))−2dW (s)

− 1
2

∫ t

0
∥G(X(s))− gs(θs̄, X(s)))∥2π0,γ(X(s))−2ds}

where G(X(s)) = β
2 π2

0,γ(X(s))∇J(X(s)) + π0,γ(X(s))∇π0,γ(X(s))
Then by the martingale property of the Itô integral,

D(Pt
X∥Pt

A) = −
∫

dPt
X log dPt

A

dPt
X
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= 1
2

∫ t

0
E
[
∥G(X(s))− gs(θs̄, X(s)))∥2π0,γ(X(s))−2

]
ds

= 1
2

∫ t

0
E
[
∥β

2 π2
0,γ(X(s))∇J(X(s)) + π0,γ(X(s))∇π0,γ(X(s))

− gs(θs̄, X(s))∥2π0,γ(X(s))−2
]
ds

= 1
2

∫ t

0
E
[
∥β

2 π2
0,γ(ᾱ(s))∇J(ᾱ(s)) + π0,γ(ᾱ(s))∇π0,γ(ᾱ(s))

− gs(θs̄, ᾱ(s))∥2π0,γ(ᾱ(s))−2
]
ds

where the last line follows from the fact that Law(ᾱ(s)) = Law(X(s)) ∀s ≤ t.
Now let t = kϵ for some k ∈ N. Then, expanding gs(θs̄, Y (s)) and using Jensen’s

inequality, we get

D(Pt
X∥Pt

A) ≤ 1
2

∫ t

0
E
[
∥β

2 π2
0,γ(ᾱ(s))∇J(ᾱ(s)) + π0,γ(ᾱ(s))∇π0,γ(ᾱ(s))

−
(

K∆(θs̄, ᾱ(s))β

2 ∇̂J(θs̄) +∇π0,γ(ᾱ(s))
)

π0,γ(ᾱ(s))∥2π0,γ(ᾱ(s))−2
]
ds

= β

4

∫ t

0
E∥π0,γ(ᾱ(s))∇J(ᾱ(s))−K∆(θs̄, ᾱ(s))∇̂J(θs̄)∥2ds

= β

4

k−1∑
j=0

∫ (j+1)ϵ

jϵ

E∥π0,γ(ᾱ(s))∇J(ᾱ(s))−K∆(θs̄, ᾱ(s))∇̂J(θs̄)∥2ds

≤ β

2

k−1∑
j=0

∫ (j+1)ϵ

jϵ

E∥π0,γ(ᾱ(s))∇J(ᾱ(s))− π0,γ(ᾱ(s))∇J(ᾱ(⌊s/ϵ⌋ϵ))∥2ds

+ β

2

k−1∑
j=0

∫ (j+1)ϵ

jϵ

E∥π0,γ(ᾱ(s))∇J(ᾱ(⌊s/ϵ⌋ϵ))−K∆(θs̄, ᾱ(s))∇̂J(θs̄)∥2ds

≤ β

k−1∑
j=0

∫ (j+1)ϵ

jϵ

E|π0,γ(ᾱ(s))|2E∥∇J(ᾱ(s))−∇J(ᾱ(⌊s/ϵ⌋ϵ))∥2ds

+ 3β

k−1∑
j=0

∫ (j+1)ϵ

jϵ

E|π0,γ(ᾱ(s))|2E∥∇J(ᾱ(⌊s/ϵ⌋ϵ))−∇J(α(0))∥2

+ 3β

k−1∑
j=0

∫ (j+1)ϵ

jϵ

E|π0,γ(ᾱ(s))|2E∥∇(J(α(0)))∥2

+ 3β

k−1∑
j=0

∫ (j+1)ϵ

jϵ

E∥K∆(θs̄, ᾱ(s))∇̂J(θs̄)∥2ds

(7.14)

where we use Lemma 7.8 in the last inequality.
First Term: By L∇J -smoothness (Assumption 3.1), we begin to control the first
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term as:

E∥∇J(ᾱ(s))−∇J(ᾱ(⌊s/ϵ⌋ϵ))∥2 ≤ L2
∇JE∥(ᾱ(s)− ᾱ(⌊s/ϵ⌋ϵ))∥2

Then for s ∈ [jϵ, (j + 1)ϵ]:

(ᾱ(s)− ᾱ(⌊s/ϵ⌋ϵ))

= (s− jϵ)β

2 K∆(θj , ᾱ(jϵ))∇̂J(θj)π0,γ(ᾱ(jϵ))

+ (s− jϵ)π0,γ(ᾱ(jϵ))∇π0,γ(ᾱ(jϵ))− π0,γ(ᾱ(jϵ))(W (s)−W (jϵ))

