
Multi-UAV trajectory planning problem using the
difference of convex function programming

Anh Phuong Ngo1, Christian Thomas2, Ali Karimoddini1 and Hieu T. Nguyen1
1Dept. of Electrical & Computer Eng., North Carolina A&T State University, Greensboro, NC 27411, USA

2Dept. of Flight Test, Lockheed Martin Corporation, Fort Worth, TX 76108, USA
ango1@aggies.ncat.edu, christian.thomas@lmco.com, {akarimod, htnguyen1}@ncat.edu

Abstract—The trajectory planning problem for a swarm of
multiple UAVs is known as a challenging nonconvex optimiza-
tion problem, particularly due to a large number of collision
avoidance constraints required for individual pairs of UAVs
in the swarm. In this paper, we tackle this nonconvexity by
leveraging the difference of convex function (DC) programming.
We introduce the slack variables to relax and reformulate the
collision avoidance conditions and employ the penalty function
term to equivalently convert the problem into a DC form.
Consequently, we construct a penalty DC algorithm in which we
sequentially solve a set of convex optimization problems obtained
by linearizing the collision avoidance constraint. The algorithm
iteratively tightens the safety condition and reduces the objective
cost of the planning problem and the additional penalty term.
Numerical results demonstrate the effectiveness of the proposed
approach in planning a large number of UAVs in congested space.

Keywords—Trajectory planning, DC programming, penalty
DC algorithm, collision avoidance, non-convex optimization

NOMENCLATURE

A. Set and Indices
N , i Set and index of vehicles, i ∈ N
T , k Set and index of time steps, k = 1, 2, . . . ,K ∈ T
S Set of initial states, including starting position

S
(
xs
i , y

s
i , z

s
i

)
, starting velocity S

(
vxi , v

y
i , v

z
i

)
, and

starting force S
(
fx
i , f

y
i , f

z
i

)
of vehicle i

G Set of goal states, including goal position G
(
xg
i , y

g
i , z

g
i

)
,

goal velocity G
(
vxi , v

y
i , v

z
i

)
, and goal force

G
(
fx
i , f

y
i , f

z
i

)
of vehicle i

B. Parameters
x, x Upper/lower limits of x-coordinate that vehicles can reach
y, y Upper/lower limits of y-coordinate that vehicles can reach
z, z Upper/lower limits of z-coordinate that vehicles can reach
Vi, Vi Upper/lower limits of velocity of vehicle i

Fi, Fi Upper/lower limits of force of vehicle i
d Minimum distance among two vehicles to avoid a collision
Ai State-space matrix of vehicle i
Bi Input matrix of vehicle i
ρf Penalty for Of of objective function
ρk Penalty for Og of objective function
τ, µ, ϵ Parameters used in DCA

C. Variables
xi,k x-coordinate of position of vehicle i at time step k
yi,k y-coordinate of position of vehicle i at time step k
zi,k z-coordinate of position of vehicle i at time step k
vxi,k x-component of velocity vector of vehicle i at time step k

vyi,k y-component of velocity vector of vehicle i at time step k
vzi,k z-component of velocity vector of vehicle i at time step k

This work was supported by DOE Sandia National Laboratories under
contract 281247. This paper has been accepted for presentation at the 62nd
IEEE Conference on Decision and Control (CDC 2023).

V⃗i,k velocity vector of vehicle i at time step k
fx
i,k x-component of force vector of vehicle i at time step k

fy
i,k y-component of force vector of vehicle i at time step k

fz
i,k z-component of force vector of vehicle i at time step k

F⃗i,k force vector of vehicle i at time step k

I. INTRODUCTION

The trajectory planning problem aims at finding an optimal
solution of the trajectory for a single aircraft or a group of
aircrafts to travel from a given starting state over a map of the
environment to a goal state. Mixed-integer linear programming
(MILP) is the standard method used to solve the trajectory
generation problem for many decades [1]. MILP is a powerful
optimization method that allows inclusion of integer variables
and discrete logic of linearizaion for non-convex constraints
in a continuous linear trajectory optimization [2]–[4]. These
mixed-integer and continuous variables can be used to model
logical constraints such as obstacle avoidance and vehicle
separation, while the dynamic and kinematic settings of the air-
crafts are bounded in continuous constraints. Concurrently, the
magnitudes of velocity and force vectors are modeled by the
spherical geometry-based sampling approximation technique
for a 3-D environment, or the edges of an N-sided polygon
approximation technique for a 2-D environment [4]. To this
extent, the MILP method uses many auxiliary variables and
constraints to formulate the trajectory optimization problem.

