
ar
X

iv
:2

30
3.

17
08

6v
4

 [
ee

ss
.S

Y
]

 1
5

Se
p

20
23

Modularized Control Synthesis for Complex Signal Temporal Logic

Specifications

Zengjie Zhang and Sofie Haesaert

Abstract— The control synthesis of a dynamic system subject
to a signal temporal logic (STL) specification is commonly for-
mulated as a mixed-integer linear/convex programming (MILP/
MICP) problem. Solving such a problem is computationally
expensive when the specification is long and complex. In this
paper, we propose a framework to transform a long and
complex specification into separate forms in time, to be more
specific, the logical combination of a series of short and simple
subformulas with non-overlapping timing intervals. In this way,
one can easily modularize the synthesis of a long specification
by solving its short subformulas, which improves the efficiency
of the control problem. We first propose a syntactic timing
separation form for a type of complex specifications based on
a group of separation principles. Then, we further propose a
complete specification split form with subformulas completely
separated in time. Based on this, we develop a modularized
synthesis algorithm that ensures the soundness of the solution
to the original synthesis problem. The efficacy of the methods is
validated with a robot monitoring case study in simulation. Our
work is promising to promote the efficiency of control synthesis
for systems with complicated specifications.

I. INTRODUCTION

Signal temporal logic (STL) is widely used to specify re-

quirements for robot systems [1], [2], due to its advantage in

specifying real-valued signals with finite timing bounds [3].

System control with STL specifications renders a synthesis

problem that can be solved by mixed integer linear/convex

programming (MILP/MICP) [3], [4]. Based on this a closed-

loop controller can be developed using model predictive con-

trol (MPC) [5], [6]. However, solving a MILP/MICP problem

is computationally expensive and time-consuming, especially

for complex STL formulas with long timing intervals since

the computational load grows drastically as the number of

the integer variables increases (exponentially in the worst

case) [7]. Thus, computational complexity has become a

bottleneck of the control synthesis of complex STL specifi-

cations, especially those with time-variant specifications [8]

and fixed-order constraints [9]. One effective approach is

the model-checking-based method which transforms an STL

formula into an automaton with strict timing bounds [10].

This method is usually less complex than an optimization

problem since it is only concerned with a feasible solution.

Control barrier functions (CBF) [9] and funnel functions [11]

are also used to simplify the STL synthesis problems.

Another direction of reducing the complexity is to decom-

pose a long and complex STL formula into several shorter

This work was supported by the European project SymAware under the
grant Nr. 101070802.

Zengjie Zhang and Sofie Haesaert are with the Department of Electrical
Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB
Eindhoven, Netherlands. {z.zhang3, s.haesaert}@tue.nl

and simpler subformulas and solve them sequentially. A

subformula refers to a simple STL formula that serves as

a primitive unit of a complex formula [12]. This indicates

the possibility of splitting a big planning problem into

several smaller problems and solving them one by one in

the order of time, which forms the essential thought of

modularized synthesis. This idea is straightforward from a

practical perspective: a complex task is usually composed of

a series of smaller subtasks that have independent objectives

and are ordered in time. For example, a typical food delivery

task includes three subtasks: picking up the order at the

restaurant, navigating to the customer, and performing the

delivery. Finishing these subtasks means accomplishing the

overall task. The advantage of this approach is based on

the assumption that solving a subtask may be substantially

simpler than directly solving the original overall task.

However, modularized synthesis based on specification de-

composition is not trivial and brings up two major challenges.

Firstly, the decomposed specification has to ensure sound-

ness, i.e., any feasible solution of the modularized synthesis

must also be a feasible solution of the original specification.

This is important to ensure the efficacy of the specification

decomposition and modularized synthesis [13]. Secondly, the

subformulas may have overlapping timing intervals which

indicate the dependence coupling among these subformulas.

In this case, each subformula should not be synthesized

independently but should incorporate the coupling with its

overlapping subformulas. In existing work, the soundness of

specification separation is ensured by syntactic separation as

partially discussed in [14], [15]. Recently, model checking

based on specification decomposition has been studied for a

fragment of STL formulas [16]. Nevertheless, the coupling

issues among subformulas have not been well resolved by the

existing work. To our knowledge, there is no other existing

work discussing the modularized synthesis of STL formulas,

although we believe it to be a promising technology for the

efficient synthesis of complex specifications.

In this paper, we investigate the modularized synthesis of

complex STL specifications based on timing separation. We

specifically look into a fragment of STL formulas composed

of complex temporal operators for which interval overlapping

can not be resolved by purely using syntactic separation. Be-

sides proposing several complementary syntactic separation

principles to the existing work [14], [15], we also provide

a sufficient separation method for this STL fragment with

the overlapping between subformulas eliminated. In such a

way, we develop a modularized synthesis algorithm for the

separated specification by transforming the overall synthesis

http://arxiv.org/abs/2303.17086v4

problem into several small planning problems with reduced

complexity, achieving higher efficiency than directly solving

the original problem. The main contributions are as follows.

1). Proposing a syntactic timing separation form of a

fragment of STL formulas that is proven to be syntactically

equivalent to the original specification.

2). Proposing a complete splitting form of this STL

fragment which is proven to be sound in semantics.

3). Developing a modularized synthesis algorithm for the

complete splitting form, which ensures soundness but less

complexity than the original specification synthesis problem.

The rest of the paper is organized as follows. Sec. II intro-

duces the preliminary knowledge of this paper. In Sec. III,

we present our main results on specification separation and

modularized synthesis. Sec. IV provides a simulation case

study to validate the efficacy of the proposed modularized

synthesis method. Finally, Sec. V concludes this paper.

Notations: We use R and R
n to denote the sets of real

scalars and n-dimensional real vectors. We also use N and

N
+ to denote natural numbers and positive natural numbers.