Then bound E∥(ᾱ(s)− ᾱ(⌊s/ϵ⌋ϵ))∥2 as:

E∥(ᾱ(s)− ᾱ(⌊s/ϵ⌋ϵ))∥2

≤ 6ϵ2E∥K∆(θj , ᾱ(jϵ))β

2 ∇̂J(θj)∥2E∥π0,γ(ᾱ(jϵ))∥2

+ 3ϵ2E∥π0,γ(ᾱ(jϵ))∇π0,γ(ᾱ(jϵ))∥2 + 3ϵE∥π0,γ(ᾱ(jϵ))(W (s)−W (jϵ)∥2

(7.15)

But observe that

E∥(ᾱ(s)−ᾱ(⌊s/ϵ⌋ϵ))∥2

= E
[
(s− jϵ)2∥K∆(θj , ᾱ(jϵ))∇̂J(θj)π0,γ(ᾱ(jϵ))∥2

]
+ E

[
(s− jϵ)2∥π0,γ(ᾱ(jϵ))∇π0,γ(ᾱ(jϵ))∥2]

+ 2E
[
(s− jϵ)2⟨K∆(θj , ᾱ(jϵ))∇̂J(θj), π2

0,γ(ᾱ(jϵ))∇π0,γ(ᾱ(jϵ))⟩
]

− E
[
(s− jϵ)⟨K∆(θj), ᾱ(jϵ))∇̂J(θj), π2

0,γ(W (s)−W (jϵ))⟩
]

− E
[
(s− jϵ)⟨∇π0,γ(ᾱ(jϵ)), π2

0,γ(W (s)−W (jϵ)⟩
]

+ E
[
π2

0,γ∥ᾱ(jϵ))(W (s)−W (jϵ)∥2]

(7.16)

then combining (7.16) with (7.15), and using the Martingale property of Brownian
motion, Jensen’s Inequality, and Cauchy-Schwarz, gives:

E
[
π2

0,γ(ᾱ(jϵ))∥W (s)−W (jϵ)∥2]
≤ 2ϵ2E∥K∆(θj , ᾱ(jϵ))∇̂J(θj)π0,γ(ᾱ(jϵ))∥2

+ 2ϵ2E∥π0,γ(ᾱ(jϵ))∇π0,γ(ᾱ(jϵ))∥2

+ ϵ2
√

E
[
∥⟨K∆(θj , ᾱ(jϵ))∇̂J(θj)π2

0,γ(ᾱ(jϵ)), π2
0,γ(ᾱ(jϵ))∇π0,γ(ᾱ(jϵ))⟩∥2

]
≤ 2ϵ2E∥K∆(θj , ᾱ(jϵ))∇̂J(θj)π0,γ(ᾱ(jϵ))∥2

+ 2ϵ2E∥π0,γ(ᾱ(jϵ))∇π0,γ(ᾱ(jϵ))∥2

+ ϵ2
√

E∥K∆(θj , ᾱ(jϵ))∇̂J(θj)π0,γ(ᾱ(jϵ))∥2

+ ϵ2
√

E∥π0,γ(ᾱ(jϵ))∇π0,γ(ᾱ(jϵ))∥2

Thus we have:

E∥(ᾱ(s)− ᾱ(⌊s/ϵ⌋ϵ))∥2
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≤ 18ϵ2E∥K∆(θj , ᾱ(jϵ))β

2 ∇̂J(θj)∥2E∥π0,γ(ᾱ(jϵ))∥2

+ 9ϵ2E∥π0,γ(ᾱ(jϵ))∇π0,γ(ᾱ(jϵ))∥2

+ 3ϵ2
√

E∥K∆(θj , ᾱ(jϵ))β

2 ∇̂J(θj)∥2E∥π0,γ(ᾱ(jϵ))∥2

+ 3ϵ2
√

E∥π0,γ(ᾱ(jϵ))∇π0,γ(ᾱ(jϵ))∥2

≤ ϵ4 (72C0 + 18) + ϵ3
(

6
√

C0 +
√

2
)

where recall C0 := 3L2
∇J(Mθ + 2B2Mθ) + B2 + ζ. Consequently,

β

k−1∑
j=0

∫ (j+1)ϵ

jϵ

E|π0,γ(ᾱ(s))|2E∥∇J(ᾱ(s))−∇J(ᾱ(⌊s/ϵ⌋ϵ))∥2ds

≤ β

k−1∑
j=0

∫ (j+1)ϵ

jϵ

L2
∇JE|π0,γ(ᾱ(s))|2E∥(ᾱ(s)− ᾱ(⌊s/ϵ⌋ϵ))∥2ds

≤ βL2
∇Jkϵ

(
ϵ4 (72C0 + 18) + ϵ3

(
6
√

C0 +
√

2
))