Recent improvements in aircraft’s capabilities, especially for
unnamed aerial vehicles (UAVs), facilitate them to carry out
longer and more complex missions in dynamic environments.
Moreover, as more vehicles and more targets are involved
in a mission, the size of the trajectory optimization problem
based on MILP increases exponentially. Consequently, the
computation time of the problem to obtain the optimal solution
becomes much more expensive. Convex optimization methods
can handle well the conic constraints such as bounds on the
magnitude of velocity and force vectors without incorporating
the approximation techniques [2], [5].

The most key challenge in solving trajectory optimization
models with convex cost functions and affine vehicle dynamics
is that we often encounter the nonconvex collision avoidance
requirement [6], [7]. This nonconvex requirement is enforced
for all individual pairs of UAVs in the swarm, thus making the
problem computationally challenging. This research proposes
the use of the difference of convex function (DC) programming

ar
X

iv
:2

30
3.

07
58

1v
3

 [
m

at
h.

O
C

]
 2

 A
ug

 2
02

3

[8] to tackle the nonconvexity of the planning problem for a
swarm of a large number of UAVs. First, we relax the collision
avoidance constraints by slack variables and add the sum of
slack variables as a penalty function to the original objective
function. Consequently, we obtain the equivalent reformulation
of the original problem. We then sequentially linearize the
relaxed non-convex collision avoidance constraints while min-
imizing the reformulated problem with an increasing penalty
term. The algorithm is called the penalty DCA [9] or penalty
convex-concave procedure [10], which aims to tighten the
convexified problem of the original nonconvex one. This
paper is organized as follows: Section II and III presents
the mathematical model of the generic trajectory planning
problem for a swarm of multiple UAVs. Section IV and V
reformulate the problem into Mixed-Integer Convex Program
(MICP) and DC forms, respectively. The numerical results
of our formulations and algorithms are shown in Section VI.
Finally, Section VII concludes the paper.

II. STATE-SPACE SYSTEM MODELING OF A UAV

Fig. 1. Velocity and Force vectors in body and fixed axes coordinate system

We consider a fixed-wing UAV modeled as a point mass fly-
ing in a predetermined 3-dimensional space with the (x, y, z)
coordinates (i.e., forward, side, and vertical directions, respec-
tively) as shown in Figure 1 where i denotes the UAV index in
the swarm at the location (xi,t, yi,t, zi,t) and mi is its constant
mass. The UAV’s velocity V⃗i,t, by definition, represents the
change of UAV’s location as:

V⃗i,t = v⃗xi,t + v⃗yi,t + v⃗zi,t =
dx⃗i

dt
+

dy⃗i
dt

+
dz⃗i
dt

(1)

and can be decomposed into v⃗xi,t =
dx⃗i

dt
(the forward velocity),

vyi,t =
dy⃗i
dt

(the side velocity), and vzi,t =
dz⃗i
dt

(the vertical

velocity). The force F⃗i,t as the control input alternates the
UAV acceleration following Newton’s second law:

F⃗i,t = mi
d(V⃗i,t)

dt
= mi

(
dv⃗xi
dt

+
dv⃗yi
dt

+
dv⃗zi
dt

)
, (2)

which is also decomposed into f⃗x
i,t =

dv⃗xi
dt

, f⃗y
i,t = mi

dv⃗xi
dt

,

and f⃗z
i,t = mi

dv⃗xi
dt

(i.e., forward, side, vertical forces).

Equations (1)-(2) together form the following UAV’s kyno-
dynamic state-space model:

dxi,t

dt
= Axi,t +Bui,t (3)

where xi,t =
[
xi,t, yi,t, zi,t, v

x
i,t, v

y
i,t, v

z
i,t

]⊤
,

ui,t =
[
fx
i,t, f

y
i,t, f

z
i,t

]⊤
,

Ai =

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,Bi =
1

mi

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

Here, xi,t denotes the vector of state variables, ui,t denotes
the control input, Ai denotes the state matrix, and Bi denotes
the input matrix of UAV i. The kyno-dynamic model (3) can
be converted into the discrete time-variant form as follows:

xi,k+1 = Âixi,k + B̂iui,k, ∀i ∈ N ,∀k ∈ T , (4)

where Âi = I+∆TAi, B̂i = ∆TBi, particularly:

Âi =

1 0 0 ∆T 0 0
0 1 0 0 ∆T 0
0 0 1 0 0 ∆T
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , B̂i =
∆T

mi

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 ,

and Xi,k =
[
xi,k, yi,k, zi,k, v

x
i,k, v

y
i,k, v

z
i,k

]⊤
and Ui,k =[

fx
i,k, f

y
i,k, f

z
i,k

]⊤
respectively represent vectors of state vari-

ables and control inputs of UAV i at time step k, and ∆T is
the length of the time step.

III. MULTI-UAV TRAJECTORY PLANNING PROBLEM

We consider the trajectory planning problem for a swarm
of N UAVs in which each UAV needs to travel from its initial
position to its final destination without colliding with other
UAVs. In other words, for each UAV i ∈ I in the swarm,
we need to determine a sequence of positions (xi,k, yi,k, zi,k)
forming the UAV’s trajectory and the sequence of control
action Ui,k at each time step k ∈ T such that the UAV
reaches its final destination without collision with others. This
can mathematically be formulated as a large-scale non-convex
optimization problem as follows:

min
x,u

N∑
i=1

K∑
k=1

(
ρf ×

√
(fx

i,t)
2 + (fy

i,t)
2 + (fz

i,t)
2︸ ︷︷ ︸

Of (u)

+ρk ×
√(

xi,t − xg
i

)2
+
(
yi,t − ygi

)2
+
(
zi,t − zgi

)2︸ ︷︷ ︸
Og(x)

)
, (5)

subject to:

(xi,ui) ∈ Ωi =

{
xi,k+1 = Âixi,k + B̂iui,k, ∀k, (6a)

(xi,1, yi,1, zi,1)
⊤ = (xS

i , y
S
i , z

S
i)

⊤, (6b)(
vxi,1, v

y
i,1, v

z
i,1

)⊤
= (vx,Si , vy,Si , vz,Si)⊤, (6c)

(xi,K , yi,K , zi,K)⊤ = (xG
i , y

G
i , z

G
i)

⊤, (6d)

(vxi,K , vyi,K , vzi,K)⊤ = (vx,Gi , vy,Gi , vz,Gi)⊤, (6e)(
fx
i,K , fy

i,K , fz
i,K

)⊤
= (fx,G

i , fy,G
i , fz,G

i)⊤, (6f)√(
vxi,k
)2

+
(
vyi,k
)2

+
(
vzi,k
)2 ≤ Vi,∀k (6g)√(

fx
i,k

)2
+
(
fy
i,k

)2
+
(
fz
i,k

)2 ≤ Fi,∀k

}
,∀i. (6h)

√
(xi,k − xj,k)2 + (yi,k − yj,k)2 + (zi,k − zj,k)2 ≥ d,

∀i ̸= j, ∀k. (7)

In the objective function (11), we want to minimize the control
effort and the traveling time of UAVs of reaching their final
destination. The objective consists of two terms, Of penalizes
the force supplying to vehicle i at time t with a unit fuel
cost ρ1 whereas Og penalizes the remaining distance of each
vehicle i to its goal position multiplying with the value ρk.
Typically, ρk is set as an increasing function of the time
indexes, e.g., ρk := a×k, a > 0, so Og urges UAVs to reach
their goal points as soon as possible. The objective function
is subject to two sets of constraints as follows.

Constraint (6) encapsulates all local constraints state vari-
ables and control inputs of individual UAVs i = 1, . . . , N in
their corresponding feasible set Ωi. In particular, the dynamics
of each vehicle following discrete-time and linear state-space
equation (4) is now acts as linear constraint (6a). The starting
position is expressed in (6b)-(6c) whereas the set of final
conditions including the goal position, velocity, and force of
vehicle are introduced in (6d)-(6f). The physical limits of
UAV’s velocity and driving force are captured in (6g) and (6h).
The feasible set Ωi is convex, and (6) is a convex constraint.

The constraint (7) represents the collision avoidance among
UAVs in the pair. In particular, the Euclidean separation
distance between all pairs of vehicles i ̸= j must be equal
to or greater than the safety margin d at every time step
k = 1, . . . ,K. The number of collision avoidance conditions is
N×(N−1)

2 ×K. Since the Euclidean distance norm is a convex
function, (7) is a non-convex constraint.