Proofs: All proofs of this paper are in the Appendix.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Signal Temporal Logic (STL)

Specifications in Signal Temporal Logic (STL) can quan-

tify requirements on real-valued signals. In this paper, we

are concerned with discrete-time signals x[0,L] :=x0x1 · · ·xL,

where L∈N+ denotes the length of the signal and xk ∈R
n

is the value of the signal at time k ∈ {0,1, · · · ,L}. With

x[k1,k2] := xk1
xk1+1 . . .xk2

, we denote a segment of x or

equivalently x[0,L] with timing points 0≤ k1≤ k2≤L. The

syntax of STL is recursively defined as

ϕ ::=⊤|µ |¬ϕ |ϕ1∧ϕ2 |ϕ1U[a,b]ϕ2, (1)

where ϕ1,ϕ2 are STL formulas, ¬, ∧ are operators negation

and conjunction, µ is a predicate that evaluates a predicate

function η : Rn→{⊤,⊥} by µ =

{
⊤ if η(xk)≥ 0

⊥ if η(xk)< 0
, for

discrete time k, and U[a,b] is the until operator bounded with

time interval [a, b], where a,b ∈N and a≤ b.

The semantics of STL are given as follows. We denote

the satisfaction of ϕ at time k by x as (x,k) � ϕ . Fur-

thermore, we have that (x,k) � µ ↔ η(xk) ≥ 0; (x,k) �
¬ϕ ↔ ¬((x,k) � ϕ); (x,k) � ϕ1 ∧ ϕ2 ↔ (x,k) � ϕ1 and

(x,k) � φ2; (x,k) � ϕ1U[a,b]ϕ2 ↔ ∃k′ ∈ [k+ a, k+ b], such

that (x,k′) � ϕ2, and (x,k′′) � ϕ1 holds for all k′′ ∈ [k, k′].
Besides, additional operators disjunction, eventually, and

always are, respectively, defined as ϕ1∨ϕ2 =¬(¬ϕ1∧¬ϕ2),
F[a,b]ϕ = ⊤U[a,b]ϕ , and G[a,b]ϕ = ¬F[a,b]¬ϕ . When k=0,

we also write (x,0)� ϕ as x � ϕ . The length [17] of an STL,

L (ϕ), is recursively defined as L (µ) = 0, L (¬ϕ) =L (ϕ),
L (ϕ1 ∧ϕ2) = max{L (ϕ1),L (ϕ2)}, L (ϕ1U[a,b]ϕ2) = b+
max{L (ϕ1),L (ϕ2)}, which represents the maximum time

it takes to determine the truth of the formula ϕ .

B. Optimization-Based Specification Synthesis

STL formulas are used to specify the requirements of a

signal of a dynamic system. In this paper, we consider the

following discrete-time dynamic system,

xk+1 = f (xk, uk), (2)

where xk ∈R
n and uk ∈U are the state and the control input

of the system at time k, where U ⊆ R
m is the admissible

control set, and f : Rn×U→ R
n is a smooth vector field.

Then, the control problem of the system can be formulated

as the following optimization problem,

minu

(

∑L−1
k=0 u⊤k uk−ρ(x,ϕ)

)
(3a)

s.t. eq. (2) and uk ∈U, ∀k ∈ {0,1, · · · ,L− 1}, (3b)

where L∈N+ is the control horizon, u=u0u1 · · · uL−1 and

x=x0x1 · · ·xL are the open-loop control and state signals, ϕ is

an STL formula with L (ϕ)=L to specify the requirements

on the state signal x, and ρ(x,ϕ) is the robustness of the

satisfaction as defined in [18], [19], with ρ(x,ϕ)>0↔x�ϕ .

Eq. (3) renders an open-loop control problem and can be

solved using MICP [7] with an input interface (x0, L, ϕ).

C. Problem Statement

Solving problem (3) using MICP usually introduces heavy

computational load due to the large number of integer

variables brought up by the logical and temporal operators

in the specification ϕ [7]. Usually, longer formulas introduce

substantially more integer variables than shorter ones. In the

worst case, a specification ϕ may contain N ∈ N
+ G or F

subformulas with the same length L=L (ϕ). This requires

NL binary variables to determine the logical satisfaction of

the complete specification, which leads to an exponential

complexity O(2NL). Therefore, the computational complexity

of the synthesis problem is greatly dependent on the number

and the lengths of subformulas.

In this paper, we intend to reduce the complexity of a

synthesis problem (3) by separating a long specification ϕ
into shorter subformulas which can be solved by smaller

optimization problems. Examples of such separation include

the following principle for an until operator ϕ =ϕ1U(a,b)ϕ2

with a separating point κ∈N+, a<κ <b [14],

ϕ =ϕ1U(a,κ)ϕ2∨(G(a,κ)ϕ1∧F{κ}
(
ϕ1∧ϕ2∨ϕ1U(0,b−κ)ϕ2)

)
, (4)

where the temporal operators F and G in (4) have shorter

intervals compared to the original interval (a, b). This form

is referred to as syntactic separation since it ensures syntactic

equivalence [14], [15], i.e., both sides have the same set of

satisfying signals.

In this sense, we aim to decompose the overall synthesis

problem into several subproblems with shorter horizons and

fewer specifications, inspiring the modularized synthesis of

the original specification. More precisely, we focus on the

following fragment of complex formulas,

ϕ :=
∧ns

i=1G[as
i ,b

s
i]

γs
i

︸ ︷︷ ︸

safety formula

∧
∧np

j=1G[ap
j ,b

p
j]
F[0,cp

j]
γ p

j
︸ ︷︷ ︸

progress formula

∧F[at ,bt]G[0,ct]γ
t

︸ ︷︷ ︸

target formula

, (5)

where G[as
i ,b

s
i]

γs
i , G[a

p
j ,b

p
j]
F[0,c

p
j]

γ p
j , and F[at ,bt]G[0,ct]γ

t are

the safety, progress, and target subformulas, for i ∈
{1,2, · · · ,ns} and j∈{1,2, · · · ,np}, ns,np∈N

+, γs
i , γ

p
j , and

γt are the boolean formulas that only contain predicates

connected with logical operators ¬, ∧, and ∨, and [as
i , bs

i],

[ap
j , b

p
j], and [at , bt] are the non-empty syntactic intervals

of the subformulas. We also refer to [as
i , bs

i], [a
p
j , b

p
j +c

p
j],

and [at , bt+ct] which represent the complete coverage of

the subformulas as their complete intervals, making a clear

distinguishment with the syntactic intervals.

