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Abstract— This paper studies the problem of coordinating
a group of nth-order integrator systems. As for the well-
studied conventional consensus problem, we consider linear and
distributed control with only local and relative measurements.
We propose a closed-loop dynamic that we call serial consen-
sus and prove it achieves nth order consensus regardless of
model order and underlying network graph. This alleviates
an important scalability limitation in conventional consensus
dynamics of order n ≥ 2, whereby they may lose stability
if the underlying network grows. The distributed control law
which achieves the desired closed loop dynamics is shown to be
localized and obey the limitation to relative state measurements.
Furthermore, through use of the small-gain theorem, the serial
consensus system is shown to be robust to both model and
feedback uncertainties. We illustrate the theoretical results
through examples.

I. INTRODUCTION

Properties of dynamical systems over networks have been
a subject of significant research over the last two decades.
A problem of interest the coordination of agents in a net-
work through localized feedback, leading to the prototypical
distributed consensus dynamics, studied early on by [1]–
[3]. Over the years, it has become clear that the structural
constrains imposed by the network topology in consensus
problems often lead to fundamentally poor dynamic behav-
iors in large networks. This concerns controllability [4],
performance [5], [6] and disturbance propagation [7], [8],
but, as recently highlighted in [9], also stability. The poor
stability properties characterized in earlier work [9] (which
motivate the present work) apply to higher-order consensus,
where the local dynamics of each agent is modeled as an
nth order integrator, with n ≥ 2, and the control is a
weighted average of neighbors’ relative states. This is a
theoretical generalization of first-order consensus [10], but is
also relevant in practice. For example, a model where n = 3
and thus has consensus in position, velocity and acceleration,
can capture flocking behaviors [11].

More specifically, [9] shows that conventional high-order
consensus (n ≥ 3) is not scalably stable for many growing
graph structures. When the network grows beyond a certain
size, stability is lost. The same holds for second-order
consensus (n = 2) in, for example, directed ring graphs,
as also described in [12]. To address this lack of scalable
stability we propose an alternative generalization of the first-
order consensus dynamics, which we prove achieves scalable

The authors are with the Department of Automatic Control and the
ELLIIT Strategic Research Area at Lund University, Lund, Sweden. Email:
{jonas.hansson, emma.tegling}@control.lth.se

This work was partially funded by Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg
Foundation and the Swedish Research Council through Grant 2019-00691.

stability for any model order n.
To illustrate our proposed controller, consider the conven-

tional second-order consensus system where the controller
u(t) = −L1ẋ(t)−L2x(t)+uref(t), with L1,2 being weighted
graph Laplacians, is used to achieve the closed loop

ẍ(t) = −L2ẋ(t)− L1x+ uref(t). (1)

While for first-order consensus (ẋ = Lx + uref(t)), a
sufficient condition for convergence to consensus is that the
graph underlying the graph Laplacian L contains a connected
spanning tree. However, this no longer suffices when n ≥
2 as in (1). Therefore, we instead propose the following
controller u(t) = −(L1 + L2)ẋ(t) − L1L2x(t) + uref(t).
The reason for this choice of controller is best illustrated by
considering the resulting closed loop in the Laplace domain:

(sI + L1)(sI + L2)X(s) = Uref . (2)

For this system, like for the first-order case, it is sufficient
that the graphs underlying L1 and L2 contain a connected
spanning tree for the system to eventually coordinate in
both x and its derivative ẋ (regardless of network size!). This
closed loop system, which we will call serial consensus, thus
mimics one core property of the standard consensus protocol,
and can also be generalized to any order n.

The main results of this paper are proofs of some key
properties of the proposed nth-order serial consensus. The
controller is proven to remain localized (within an n-hop
neighborhood) and implementable through relative measure-
ments. We also prove that the closed loop will achieve con-
sensus in all n states. Furthermore, we study the robustness
of the proposed closed loop and show that the system will
still coordinate when subject to unstructured uncertainty. The
beneficial properties of the form (2) (generalized to any order
n) are thus not contingent on an idealized implementation.