Overall, the multi UAVs’ trajectory planning problem can
be summarized in the following form:

[P] min Of (u) +Og(x)

s.t. (xi,ui) ∈ Ωi,∀i,
non-convex collision avoidance (7).

It is worth mentioning that Problem P is generic as we can
tailor Ωi or the objective function for different application
requirements, e.g., the UAV’s trajectory must visit certain

locations or stay close as much as possible for certain pre-
determined paths. Such modifications generally do not affect
the convexity of Ωi, thus not affecting computational perfor-
mance. The complexity of P stems from a large number of
nonconvex collision avoidance conditions (7). Such constraint,
however, is critical for safety requirements and cannot be
ignored. The aim of this paper is to tackle this convex
constraint set, thus facilitating the computation of UAV swarm
coordination in the form of P.

IV. MIXED-INTEGER CONVEX PROGRAMMING APPROACH

We can use mixed integer linear programming to capture
the nonconvex collision constraint (7). Theoretically, a generic
nonconvex constraint can be written in the form x /∈ C where
C is a convex set of variables x. If we can polyhedrally outer
approximate C by a set of L linear constraints [11], [12]

Poly(C) =
{
x |a⊤ν x ≤ bν , ν = 1, 2, . . . , L

}
, (8)

then the condition x /∈ C will be attained by letting at least
one constraint in (8) be violated using the auxiliary binary
variable um as follows:

a⊤ν x ≥ bν + ϵ− Uuν , uν ∈ {0, 1}, ∀m = 1, 2, . . .M,
M∑
ν=1

(1− uν) ≥ 1 (9)

where U is a sufficient large number and ϵ is a small number.
Constraint (9) means that at least one value of uν = 0,
consequently, one inequality a⊤ν x ≥ bν + ϵ activates, forcing
x /∈ C (the term ϵ is used to prevent the equality a⊤ν x = bν).

We are now applying (9) to the case of the collision
avoidance constraint. Note that we can approximate the 2-D
Lorentz cone:

L2 =
{
(x̂, ŷ, d) ∈ R2 × R+

∣∣∣√x̂2 + ŷ2 ≤ d
}

by the following linear inequalities of variables α, β:

α0 ≥ x̂, α0 ≥ −x̂, β0 ≥ ŷ, β0 ≥ −ŷ, (10a){
βν+1 ≥ − sin

(π

2ν

)
αν + cos

(π

2ν

)
βν , (10b)

βν+1 ≥ sin
(π

2ν

)
αν − cos

(
π

2ν

)
βν , (10c)

αν+1 = cos
(π

2ν

)
αν + sin

(π

2ν

)
βν ,
}

(10d)

ν = 0, . . . , L− 1,

αL ≤ d, βL ≤ tan
(π

2L

)
αL, (10e)

The approximation (10) basically forms a regular 2L-sided
polygon with 2(L + 1) additional variables αν , βν , ν =
1, . . . , L as follows:

Poly(L2) =
{
(x̂, ŷ, α, β) ∈ R2 × R2(L+1)|(10a)− (10e)

}
,

Note also that the collision condition, i.e., the distance
between two UAV is less than d, is in the form of 3-dimension
Lorentz cone L3

L3 =
{
(x̂, ŷ, ẑ, d) ∈ R2 × R+

∣∣∣√x̂2 + ŷ2 + ẑ2 ≤ d
}
,

that can be captured by two second-order cone constraints:

x̂2 + ŷ2 ≤ ŵ2, ŵ2 + ẑ2 ≤ d2, ŵ ≥ 0,

each is indeed L2 and can be polyhedrally approximated using
(10). Consequently, we can combine (9) and (10) to construct
a set of MILP constraints enforcing the distance between two
UAVs outside the collision range d. In particular, we need
to write two sets of linear constraints (10) associated with
the polyhedral approximation Poly(L2) of two 2-D Lorentz
cones in the standard form (8) and then apply the MILP
reformulation trick (9). Due to page limitation, we omit the
presentation of the general case with arbitrary L. In the special
case L = 2, we can compact the set of constraints as follows:

xi,k − xj,k ≥ d− Uu1
i,j,k, xj,t − xi,k ≥ d− Uu2

i,j,k (11a)