Similar to the popularly used GR(1) specifications [20],

the fragment ϕ defined above is a complex STL formula

composed of three components representing meaningful

specifications for practical tasks. The safety part consists of

a series of always subformulas specifying the conditions that

should always hold. This could include for example safety

rules applicable to the system. The progress component

contains the always subformulas with eventual operators

embedded to represent the tasks that should be performed

regularly, such as the monitoring routines. The target com-

ponent describes the task that should be achieved within a

strict deadline. An always formula is embedded to ensure

the holding of the target condition for a minimum time.

Specifications in the form of eq. (5) already have a natural

division in subformulas for individual subtasks. However,

modularized synthesis also requires the division of the

subformulas in time. Given a set of ordered timing points

κ1 <κ2 < · · ·<κl , κz∈N, z∈{1,2, · · · , l}, l∈N, we intend

to split the specification ϕ into subformulas ϕz with shorter

lengths. Then, modularized synthesis expects to efficiently

solve the synthesis problem for ϕ through a sequence of syn-

thesis problems for its subformulas ϕz. To achieve this, the

overlapping between the timing intervals of the subformulas

should be eliminated to decouple the dependence of different

timings. In the next section, we will show that the decoupling

of the safety subformulas can be achieved by syntactic

separation while ensuring the syntactic equivalence between

the separated specification and the original one. However,

the progress and the target subformulas are challenging to

decouple since the timing overlapping cannot be eliminated

by merely using syntactic separation. This has not been

well investigated by existing work. We will also show that

these subformulas can be decoupled using the complete

specification split which ensures soundness but introduces

conservativeness. Our work is the first to decompose such

STL formulas for modularized synthesis in the literature.

III. MAIN RESULTS

In this section, we will first show how to split the syntactic

intervals of a complex specification while ensuring the syn-

tactic equivalence. Then, we further present a complete split

form to eliminate the overlapping of the complete intervals

of the subformulas while causing certain conservativeness.

Finally, we give the modularized synthesis algorithm based

on these separation forms.

A. Syntactic Timing Separation

The syntactic separation form of a complex specification

in eq. (5) is defined as follows.

Definition 1 (Syntactic Timing Separation): Given an or-

dered sequence of timing 0=κ0<κ1 < · · ·<κl =L, κz∈N,

for z∈{1,2, · · · , l− 1}, l∈N, the specification ϕ defined in

eq. (5) is said to be in a syntactic timing separation form if

ϕ :=
∧l

z=1 φz∧
∨l

z=1 φ t
z , (6)

where, for each z∈{1,2, · · · , l },

φz =
∧ns,z

i=1G[as
z,i,b

s
z,i]

γs
i

︸ ︷︷ ︸

safety subformula

∧
∧np,z

j=1G[ap
z, j ,b

p
z, j]

F[0,cp
z, j]

γ
p
j

︸ ︷︷ ︸

progress subformula

,

φ t
z = F[at

z ,b
t
z]
G[0,ct

z]
γ t

︸ ︷︷ ︸

target subformula

or φ t
z = ¬⊤,

and all intervals associated to z ∈ {1,2, · · · , l } satisfy

[as
z,i, bs

z,i] ⊂ [κz−1, κz], ∀ i ∈ {1,2, · · · ,ns,z}, [a
p
z, j, b

p
z, j] ⊂

[κz−1, κz], ∀ j ∈ {1,2, · · · ,np,z}, and [at
z, bt

z] ⊂ [κz−1, κz],
where ns,z,np,z ∈N are the numbers of the effective safety

and progress subformulas for [κz−1, κz]. �

Consider the following specifications with the same length

6: ϕ1=G[0,4]γ0∧G[2,6]γ1, ϕ2 =G[0,2]F[0,1]γ0∧G[2,6]γ1, ϕ3=
G[0,4]γ0∧F[0,4]G[0,2]γ1, and ϕ4=G[0,2]F[0,1]γ0∧F[3,5]G[1,1]γ1,

where γ0, γ1 are boolean formulas. Consider splitting points

κ0=0, κ1=2, κ2=6, according to Definition 1, only ϕ2 and

ϕ4 are in a form that is syntactically separated by κ0, κ1, κ2.

Formulas ϕ1, ϕ3 are not since κ1 splits the intervals [0, 4].
We are interested in translating the specification ϕ (5) into

the separated form of (6) using syntactic separation. In this

way, the individual numbers of the safety and progress spec-

ifications for each timing interval z ∈ {1,2, · · · , l}, denoted

as ns,z, np,z, can be substantially smaller than those of the

corresponding safety and progress specifications, i.e., ns, np.

The following syntactic separation principles can be used to

transform (5) into (6) with syntactic equivalence guaranteed.

Lemma 1 ([14]): The following properties hold for ar-

bitrary STL formulas ϕ , ϕ1, and ϕ2, with κ ∈ N, κ <

a: F{κ}(¬ϕ) = ¬F{κ}ϕ , F{κ}(ϕ1∧ϕ2) = F{κ}ϕ1∧F{κ}ϕ2,

F{κ}(ϕ1U(a,b)ϕ2)=F{κ}ϕ1U(a,b)F{κ}ϕ2, ϕU(a,b)(ϕ1∨ϕ2) =
ϕU(a,b)ϕ1∨ϕU(a,b)ϕ2. �

Lemma 2: The following conditions hold for arbitrary

STL formulas ϕ , ϕ1, and ϕ2 defined in Sec. II-A.

1). F{κ}ϕ = G{κ}ϕ , for any κ ∈ N, where both sides are

true for signal x, if and only if (x,κ) � ϕ .

2). G{κ}(ϕ1∨ϕ2)=G{κ}ϕ1∨G{κ}ϕ2 holds for any κ ∈N.