The remainder of this paper is organized as follows. We
first introduce the nth order consensus model and define our
choice of control structure. Then the serial consensus system
is defined and motivated. In Sec. III we provide proofs for
the stability and robustness of the serial consensus system.
Our main results are then illustrated through examples in
Sec. IV. Lastly, we provide our Conclusions in Sec. V.

II. PROBLEM SETUP

We start by introducing some graph theory before intro-
ducing the general nth order consensus problem for which
we propose the new serial consensus setup. We discuss its
properties and then end with some useful definitions.
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A. Network model and definitions

Let G = {V, E} denote a graph of size N = |V|. The
set E ⊂ V × V denotes the set of edges. The graph can
be equivalently represented by the adjacency matrix W ∈
RN×N where wi,j > 0 ⇐⇒ (j, i) ∈ E . The graph is called
undirected if W = WT . The graph contains a connected
spanning tree if for some i ∈ V there is a path from i to any
other vertex j ∈ V .

Associated with a weighted graph we have the weighted
graph Laplacian L defined as

[L]i,j =

{
−wi,j , if i 6= j∑
k 6=i wi,k, if i = j

Under the condition that that the graph generating the graph
Laplacian contains a connected spanning tree, L will have
a simple and unique eigenvalue at 0 and the remaining
eigenvalues will lie strictly in the right half plane (RHP).

We will also consider networks with a growing number of
nodes. With GN we denote a graph in a family {GN}, where
N is the size of the growing network.

We will denote the space of all proper, real rational, and
stable transfer matrices RH∞ and denote the H∞ norm as
‖ · ‖H∞ following the notation in [13].

B. nth order consensus

Let the system be modeled as N agents with identical nth

order integrator dynamics, i.e.

dnxi(t)

dtn
= ui(t), (3)

for all i ∈ V . We will use the convention x
(0)
i (t) = xi(t)

and x
(k)
i (t) = dk

dtk
xi(t) to denote time derivatives. When

clear we may omit the time argument for brevity.
In this paper we will consider the problem of synchroniz-

ing the agents and thus achieve a state of consensus.
Definition 1 (nth order consensus): The multi-agent sys-

tem (3) is said to achieve (nth order) consensus if
limt→∞ |x(k)i (t) − x

(k)
j (t)| = 0, for all i, j ∈ V and k ∈

{0, 1 . . . , n− 1}.

C. Control structure

A linear state feedback controller of (3) can be written as

u(t) = uref(t)−
n−1∑
k=0

Akx
(k)(t). (4)

Where uref(t) ∈ RN is a feedforward term and Ak ∈ RN×N
represent the feedback of the kth derivative. We will restrict
this class of controllers in three ways. The controllers

i) can only use relative feedback;
ii) have a limited gain;

iii) and depend on the local neighborhood of each agent.
The limitation to relative feedback translates to the condition
Ak1N = 0 for all k, while a limited gain can be encoded
by demanding that ‖Ak‖∞ ≤ c. To capture the notion of
locality, consider the adjacency matrix W representing the
communication and measurement structure, which we here

assume to be the same. That is, if Wi,j = 1, then agent i can
directly receive or measure the relative distance to agent j.
Next, consider the non-negative matrix W q . This matrix has
the property that [W q]i,j 6= 0 if and only if there is a path
of length q from agent j to agent i. Thus, if we want the
controller to only depend on information that is at most q
steps away from each agent the following implication should
hold:

∑q
k=0W

k
i,j = 0 =⇒ [Ak]i,j = 0. Putting all the

conditions together gives us a family of controllers that we
will consider in this paper:

Definition 2 (q-step implementable relative feedback):
A relative feedback controller of the form (4) is q-step
implementable with respect to the adjacency matrix W and
gain c > 0 if Ak ∈ Aq(W, c) for all k, where

Aq(W, c) =

{
A

∣∣∣∣[∑q
k=0W

k
]
i,j

= 0 =⇒ Ai,j = 0,

A1N = 0, ‖A‖∞ ≤ c

}
.

The conventional controller for achieving nth order con-
sensus can be realized as (4) where each Ak is given by a
graph Laplacian, e.g. Ak = Lk ∈ A1(W, c). In many cases
these are also assumed to be the same such that Lk = pkL
for some graph Laplacian L and constants pk > 0.