yi,k − yj,k ≥ d− Uu3
i,j,k, yj,k − yi,k ≥ d− Uu4

i,j,k (11b)

zi,k − zj,k ≥ d− Uu5
i,j,t, zj,k − zi,k ≥ d− Uu6

i,j,k (11c)
6∑

ν=1

uν
i,j,k ≤ 5,∀k,∀i ̸= j. (11d)

which enforces the distance of two UAVs i and j outside the
cubic outerly approximating the collision sphere of radius d,
i.e., |xi,k−xj,k| ≥ d OR |yi,k−yj,k| ≥ d OR |zi,k−zj,k| ≥ d,
∀k, ∀i ̸= j.(ϵ in (9) is chosen as zero since the distance d
satisfies the minimum requirement of safety).

Fig. 2. A polyhedral approximation of the 3-D ball

Remark: Figure 2 represents a polyhedral approximation of
the 3-D ball with radius d. While the approximation error
reduces as L increases, the computational demand increases
significantly as the number of constraints and binary variables
employed increases. Indeed, our examination shows that only

L = 2 is computationally feasible given the number of
collision avoidance conditions that we need to approximate
is N×(N−1)

2 ×K. However, MILP reformulation with L = 2
is very conservative, which might result in infeasibility if we
coordinate a large swarm of UAVs in a small space.

V. DC PROGRAMMING APPROACH

A. Problem Reformulation

Let gi,j,k(x) denote the distance between two UAVs i and
j in the time step k:

gi,j,k(x) =
√
(xi,k − xj,k)2 + (yi,k − yj,k)2 + (zi,k − zj,k)2,

so the collision avoidance constraints can be rewritten as

d− gi,j,k(x) ≤ 0,∀i ̸= j,∀k (12)

We employ the penalty function transformation method to
bring the nonconvex constraint (12) into an objective function
of the problem P as follows:

[Pτ] min Of (u) +Og(x)︸ ︷︷ ︸
f0(u,x)

+τ
∑

i,j,k|i̸=j

si,j,k (13)

s.t. (xi,ui) ∈ Ωi,∀i, (14)
(d− gi,j,k(x)) ≤ si,j,k,∀i ̸= j,∀k (15)

where Pτ represents the penalty problem of P with the penalty
coefficient τ ≥ 0 and s represent the relax term for original
nonconvex constraint (12). There exists τ∗ ≥ 0 such that for all
τ ≥ τ∗, P and Pτ have the same optimal solutions and optimal
values [9], i.e., s∗ = 0 and (12) satisfies. The problem Pτ is
indeed a difference of the convex function (DC) programming
problem, i.e., the left-hand side of (15) can be considered as
the difference of two convex functions on x: d and gi,j,k(x).
It can be tackled by the DC Algorithm (DCA) in which we
sequentially (i) solve a set of convex functions constructed by
linearizing the concave term, particularly −gi,j,k(x) in (15) (ii)
increase the penalty coefficient τ until the nonconvex condition
is satisfied, which will be presented next.

B. The DC Algorithm approach

We solve the problem Pτ using the enhanced DCA, namely
penalty DCA or DCA2 [9], or penalty convex-concave pro-
cedure [10], for tackling nonconvexity appearing in (15). The
algorithm is as follows:
Step 1: Choose the initial point x̂0, τ0 ≥ 0, τ ≥ 0, and µ ≥ 1.
Set the iteration m = 0. Initialize the set O := {x̂0}.
Step 2: Solve the following optimization problem:

[Pm
τ] min objective (13)

s.t. constraint (14) (16)

d− gi,j,k(x̂)−∇⊤gi,j,k(x̂)(x− x̂) ≤ si,j,k

∀i ̸= j,∀k,∀x̂ ∈ O, (17)
si,j,k ≥ 0,∀i ̸= j,∀k (18)

to obtain the optimal solution x∗. Mathematically, we replace
(15) by a set of linear approximations at a set of points x̂
obtained so far.