(7.17)

Second Term: We now bound the second term as

3β

k−1∑
j=0

∫ (j+1)ϵ

jϵ

E|π0,γ(ᾱ(s))|2E∥∇J(ᾱ(⌊s/ϵ⌋ϵ))−∇J(ᾱ(0))∥2ds

= 3β

k−1∑
j=0

ϵE|π0,γ(ᾱ(s))|2E∥∇J(ᾱ(jϵ))−∇J(ᾱ(0))∥2ds

≤ 3β

k−1∑
j=0

ϵE|π0,γ(ᾱ(s))|2E∥
j−1∑
i=0
|∇J(ᾱ((i + 1)ϵ))−∇J(ᾱ(iϵ))|∥2

≤ 3β

k−1∑
j=0

ϵ2 L2
∇JE∥

j−1∑
i=0
|ᾱ((i + 1)ϵ)− α(iϵ)|∥2

= 3β

k−1∑
j=0

ϵ2L2
∇JE

[
j−1∑
i=0

j−1∑
l=0
|ᾱ((i + 1)ϵ)− ᾱ(iϵ)||ᾱ((l + 1)ϵ)− ᾱ(lϵ)|

]

≤ 3β

k−1∑
j=0

ϵ2L2
∇J

[
j−1∑
i=0

j−1∑
l=0

E [|ᾱ((i + 1)ϵ)− ᾱ(iϵ)||ᾱ((l + 1)ϵ)− ᾱ(lϵ)|]
]

≤ 3β

k−1∑
j=0

ϵ2L2
∇J

[
j−1∑
i=0

j−1∑
l=0

(
ϵ4 (72C0 + 18) + ϵ3

(
6
√

C0 +
√

2
))]

= 3β

k−1∑
j=0

ϵ2L2
∇Jj2

(
ϵ4 (72C0 + 18) + ϵ3

(
6
√

C0 +
√

2
))

≤ 3βkϵ2L2
∇Jk2

(
ϵ4 (72C0 + 18) + ϵ3

(
6
√

C0 +
√

2
))

= 3β(kϵ)3L2
∇J

(
ϵ4 (72C0 + 18) + ϵ3

(
6
√

C0 +
√

2
))

(7.18)
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Third Term: We bound E∥π0,γ(ᾱ(s))∇(J(α(0)))∥2 by controlling the sampling
distribution π0,γ(·). By Lemma 7.8 and Assumption 3.1 we have

E∥π0,γ(ᾱ(s))∇(J(α(0)))∥2 ≤ 2E
[
∥π0,γ(ᾱ(s))∥2]E [∥∇(J(α(0)))∥2]

≤ 2L2
JE
[
∥π0,γ(ᾱ(s))∥2] ≤ 2L2

Jϵ
(7.19)

And so
k−1∑
j=0

∫ (j+1)ϵ

jϵ

E∥π0,γ(ᾱ(s))∇(J(α(0)))∥2

≤ 2kϵL2
Jϵ

Fourth Term: By Lemma 7.6, we have

E∥K∆(θs̄, ᾱ(s))∇̂J(θs̄)∥2 ≤ 12ϵ(L2
∇J(Mθ + 2B2Mθ) + B2 + ζ) = 4ϵC0

and so
k−1∑
j=0

∫ (j+1)ϵ

jϵ

E∥K∆(θs̄, ᾱ(s))∇̂J(θs̄)∥2ds ≤ kϵ (4ϵC0)(7.20)

Combining (7.17), (7.18), (7.19), (7.20) in (7.14), we obtain

D(Pt
X∥Pt

A)

≤ βL2
∇Jkϵ

(
ϵ4 (72C0 + 18) + ϵ3

(
6
√

C0 +
√

2
))

+ 3β(kϵ)3L2
∇J

(
ϵ4 (72C0 + 18) + ϵ3

(
6
√

C0 +
√

2
))

+ 2kϵL2
Jϵ

+ kϵ (4ϵC0)

≤ (kϵ)3 ϵ3
[
4βL2

∇J

(
72C0 + 6

√
C0 + 18 +

√
2
)]

+ (kϵ) ϵ (2L2
J + 4C0)

Now since πk = Law(αk) and νkϵ = Law(α(t)), the KL divergence data-processing
inequality yields

D(πk∥νkϵ) ≤ D(Pt
X∥Pt

A)

7.5. Proof of Proposition 5.3.
Proof. Recall that the continuous time diffusion of interest (2.12) has infinitesimal

generator L acting on C2 function f as

Lf = 1
2π2

0,γ∆f − β

2 π0,γ⟨∇J,∇f⟩ − π0,γ⟨∇π0,γ ,∇f⟩

We will show that the conditions of Proposition 4.4 hold:
1. Consider the Lyapunov function

V (x) = exp
(

βm∥x∥2

2(π̄2
0,γ + 1)

)
36

This manuscript is for review purposes only.