3). For any a,b∈N, a ≤ b, G{κ}
(
G[a,b]ϕ

)
=G[κ+a,κ+b]ϕ

and F{κ}

(
F[a,b]ϕ

)
=F[κ+a,κ+b]ϕ hold for κ∈N, κ <a. �

Lemma 3: Given a,b ∈ N, a ≤ b and an arbitrary STL

formula ϕ , G[a,b]ϕ =G{a}ϕ∧G(a,b)ϕ∧G{b}ϕ and F[a,b]ϕ =
F{a}ϕ ∨F(a,b)ϕ ∨F{b}ϕ hold. �

Theorem 1 (Arbitrary Syntactic Separation): Given κ∈N,

the following conditions hold for an STL formula ϕ ,

G[a,b]ϕ=G[a,κ]ϕ∧G[κ ,b]ϕ , F[a,b]ϕ=F[a,κ]ϕ∨F[κ ,b]ϕ , (7)

with a≤κ≤b. Moreover, the following conditions hold,

G[κ0,κl]
ϕ=

∧l
i=1G[κi−1,κi]ϕ , F[κ0,κl]

ϕ=
∨l

i=1F[κi−1,κi]ϕ , (8)

for κ0, κ1, · · · , κl ∈ N, κ0 < κ1 < · · ·< κl . �

Lemmas 2 and 3 provide complementary properties to

previous work on syntactic separation [14], [15]. Note that

they apply to all STL formulas as introduced in Sec. II-A,

but not only the fragment in eq. (5). Most important is

theorem 1 which allows separating a subformula into the

logical combination of shorter subformulas with an arbitrary

number of timing points. Such separation as eq. (6) does

not change the syntax of the specification. i.e., for any

signal x[0,L] with L=L (ϕ), x�ϕ↔x�
∧l

z=1 φz ∧
∨l

z=1 φ t
z .

Nevertheless, syntactic timing separation only splits up the

syntactic interval of a subformula, which does not eliminate

the overlapping between the complete intervals of the sub-

formulas. This is not sufficient for the modularized synthesis

of specifications. In the following, we will give an alternative

sufficient form of separation that is no longer equivalent

to the original specification but ensures the separation of

the complete intervals of the subformulas. This form is

more conservative than the original specification but ensures

the soundness of the solution and allows for modularized

solutions to the synthesis problem.

B. Complete Specification Split for Modularized Checking

Before we give the complete splitting form of specification

(5), we first explain why eliminating the overlapping of the

complete intervals of subformulas is important to modular-

ized model checking which is the foundation of modularized

synthesis to be explained in the following. Consider an STL

specification ϕ and a signal prefix x with the same length.

For a given series of timing points κ0,κ1, · · · ,κl , modularized

model checking investigates under what conditions and what

subformulas ϕ̃1, ϕ̃2, · · · , ϕ̃l , where L (ϕ̄z)=κz−κz−1 for all

z∈{1,2, · · · , l}, it ensures that

x[κz−1,κz] � ϕ̄z, for some z∈{1,2, · · · , l}→ x � ϕ . (9)

In such a way, we can split the model checking of the original

signal x and specification ϕ into l-steps of model checking

for shorter signals x[κz−1,κz] � ϕ̄z and specifications ϕ̄z. This

is only feasible when the coverage or the complete interval

of the subformulas ϕ̄z is confined within the corresponding

interval [κz−1,κz] such that it does not overlap with those

of other subformulas. Otherwise, the model checking for the

left side of (9) can not be performed independently for each

z∈{1,2, · · · , l} due to the coupled timing dependence.

Based on this consideration, we give the complete speci-

fication split form for formula ϕ in eq. (5) as

ϕ̄ :=
∧l

z=1 φ̄z∧
∨l

z=1 φ̄ t
z , (10)

where, for any z∈{1,2, · · · , l},

φ̄z :=
∧ns,z

i=1G[as
z,i,b

s
z,i]

γs
i ∧

∧np,z

j=1G[a
p
z, j ,min{b

p
z, j ,κz−c

p
z, j}]

F[0,c
p
z, j]

γ p
j

∧
∧n̂p,z

r=1F[κz−τz,r ,κz]γ
p
j ∧

∧n̂p,z−1

q=1 F[κz−1,κz−1+c
p
z−1,q−τz−1,q]

γ p
j

φ̄ t
z :=F[at

z,min{bt
z,κz−ct

z}]
G[0,ct

z]
γt

or φ̄ t
z = ¬⊤,

where n̂p,z for any z∈ {1,2, · · · , l}, is the number of j ∈
{1,2, · · · ,np,z} such that b

p
z, j + c

p
z, j > κz, i.e., the number of

progress formulas that exceed the interval [κz−1, κz], and

τz,r∈ [0, c
p
z,r] for any r∈{1,2, · · · , n̂p,z}, is a heuristic value

to be determined beforehand. It can be verified that L (ϕ̄)=
κl =L (ϕ). Then, we have the following two theorems to

address the relation between the complete split form ϕ̄ in

eq. (10) and the syntactic separation form ϕ in eq. (6).

Lemma 4 (Complete Interval Split): Given 0=κ0 <κ1 <

· · ·< κl = L, κz ∈N, z∈{1,2, · · · , l− 1}, l ∈N and a spec-

ification ϕ̄ in form (10), if κz − κz−1 ≥ c
p
z, j for all j ∈

{1,2, · · · ,np,z} and for all z ∈ {1,2, · · · , l}, the complete

intervals of φ̄1, φ̄2, · · · , φ̄l do not overlap, and the complete

intervals φ̄ t
1, φ̄ t

2, · · · , φ̄ t
l do not overlap.

Lemma 5 (Soundness): For a specification ϕ in eq. (6)

and its complete split form ϕ̄ in eq. (10) with the splitting

timing points κ0, κ1, · · · , κl as described in lemma 4, any

signal prefix x with length L (ϕ) holds that x � ϕ̄ → x � ϕ .

Theorem 2: For a specification ϕ in eq. (6) and its com-

plete split form ϕ̄ in eq. (10) with the splitting timing points

κ0, κ1, · · · , κl as described in lemma 4, x� ϕ holds for signal

x with length L (ϕ) if the following conditions both hold,

1). x[κz−1,κz] � G{−κz−1}φ̄z, ∀ z∈{1,2, · · · , l};
2). x[κz−1,κz] � G{−κz−1}φ̄

t
z , ∃ z∈{1,2, · · · , l}. �

Theorem 2 has solved the main problem of modularized

model checking for specification ϕ given in eq. (5) by elim-

inating the overlapping between the complete intervals of

its subformulas, as addressed by lemma 4. From a practical

perspective, the overlapping means that the timing coupling

between different subtasks specifies that these subtasks need

to be executed in parallel. In this sense, theorems (2) pro-

vide a solution to decouple such dependence by imposing

additional specifications to the subtasks, such that they can

be solved independently in sequence. The soundness of the

complete interval split is ensured by lemma 5. The timing

points that mark the solving sequence can be predetermined

according to practical requirements.