Step 3: Let x̂m = x∗. Update the set O := O∪x̂m and update
penalty coefficient τm+1 = min{µτm, τ}.
Step 4: Stop if the following criteria satisfy:

• the maximum penalty coefficient reaches

τm = τ

• the gap between optimal objectives found between two
consecutive iterations is small

δm =

(
f0(u

∗
m,x∗

m) + τm
∑

i,j,k|i̸=j

s∗i,j,k,m

)
−(

f0(u
∗
m−1,x

∗
m−1) + τm−1

∑
i,j,k|i ̸=j

s∗i,j,k,m−1

)
≤ ϵ,

where ϵ is a very small number acting as the tolerance. Note
also that u∗

m,x∗
m, s∗i,j,k,m are optimal solutions of u,x, s

found by solving Pm
τ . If the stopping conditions are not

satisfied, update m = m+ 1 and go back to Step 1.
The iterative algorithm consists of 4 steps. The key point is

that for each iteration we replace the distance between UAV i
and j at time k by its linearization at x̂m,

gi,j,k(x) := gi,j,k(x̂m) +∇⊤gi,j,k(x̂m)(x− x̂m)

and consequently obtain the linear approximation of (15) at
x̂m as follows:

d− gi,j,k(x̂m)−∇⊤gi,j,k(x̂m)(x− x̂m) ≤ si,j,k∀i ̸= j,∀k

Consequently, we obtain the convex optimization problem Pm
τ

in Step 2. Over iterations, the set of linearized constraints (17)
expands to tighten the convexification of the constraint (15)
whereas the increasing τm due to µ > 1 enforce the slack
variables s converge to zero. Together, they try to enforce
the feasibility of the obtained solution, i.e., the nonconvex
collision avoidance (12) satisfy and the optimal values of Pm

τ

converge to the sub-optimal values of P. In other words, we
aim to obtain an upper bound of P with a feasible solution x∗.
Remark: Unlike the MICP formulation, which is NP-hard,
the DC programming approach enables us to solve the UAV
planning problem by sequentially solving a set of convex pro-
gram Pm

τ . As each convex program can be solved efficiently by
matured convex optimization algorithms such as interior point
methods, the computational performance can be improved
significantly. Mathematically, MICP requires approximating
the non-convex feasible set (7) beforehand by employing a set
of a large number of MILP constraints (11. Many constraints
in this set are non-binding at optimum and can be ignored.
In contrast, in DC programming, we sequentially add the
linearization of the nonconvex constraints at explored points
found after each iteration.

VI. NUMERICAL RESULTS

We implemented DC programming approach on a PC con-
figured with an Intel Xeon and 32GB of RAM. To benchmark
the performance of both models, we verify their formulation

for 5, 10, and 15 vehicles with the GUROBI solver. Conse-
quently, the number of collision avoidance conditions needed
to be satisfied at each time step is 10, 45, and 105. In the three
numerical experiments, the minimum safety distance between
vehicles is d = 5 distance units, and the quantity of time
steps is T = 30 time units. We compare the DC programming
results with the ones obtained by using MICP model with the
cubic approximation (11) of collision avoidance.

Fig. 3 shows results of the distance between vehicles at each
time step k obtained by solving the UAV planning problem
using DC programming approaches. It shows that there is
no crash between vehicles throughout the time steps in the
DC model in all three experiments. In other words, the DC
programming approach guarantees the satisfaction of a large
number of nonconvex collision avoidance conditions.

Fig. 3. Distance between vehicles DCA Model

Fig. 4 demonstrates the numerical convergence for penalty
DCA used to solve the DC programs in all test cases. The max-
imum value among all slack variables s∗i,j,k ≥ 0 converge to
zero, which means all collision avoidance constraints are also
satisfied at the optimum and also the objective value is equal
to the original one, i.e., the penalty term τ

∑
i,j,k|i ̸=j

s∗i,j,k = 0.

Additionally, the gap between the objective function found
between two consecutive iterations δm converges to zero,
which means we reach the local optimum (sub-optimal solu-
tion) is found. In our experiment, the optimal solutions of 5-
vehicle, 10-vehicle, and 15-vehicle experiments are converged
at iterations 34, 470, and 219, respectively.

The obtained sub-optimal solution of DC program generally
has a very good performance, even surpassing the MICP
approach. This is because the DC programming approach
employs a less conservative approximation of the nonconvex
collision condition, as shown in Fig. 5. In the DCA model,
we can utilize the full collision-free space outside the radius

sphere d (safety distance). In contrast, the cubic approximation
(11) used in the MICP is more conservative. Therefore, the
fuel cost of DC model is lower than that of MICP, as shown
in the Table. I. Note also that, while increasing the size of the
polyhedral approximation (as shown in Fig. 2) can reduce the
conservatives, the MICP easily becomes intractable. Indeed,
only the cubic approximation (11) [3] widely used in the
literature is computationally feasible in our experiments.