Then we have

LV (x) = −β

2 π2
0,γ(x)⟨∇J(x),∇V (x)⟩ − π0,γ(x)⟨∇π0,γ(x),∇V (x)⟩

+ 1
2π2

0,γ(x)∆V (x)

=
{
−β

2
mβ

(π̄2
0,γ + 1)π2

0,γ(x)⟨∇J(x), x⟩ − mβ

π̄2
0,γ + 1π0,γ(x)⟨∇π0,γ(x), x⟩

+ 1
2π2

0,γ(x)( mβN

π̄2
0,γ + 1 + ( mβ

π̄2
0,γ + 1)2∥x∥2))

}
V (x)

≤
{
−β

2
mβ

π̄2
0,γ + 1π2

0,γ(x)(m∥x∥2 − b) + mβI

π̄2
0,γ + 1π0,γ(x)

+ 1
2π2

0,γ(x)( mβN

π̄2
0,γ + 1 + ( mβ

π̄2
0,γ + 1)2∥x∥2))

}
V (x)

≤
{(

1
2βmN + mβI + 1

2π2
0,γ(x) β2mb

π̄2
0,γ + 1

)
−
(

β2m

2(π̄2
0,γ + 1)π2

0,γ(x)m− 1
2π2

0,γ(x)( βm

(π̄2
0,γ + 1))2

)
∥x∥2

}
V (x)

≤
{(

1
2βmN + mβI

)
+ 1

2π2
0,γ(x) β2mb

π̄2
0,γ + 1

−

(
1
2π2

0,γ(x) (βm)2

π̄2
0,γ + 1 −

1
2π2

0,γ(x)( βm

π̄2
0,γ + 1)2

)
∥x∥2

}
V (x)

≤
{(

1
2βmN + mβI

)
+ 1

2π2
0,γ(x) β2mb

π̄2
0,γ + 1

−

(
1
2π2

0,γ(x) (βm)2

π̄2
0,γ + 1

(
1− 1

π̄2
0,γ + 1

))
∥x∥2

}
V (x)

≤
{(

1
2βmN + mβI

)
+
[

1
2π2

0,γ(x) β2mb

π̄2
0,γ + 1

+ 1
2π2

0,γ(x)
(

(βm)2

π̄2
0,γ + 1M2

)
+ 1

−

(
1
2π2

0,γ(x) (βm)2

π̄2
0,γ + 1

(
1− 1

π̄2
0,γ + 1

))
∥x∥2

]}
V (x)

where in the last inequality statement we append

1
2π2

0,γ(x)
(

(βm)2

π̄2
0,γ + 1M2

)
+ 1

for the following reason: By assumption 3.4 we have that ∃M : π0,γ(x) <
2

(βm)2∥x∥2 ∀∥x∥ > M, γ ≤ 1. We aim to show that the term inside brackets
in the last inequality line of (1) is positive for all x. First take ∥x∥ < M : we
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have that:(
1
2π2

0,γ(x) (βm)2

π̄2
0,γ + 1

(
1− 1

π̄2
0,γ + 1

))
∥x∥2 <

1
2π2

0,γ(x)
(

(βm)2

π̄2
0,γ + 1M2

)
Now consider ∥x∥ ≥M . By Lemma 7.9 we have

1
2π0,γ(x)(βm)2∥x∥2 < 1

⇒ 1
2π2

0,γ(x) (βm)2

π̄2
0,γ + 1∥x∥

2 < 1

⇒ 1
2π2

0,γ(x) (βm)2

π̄2
0,γ + 1

(
1− 1

π̄2
0,γ + 1

)
∥x∥2 < 1

Thus we have:[
1
2π2

0,γ(x) β2mb

π̄2
0,γ + 1 + 1

2π2
0,γ(x)