C. Modularized Synthesis of Split Specifications

Given the complete specification split form ϕ̄ in eq. (10)

for modularized model checking, we can further investigate

the modularized synthesis by incorporating the constraints

brought up by the dynamic systems (2). For this, we develop

algorithm 1 for modularized synthesis of a split specification.

In algorithm 1, opt() is a function of the optimization prob-

lem in eq. (3) with interface (x0, L, ϕ), and FEASIBLE is a

binary variable to indicate whether problem (3) is feasible.

Algorithm 1 allows us to perform synthesis for the dynamic

system (2) with specification ϕ̄ in a modularized way, i.e., by

solving a sequence of smaller synthesis problems in a timing

order κ1, κ2, · · · , κl. For each time κz, z∈{1,2, · · · , l}, the

synthesis subproblem requires substantially fewer integers

than the original problem since it involves much shorter and

fewer specifications.

Complexity Analysis: As addressed in Sec. II-C, the

complexity of directly synthesizing the original specification

ϕ in eq. 5 is O(2NL), where L =L (ϕ) is the length of

ϕ and N := maxx∈{1,2,·,l}(ns + np + 1) is the total number

of subformulas. For its complete split form ϕ̄ in eq. (10),

assume that the longest subformula has a length L̄ =
maxz∈{1,2,··· ,l}(κz− κz−1), the complexity of algorithm 1 is

O(l ·2N̄L̄), where N̄ :=maxz∈{1,2,··· ,l}(ns,z+np,z+n̂p,z+n̂p,z−1)
denotes the maximum number of subformulas in one syn-

thesis module z ∈ {1,2, · · · , l}. As addressed in Sec. III-A

and Sec. III-B, from syntactic separation we can expect

ns,z≪ ns and n̂p,z < np,z≪ np for any z∈ {1,2, · · · , l}, which

leads to N̄ ≪ N. Moreover, we can also ensure L̄≪ L by

properly selecting the timing points κ0, κ1, · · · , κl . Thus,

with 2N̄L̄ ≪ 2NL, modularized synthesis can substantially

reduce the complexity of the synthesis problem for long and

complex specifications and improve its efficiency.

Algorithm 1 Modularized Synthesis of Specification ϕ̄

Input: Initial system condition x0, κ0 = 0, splitting timing

points κz and subformulas φ̄z, φ̄ t
z , for z∈{1,2, · · · , l}.

Output: Control signal u and state signal x.

1: xκ0
← x0

2: for z = 1 to l do

3: Lz← κz−κz−1

4: if z > 1 and x[κ0,κz−1]�∨
z−1
w φ̄ t

w then

5: x[κz−1+1,κz], u[κz−1,κz−1]← opt(xκz−1
, Lz, φ̄z)

6: else

7: x[κz−1+1,κz], u[κz−1,κz−1]← opt(xκz−1
, Lz, φ̄z∧ φ̄ t

z)
8: if not FEASIBLE then

9: x[κz−1+1,κz], u[κz−1,κz−1]← opt(xκz−1
, Lz, φ̄z)

10: end if

11: end if

12: end for

13: u← u[κ0,κl−1], x← x[κ0,κl]

Limitations: Nevertheless, a limitation of algorithm 1

is that it only ensures soundness but not optimality nor

completeness to the original problem. This means that if

it generates a feasible solution x, it is certainly a feasible

solution to the synthesis problem of the original specifica-

tion, i.e., x�ϕ (soundness). However, it might not be the

optimal solution in terms of the robustness ρ(x,ϕ), i.e., local

optimality does not necessarily lead to global optimality.

Moreover, if algorithm 1 is not feasible, it does not mean

that the original synthesis problem x�ϕ is also infeasible

(completeness). However, this is already sufficient for most

practical robotic tasks. It is also worth noting that algorithm 1

might not be feasible for an arbitrary initial system condition

x0. For a system (3) and a specification ϕ̄ in eq. (10),

the initial condition x0 that ensures the feasibility of x�ϕ
belongs to a set which is referred to as the largest satisfaction

region [21]. How to utilize the feasible sets to improve the

feasibility of a synthesis problem is also partially discussed in

a recent work [16]. We are not providing further discussions

on this since it is out of the scope of this paper.

IV. CASE STUDY IN SIMULATION

In this section, we use an essential simulation study to

showcase how the proposed modularized synthesis approach

can be used to efficiently solve a synthesis problem for

a complex specification. As shown in Fig. 1, we consider

a scenario where a mobile robot is required to perform a

monitoring task in a rectangular space SAFETY sized 8 ×7

(red) with three square regions TARGET (yellow), HOME

(green), and CHANGER (blue) which are centered at (2,5),
(6,5), and (6,2) with the same side length 2. The robot is

described as the following dynamic model,

ζk+1 = ζk + uk, k∈N, (11)

where ζk ∈R
2 denotes the planar coordinate of the robot

position at time step k and uk∈R
2 is the position increments

of the robot per step as the control input of the system. The

control input of the system is subject to saturation constraints
∣
∣uk,1

∣
∣≤1,

∣
∣uk,2

∣
∣≤1 for all k∈N, where uk,1,uk,2∈R are the

elements of uk. The monitoring task is described as follows.

1). Starting from position (0,5), the robot should fre-

quently visit TARGET every 5 steps or fewer until k=40.

2). From k=15 to k=45, once the robot leaves HOME,

it should get back to HOME within 5 time steps.

3). After k = 20 and before k = 45, it should stay in

CHANGER continuously for at least 3 time steps to charge.

4). The robot should always stay in the SAFETY region.

0 1 2 3 4 5 6 7 8

x

0

1

2

3

4

5

6

7

y

TARGET HOME

CHARGER

SAFETY

Initial position

Trajectory stage 1

Trajectory stage 2

Trajectory stage 3

Ending position

Fig. 1. The illustration of the robot monitoring scenario with the spatial
information of the synthesized trajectory subject to specification ϕ̄ .