Fig. 4. Convergence analysis of DCA for experiments

TABLE I
GRAND TOTAL FUEL COST OF VEHICLES IN MICP AND DCA

MICP DCP ∆(MICP − DCP)
5 vehicles 326.18 323.17 3.01
10 vehicles 1594.11 1592.32 1.79
15 vehicles 2855.25 2839.97 15.28

VII. CONCLUSION

This paper examines the use of the DC programming
approach to solve the planning problem of a UAV swarm
considering the nonconvex collision avoidance requirement.
In particular, we sequentially approximate this nonconvex
constraint by its linearization and adopt the penalty reformu-
lation with slack variables. The problem is effectively tackled
by sequentially solving a set of computationally manageable
convex programs. Compared to the traditional mixed integer
optimization model with the cubic approximation of collision
avoidance constraint, the obtained solution satisfies the safety
condition while achieving better cost saving thanks to its less
conservative approach.

REFERENCES

[1] D. Ioan, I. Prodan, S. Olaru, F. Stoican, and S.-I. Niculescu, “Mixed-
integer programming in motion planning,” Annual Reviews in Control,
vol. 51, pp. 65–87, 2021.

[2] P. R. Chandler, M. Pachter, D. Swaroop, J. M. Fowler, J. K. Howlett,
S. Rasmussen, C. Schumacher, and K. Nygard, “Complexity in uav
cooperative control,” in Proceedings of the 2002 American Control
Conference, vol. 3. IEEE, 2002, pp. 1831–1836.

(a) Three-dimensional view

(b) Top view

Fig. 5. Illustration of the collision avoidance constraint in MICP model and
DCA model for trajectory planning of two vehicles

[3] P. Chandler, C. Schumaker, and S. Rasmussen, “Task allocation for
wide area search munitions via network flow optimization,” in AIAA
Guidance, Navigation, and Control Conf. and Exh., 2001, p. 4147.

[4] B. B. D. Luders, “Robust trajectory planning for unmanned aerial
vehicles in uncertain environments,” Ph.D. dissertation, MIT, 2008.

[5] J. M. Carson, B. Acikmeşe, L. Blackmore, and A. A. Wolf, “Capabil-
ities of convex powered-descent guidance algorithms for pinpoint and
precision landing,” in 2011 Aerospace Conf. IEEE, 2011, pp. 1–8.

[6] J. Pannequin, A. Bayen, I. Mitchell, H. Chung, and S. Sastry, “Multiple
aircraft deconflicted path planning with weather avoidance constraints,”
in AIAA Guidance, Navigation and Control Conference and Exhibit,
2007, p. 6588.

[7] P. Yao, H. Wang, and Z. Su, “Real-time path planning of unmanned
aerial vehicle for target tracking and obstacle avoidance in complex
dynamic environment,” Aerospace Science and Technology, vol. 47, pp.
269–279, 2015.

[8] P. D. Tao and L. T. H. An, “Difference of convex functions optimization
algorithms (dca) for globally minimizing nonconvex quadratic forms on
euclidean balls and spheres,” Operations Research Letters, vol. 19, no. 5,
pp. 207–216, 1996.

[9] L. T. H. An, P. D. Tao, and H. V. Ngai, “Exact penalty and error bounds
in dc programming,” Journal of Global Optimization, vol. 52, no. 3, pp.
509–535, 2012.

[10] X. Shen, S. Diamond, Y. Gu, and S. Boyd, “Disciplined convex-concave
programming,” in 2016 IEEE 55th Conference on Decision and Control
(CDC). IEEE, 2016, pp. 1009–1014.

[11] A. Ben-Tal and A. Nemirovski, “On polyhedral approximations of the
second-order cone,” Mathematics of Operations Research, vol. 26, no. 2,
pp. 193–205, 2001.

[12] F. Glineur, “Computational experiments with a linear approximation of
second-order cone optimization,” TU Delft, Tech. Rep., 2000.

	Nomenclature
	Set and Indices
	Parameters
	Variables

	Introduction
	State-space System Modeling of a UAV
	Multi-UAV Trajectory Planning Problem
	Mixed-integer Convex Programming Approach
	DC Programming Approach
	Problem Reformulation
	The DC Algorithm approach

	Numerical Results
	Conclusion
	References