(
(βm)2

π̄2
0,γ + 1M2

)
+ 1

−

(
1
2π2

0,γ(x) (βm)2

π̄2
0,γ + 1

(
1− 1

π̄2
0,γ + 1

))
∥x∥2

]
> 0 ∀x ∈ RN

and now observe that[
1
2π2

0,γ(x) β2mb

π̄2
0,γ + 1 + 1

2π2
0,γ(x)

(
(βm)2

π̄2
0,γ + 1M2

)
+ 1

−

(
1
2π2

0,γ(x) (βm)2

π̄2
0,γ + 1

(
1− 1

π̄2
0,γ + 1

))
∥x∥2

]

≤
[

1
2(π2

0,γ(x) + 1) β2mb

π̄2
0,γ + 1 + 1

2(π2
0,γ(x) + 1)

(
(βm)2

π̄2
0,γ + 1M2

)

−

(
1
2(π2

0,γ(x) + 1) (βm)2

π̄2
0,γ + 1

(
1− 1

π̄2
0,γ + 1

))
∥x∥2

]

≤ (π2
0,γ(x) + 1)

[
1
2

β2mb

π̄2
0,γ + 1 + 1

2

(
(βm)2

π̄2
0,γ + 1M2

)

−

(
1
2

(βm)2

π̄2
0,γ + 1

(
1− 1

π̄2
0,γ + 1

))
∥x∥2

]

≤ (π̄2
0,γ + 1)

[
1
2

β2mb

π̄2
0,γ + 1 + 1

2

(
(βm)2

π̄2
0,γ + 1M2

)

−

(
1
2

(βm)2

π̄2
0,γ + 1

(
1− 1

π̄2
0,γ + 1

))
∥x∥2

]

where we use that 1 ≤ (βm)2

π̄0,γ +1 M2, which is derived from Assumption (3.8).
Thus we have:

LV (x)
V (x) ≤

{(
1
2βmN + mβI

)
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+ (π̄2
0,γ + 1)

[
1
2

β2mb

π̄2
0,γ + 1 + 1

2

(
(βm)2

π̄2
0,γ + 1M2

)]

− (π̄2
0,γ + 1)

(
1
2

(βm)2

π̄2
0,γ + 1

(
1− 1

π̄2
0,γ + 1

))
∥x∥2

}
≤
(

1
2βmN + βmI

)
+ 1

2

[
β2mb + (βmM)2

]
− 1

2

(
(βm)2 +

(
1− 1

idistmax2 + 1

))
∥x∥2

:= κ− γ∥x∥2

and observe that κ, γ > 0. Thus, condition (1) of Proposition 4.4 holds.
2. From (1), we have

LV (x)
V (x) ≤ κ− γ∥x∥2

Observe that this implies

LV (x)
V (x) ≤ −κ + 2κ1(∥x∥2≤2κ/γ)

Moreover, by Lemma 7.10 and since J(x) ≥ 0, we have

Or(βJ) ≤ β

(
L∇J

2 ∥x∥2 + ∥x∥+ A

)
≤ β

(
(L∇J + B)r2

2 + A + B

)
and so by Proposition 4.3, with κ0 = 2κ, ζ0 = κ, r2 = 2κ/γ, we have that π∞
satisfies a Poincarê inequality with constant

cP = 1
λ
≤ 1

2κ

(
1 + 4Cκ2

γ
exp
(

β

(
(L∇J + B)κ

γ
+ A + B

)))
where κ and γ are defined above and provided in (5.6).

3. By assumption 3.1, we have

∇2βJ ⪰ −βL∇JId ⪰ 0

Thus the conditions of Proposition 4.4 are met, with K = 0. So, letting ζ = 1:

Z1 = 2
γ

+ 1, Z2 = 2
γ

(
κ + γ

∫
RN

∥w∥2π∞(dw)
)

Now we would like to make the bound on cLS (5.5) more explicit by providing a bound
on
∫
RN ∥w∥2π∞(dw). From (5.8) we have W2(νt, π∞) → 0 as t → ∞, and thus by

Theorem 7.12 of [27] and Lemma 7.5 it follows that (with γ ≤ 1)∫
RN

∥w∥2π∞(dw) = lim
t→∞

∫
RN

∥w∥2νt(dw)

≤ κγ
0 + (βb + N)π̄0,γ + 2I

(mβ)π̄0,γ
≤ κ0 + (βb + N)π̄ + 2I

(mβ)π̄

(7.21)
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So now letting

Z2 = 2
γ

(
κ + γ

(
κ0 + (βb + N)π̄ + 2I

(mβ)π̄

))
we have that π∞ satisfies a log-Sobolev inequality with constant

cLS = Z1 + (Z2 + 2)cP
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