These tasks can be specified using the following for-

mulas: G[0,35]F[0,5]γT , G[15,40]F[0,5]γH , F[20,42]G[0,3]γC, and

G[0,45]γS respectively, where γT , γH , γC, and γS are

boolean formulas used to specify ξk∈TARGET, ξk∈HOME,

ξk ∈CHARGER, and ξk ∈SAFETY, for k ∈ N. Thus, the

overall robot task is the conjunction of these formulas. With

splitting timing points κ0=0, κ1=15, κ2=30, and κ3=45,

the overall specification can be represented as a syntactic sep-

aration form as eq. (6), i.e., ϕ :=
∧3

z=1 φz∧
∧3

z=1 φ t
z , where φ1=

G[0,15]γS ∧G[0,15]F[0,5]γT , φ2 =G[15,30]γS∧G[15,30]F[0,5]γT∧
G[15,30]F[0,5]γH , φ3=G[30,45]γS∧G[30,35]F[0,5]γT∧G[30,40]F[0,5]γH ,

φ t
1=¬⊤, φ t

2=F[20,30]G[0,3]γC, φ t
3 =F[30,42]G[0,3]γC.

We transform the overal specification ϕ into a complete

split form as eq. (10), i.e., ϕ̄ :=
∧3

z=1 φ̄z∧
∧3

z=1 φ̄ t
z , where

φ̄1 =G[0,15]γS∧G[0,10]F[0,5]γT ∧F[12,15]γT , φ̄2 =G[15,30]γS∧
F[15,17]γT ∧ G[15,25]F[0,5]γT ∧ F[27,30]γT ∧G[15,25]F[0,5]γH ∧
F[27,30]γH , φ̄3 = G[30,45]γS ∧F[30,32]γT ∧ G[30,35]F[0,5]γT ∧
F[30,32]γH∧G[30,40]F[0,5]γH , φ̄ t

1 =¬⊤, φ̄ t
2 = F[20,27]G[0,3]γS,

φ̄ t
3 = F[30,42]G[0,3]γS, where the heuristic τ values are all

determined as 3. Then, we use Algorithm 1 to solve an open-

loop control signal for system (11) with the split specification

ϕ̄ . The stlpy toolbox [7] is used to implement the opt()

method in algorithm 1. The program for this simulation

study is published at [22]. The resulting robot trajectory ζk

is shown in Fig. 1 and Fig. 2. The trajectories in different

stages are marked with different colors.

0 5 10 15 20 25 30 35 40 45
0

2

4

6

x

0 5 10 15 20 25 30 35 40 45

k

0

2

4

6

y

Fig. 2. The x- and y-positions of the robot trajectory in three stages. The
color in the background indicates in which region the robot stays, namely
yellow for TARGET, green for HOME, and blue for CHARGER, which is
consistent with Fig. 1.

From Fig. 1 and Fig. 2, it can be seen that the robot

starts from the initial position (0,5), reaches the TARGET

at k = 5 and stays there until k = 15. From k = 15, the

robot oscillates between TARGET and HOME to satisfy

the task requirements 1) and 2). After k = 40, the robot

maintains the visiting frequency to HOME, while taking time

to charge itself, which satisfies condition 3). During the entire

process, the robot is restricted within the SAFE region, which

satisfies specification 4). Therefore, all task specifications are

satisfied, which indicates the efficacy of the proposed timing

separation approaches and modularized synthesis methods.

V. CONCLUSIONS

In this paper, we discuss how to split a big synthesis prob-

lem for a complex and long STL specification into several

smaller optimization problems with less complexity. The two

proposed separation forms for the specification, namely a

syntactically separated form and a complete splitting form,

allow us to solve these smaller problems in a modular-

ized manner, which is an important step toward efficient

optimization-based specification synthesis. There are still two

limitations of our work. One is that we only investigate the

modularized synthesis for a certain class of STL formulas,

although it is sufficient for many practical tasks. The other

one is that the feasibility condition of modularized synthesis

has not been deeply studied. Our future work will extend the

results to wider fragments of STL formulas. We will also

incorporate the feasible sets of specifications to investigate

the feasibility of modularized synthesis.

APPENDIX

A. Proof of Lemma 2

For 1), from the definition of STL syntax, we know, for

an arbitrary STL formula ϕ , F{κ}ϕ =⊤U{κ}ϕ indicates that

there must exist k ∈ {κ}, such that (x,k) � ϕ , which means

(x,κ) � ϕ . Then, from G{κ}ϕ = ¬F{κ}¬ϕ and lemma 1, we

know G{κ}ϕ ↔¬
(
¬F{κ}ϕ

)
= F{κ}ϕ .

For 2), according to lemma 1, we have F{κ}(ϕ1∨ϕ2) =
¬F{κ}(¬ϕ1∧¬ϕ2) = ¬(F{κ}¬ϕ1 ∧ F{κ}¬ϕ2). Then, using

lemma 1, we obtain F{κ}(ϕ1∨ϕ2) =¬(¬F{κ}ϕ1∧¬F{κ}ϕ2)=
F{κ}ϕ1 ∨ F{κ}ϕ2, which also holds for G, i.e., G{κ}(ϕ1 ∨
ϕ2) = G{κ}ϕ1∨G{κ}ϕ2, according to 1) of this lemma.

For 3), for κ < a, we have

F{κ}

(
F[a,b]ϕ

)
=⊤U[κ+a,κ+b]ϕ = F[κ+a,κ+b]ϕ . (12)

Applying lemma 1 to F{κ}G(a,b)ϕ , we have F{κ}G(a,b)ϕ =
F{κ}

(
¬F(a,b)¬ϕ

)
=¬F{κ}

(
F(a,b)¬ϕ

)
. Considering (12), we

have F{κ}G(a,b)ϕ = ¬F(κ+a,κ+b)¬ϕ = G(κ+a,κ+b)ϕ . Ac-

cording to condition 1), we know,

G{κ}G(a,b)ϕ = F{κ}G(a,b)ϕ = G(κ+a,κ+b)ϕ . (13)

Therefore, principle 3) is proved by (12) and (13).

B. Proof of Lemma 3

Applying eq. (4) to formulate formula F[a,b]ϕ , we have

F[a,b]ϕ =⊤U[a,b]ϕ = F{a}ϕ ∨⊤U(a,b)ϕ ∨⊤U{b}ϕ

= F{a}ϕ ∨F(a,b)ϕ ∨F{b}ϕ .
(14)

Then, applying (14) to G[a,b]ϕ we obtain

G[a,b]ϕ =¬F[a,b]¬ϕ = ¬
(
F{a}¬ϕ∨F(a,b)¬ϕ∨F{b}¬ϕ

)

= ¬F{a}¬ϕ ∧¬F(a,b)¬ϕ ∧¬F{b}¬ϕ

= G{a}ϕ ∧G(a,b)ϕ ∧G{b}ϕ .

(15)

Thus, this lemma is proved by (14) and (15).

C. Proof of Theorem 1

Substituting ϕ1 =⊤ and ϕ2 = ϕ to (4), we have

⊤U(a,b)ϕ =⊤U(a,κ)ϕ ∨ (G(a,κ)⊤∧F{κ}
(
ϕ ∨⊤U(0,b−κ)ϕ)

)
,

=F(a,κ)ϕ ∨F{κ}
(
ϕ ∨F(0,b−κ)ϕ

)
.

Applying properties 1) and 3) in Lemma 2, we obtain

F(a,b)ϕ =⊤U(a,b)ϕ =F(a,κ)ϕ∨F{κ}ϕ∨F{κ}F(0,b−κ)ϕ

=F(a,κ)ϕ ∨F{κ}ϕ ∨F(κ ,b)ϕ .

Substituting it to (14), we obtain

F[a,b]ϕ = F(a,κ)ϕ ∨F{κ}ϕ ∨F(κ ,b)ϕ

=F{a}ϕ ∨F(a,κ)ϕ ∨F{κ}ϕ ∨F(κ ,b)ϕ ∨F{b}ϕ

=F[a,κ]ϕ ∨
(
F{κ}ϕ∨F(κ ,b)ϕ∨F{b}

)
=F[a,κ]ϕ∨F[κ ,b]ϕ .

Then, applying it to G[a,b]ϕ , we obtain

G[a,b] ϕ = ¬F(a,b)¬ϕ = ¬
(
F[a,κ]¬ϕ ∨F[κ ,b]¬ϕ

)

=¬F[a,κ]¬ϕ ∧¬F[κ ,b]¬ϕ = G[a,κ]ϕ ∧G[κ ,b]ϕ .

The two equations above prove (7). Also, (8) can be proved

by recursively applying (7) to the time points κ0, κ1, · · · , κl .

D. Proof of Lemma 4

For any z∈{1,2, · · · , l}, we know [as
z,i, as

z,i]⊂ [κz−1, κz]
for all i∈{1,2, · · · ,ns,z} and [ap

z, j, a
p
z, j]⊂ [κz−1, κz] for all

j∈{1,2, · · · ,np,z}. Thus, given τz,r∈[0, c
p
z,r] and κz−κz−1≥

c
p
z−1, j, the complete interval of φ̄z reads [min{κz−1,a

s
z,i,

as
z,i}, max{κz,b

s
z,i,b

s
z,i}] = [κz−1, κz] since ϕ̄z in eq. (10) is

already in a syntactic separation form. Thus, we know that

the complete intervals of φ̄z for all z∈{1,2, · · · , l} do not

overlap. Then, for the complete interval of φ̄ t
z , we have

[at
z, min{κz,b

t
z + ct

z}]⊂ [κz−1, κz], which implies that the

complete intervals of φ̄ t
z for all z∈{1,2, · · · , l} do not overlap.

E. Proof of Lemma 5

It can be noticed that ϕ̄ and ϕ share the same safety

formulas and also the same progress formulas with b
p
z, j+

c
p
z, j < κz, for j ∈ {1,2, · · · ,np

z, j}, for all z ∈ {1,2, · · · , l}.
Thus, these subformulas already have split complete in-

tervals and ensure the same semantics between ϕ̄ and ϕ .

Thus, we directly look into the progress formulas with

b
p
z, j + c

p
z, j > κz for which we have G[a

p
z, j ,b

p
z, j]

F[0,c
p
z, j]

γ p
j =

G[a
p
z, j ,κz−c

p
z, j]

F[0,c
p
z, j]

γ p
j ∧ G[κz−c

p
z, j ,b

p
z, j]

F[0,c
p
z, j]

γ p
j using theo-

rem 1. Note that G[κz−c
p
z, j ,b

p
z, j]

F[0,c
p
z, j]

γ
p
j means that, there

should always exist κz−c
p
z, j < k1 < k2 < b

p
z, j+c

p
z, j and k2−

k1 < c
p
z, j, such that (x,k1) � γ p

j and (x,k2) � γ p
j . In this

sense, it is straightforward to infer that, for any τz, j ∈
[κz−b

p
z, j, c

p
z, j], we have F[κz−τz, j ,κz]γ

p
j ∧F[κz,κz−τz, j+c

p
z, j]

γ p
j →

G[κz−c
p
z, j ,b

p
z, j]

F[0,c
p
z, j]

γ p
j . Therefore, we have

∧l
z=1φ̄z→

∧l
z=1φz.

Now, looking into the target subformulas, it is easy to

verify that F[at
z,min{bt

z,κz−ct
z}]
G[0,ct

z]
γt→F[at

z,b
t
z]
G[0,ct

z]
γt holds

for all z ∈ {1,2, · · · , l}, which leads to
∨l

z=1φ̄ t
z →

∨l
z=1φ t

z .

Then, we can summarize that
∧l

z=1φ̄z∧
∨l

z=1φ̄ t
z→

∧l
z=1φz∧

∨l
z=1φ t

z which leads to x � ϕ̄ → x � ϕ .

F. Proof of Theorem 2

We first look into condition 1). For z = l, it addresses

x[κl−1,κl] � G{−κl−1}φ̄l . Also, according to the semantics of

STL formulas, for any x[κz,κl]
� ϕ ′z, where ϕ ′z is an STL

formula, for z ∈ {1,2, · · · , l − 1}, if x[κz−1,κz] � G{−κz−1}φ̄z

and the complete intervals of φ̄z and ϕ ′z do not overlap,

we have x[κz−1,κl]
� G{−κz−1}φ̄z∧G{κz−κz−1}ϕ

′
z. Applying this

recursively from z = l back to z = 1, we obtain x[κ0,κl] �

φ̄1 ∧ φ̄2 ∧ ·· · ∧ φ̄l , i.e., x �
∧l

z=1 φ̄z. This inference indicates

1)→x �
∧l

z=1 φ̄z. Note that this only holds if the complete

intervals of φ̄1, φ̄2, · · · , φ̄l do not overlap, which is ensured

by lemma 4.

For condition 2), if there exists z ∈ {1,2, · · · , l}, such

that x[κz−1,κz] � G{−κz−1}φ̄
t
z , we know that there exists k∈

[at
z, min{bt

z, κz − ct
z}], such that x[k,k+ct

z]
� G[0,ct

z]
γt which

implies x �
∨l

z=1 φ̄ t
z since [at

z, min{bt
z, κz − ct

z}] ⊂ [κ0, κl]
for all z. This renders 2)→

∨l
z=1 φ̄ t

z . Therefore, we can

summarize that 1) ∧ 2) → x �
∧l

z=1 φ̄z∧
∨l

z=1 φ̄ t
z ↔ x � ϕ̄ .

Considering lemma 5, we further have 1) ∧ 2) →x�ϕ .

REFERENCES

[1] E. Plaku and S. Karaman, “Motion planning with temporal-logic
specifications: Progress and challenges,” AI communications, vol. 29,
no. 1, pp. 151–162, 2016.

[2] X. Li, G. Rosman, I. Gilitschenski, C.-I. Vasile, J. A. DeCastro,
S. Karaman, and D. Rus, “Vehicle trajectory prediction using gen-
erative adversarial network with temporal logic syntax tree features,”
IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3459–3466,
2021.

[3] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications,” in 53rd IEEE Conference on Decision

and Control. IEEE, 2014, pp. 81–87.
[4] V. Kurtz and H. Lin, “A more scalable mixed-integer encoding for

metric temporal logic,” IEEE Control Systems Letters, vol. 6, pp.
1718–1723, 2021.

[5] L. Lindemann, G. J. Pappas, and D. V. Dimarogonas, “Reactive and
risk-aware control for signal temporal logic,” IEEE Transactions on

Automatic Control, vol. 67, no. 10, pp. 5262–5277, 2021.
[6] A. Salamati, S. Soudjani, and M. Zamani, “Data-driven verification

of stochastic linear systems with signal temporal logic constraints,”
Automatica, vol. 131, p. 109781, 2021.

[7] V. Kurtz and H. Lin, “Mixed-integer programming for signal temporal
logic with fewer binary variables,” IEEE Control Systems Letters,
vol. 6, pp. 2635–2640, 2022.

[8] M. Srinivasan and S. Coogan, “Control of mobile robots using barrier
functions under temporal logic specifications,” IEEE Transactions on

Robotics, vol. 37, no. 2, pp. 363–374, 2020.
[9] L. Lindemann and D. V. Dimarogonas, “Control barrier functions for

signal temporal logic tasks,” IEEE control systems letters, vol. 3, no. 1,
pp. 96–101, 2018.

[10] D. Gundana and H. Kress-Gazit, “Event-based signal temporal logic
synthesis for single and multi-robot tasks,” IEEE Robotics and Au-

tomation Letters, vol. 6, no. 2, pp. 3687–3694, 2021.
[11] S. Liu, A. Saoud, P. Jagtap, D. V. Dimarogonas, and M. Zamani,

“Compositional synthesis of signal temporal logic tasks via assume-
guarantee contracts,” in 2022 IEEE 61st Conference on Decision and

Control (CDC). IEEE, 2022, pp. 2184–2189.
[12] S. Alatartsev, S. Stellmacher, and F. Ortmeier, “Robotic task sequenc-

ing problem: A survey,” Journal of intelligent & robotic systems,
vol. 80, pp. 279–298, 2015.

[13] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning,” IEEE Transactions on Automatic Control,
vol. 57, no. 11, pp. 2817–2830, 2012.

[14] P. Hunter, J. Ouaknine, and J. Worrell, “Expressive completeness for
metric temporal logic,” in 2013 28th Annual ACM/IEEE Symposium
on Logic in Computer Science. IEEE, 2013, pp. 349–357.

[15] K. Bae and J. Lee, “Bounded model checking of signal temporal logic
properties using syntactic separation,” Proceedings of the ACM on
Programming Languages, vol. 3, no. POPL, pp. 1–30, 2019.

[16] X. Yu, C. Wang, D. Yuan, S. Li, and X. Yin, “Model predictive
control for signal temporal logic specifications with time interval
decomposition,” arXiv preprint arXiv:2211.08031, 2022.

[17] O. Maler and D. Nickovic, “Monitoring temporal properties of con-
tinuous signals,” in Formal Techniques, Modelling and Analysis of

Timed and Fault-Tolerant Systems: Joint International Conferences on
Formal Modeling and Analysis of Timed Systmes, FORMATS 2004,

and Formal Techniques in Real-Time and Fault-Tolerant Systems,

FTRTFT 2004, Grenoble, France, September 22-24, 2004. Proceed-

ings. Springer, 2004, pp. 152–166.
[18] L. Nenzi and L. Bortolussi, “Specifying and monitoring properties

of stochastic spatio-temporal systems in signal temporal logic,” EAI

Endorsed Transactions on Cloud Systems, vol. 1, no. 4, 2015.
[19] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic spec-

ifications for continuous-time signals,” Theoretical Computer Science,
vol. 410, no. 42, pp. 4262–4291, 2009.

[20] M. Schlaipfer, G. Hofferek, and R. Bloem, “Generalized reactivity
(1) synthesis without a monolithic strategy,” in Haifa Verification

Conference. Springer, 2011, pp. 20–34.
[21] C. Belta, B. Yordanov, E. Aydin Gol, C. Belta, B. Yordanov, and E. Ay-

din Gol, “Largest satisfying region,” Formal Methods for Discrete-
Time Dynamical Systems, pp. 119–139, 2017.

[22] Z. Zhang and H. Sofie, “Benchmark for modularized synthesis of
complex specifications,” GitHub repository, 2023. [Online]. Available:
https://github.com/zhang-zengjie/modustl

https://github.com/zhang-zengjie/modustl

	INTRODUCTION
	Preliminaries and Problem Statement
	Signal Temporal Logic (STL)
	Optimization-Based Specification Synthesis
	Problem Statement

	Main Results
	Syntactic Timing Separation
	Complete Specification Split for Modularized Checking
	Modularized Synthesis of Split Specifications

	Case Study in Simulation
	CONCLUSIONS
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Theorem 1
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Theorem 2

	References