D. A Novel Design: Serial Consensus

We propose the following controller of (3), expressed in
the Laplace domain, to achieve nth order consensus

U(s) = Uref(s) +

(
snI −

n∏
k=1

(sI + Lk)

)
X(s), (5)

where Lk are graph Laplacians and Uref is the transformed
reference signal. In this case, it is more instructive to consider
the closed-loop dynamics, which take the following form:

Definition 3 (nth order serial consensus system): For all
k ∈ {1, 2 . . . , n}, let Lk be a weighted and directed graph
Laplacian. The nth-order serial consensus system is then(

n∏
k=1

(sI + Lk)

)
X(s) = Uref(s). (6)

We call this form serial consensus because the same closed
loop dynamics can also be achieved by interconnecting n
first-order consensus systems in a series. The closed-loop
dynamics in (6) can also be transformed to state-space
form by introducing the alternative variables Ξk with the
corresponding states ξk. These relate to X through Ξ1 =
X(s), Ξk = (sI + Lk−1)Ξk−1 for k ∈ {2, . . . , n − 1},
and sΞn = −LnΞn + Uref . This leads to the following
continuous-time state-space representation

ξ̇1
ξ̇2
...

ξ̇n−1
ξ̇n

=


−L1 I

−L2
. . .
. . . I

−Ln


︸ ︷︷ ︸

A


ξ1
ξ2
...

ξn−1
ξn

+


0
0
...
0
uref

 (7)

The serial consensus form has several advantages, which
will be the focus of the paper. First, however, we show that



it satisfies the constraints we impose on the controller, as
given by Definition 2. In other words, we will discuss how
the closed-loop structure in (6) can be implemented on a
network.

When analysing the serial consensus controller of (5) we
will make use of the following assumption on the graph
structure.

Assumption A1: (Connected spanning tree) All graphs
underlying the graph Laplacians Lk contain a connected
spanning tree.

E. Implementing Serial consensus

The following proposition ensures that the serial consensus
system can be achieved by controlling the nth order integrator
system (3) with an n-step implementable relative feedback
controller as defined in Definition 2.

Proposition 1: Consider the nth-order serial consensus as
defined in (6). If each Lk ∈ A1(W, c) for some constant c
and adjacency matrix W , then the controller in (5) is an n-
step implementable relative feedback controller with respect
to W and a finite gain c′.
To prove this proposition we first need the following two
lemmas whose proofs are provided in the appendix.

Lemma 2: If A1 ∈ Aq1(W, c1) and A2 ∈ Aq2 (W, c2)
then the sum (A1 +A2) ∈ Amax(q1,q2) (W, c1 + c2)

Lemma 3: Let A1 ∈ Aq1(W, c1) and A2 ∈ Aq2(W, c2)
then the product (A1A2) ∈ Aq1+q2(W, c1c2)

Now we can prove Proposition 1.
Proof: The serial consensus controller can be expanded

to the matrix polynomial

U(s) = Uref(s) +

(
snI −

n∏
k=1

(sI + Lk)

)
X(s)

= Uref(s) +

(
(sn − sn)I −

n−1∑
k=0

skAk

)
X(s),

for some matrices Ak. To show the proposition, we need to
show that Ak ∈ Aq(W, c′) for all k = 0, . . . , n − 1, with
q ≤ n and c′ <∞. Let

Ik =
{
α
∣∣ |α| = n− k, α ⊂ {1, 2, . . . , n},

i < j =⇒ α(i) < α(j)}

denote all the ordered subsets of the range [1, n] with size
n− k. Then

Ak =
∑
α∈Ik

∏
j∈α

Lj , for all k ∈ [0, n− 1].

Since all α ∈ Ik has n − k elements we can show that∏
j∈α Lj = Bα ∈ An−k (W, cn−k) by applying Lemma 3

recursively. Now we have a sum

Ak =
∑
α∈Ik

Bα

The number of ordered subsets of the range [1, n] with size
n − k is given by the binomial coefficients and therefore
the size of |Ik| =

(
n

n−k
)
. Applying Lemma 2 recursively

shows that Ak ∈ An−k(W,
(
n

n−k
)
cn−k). Clearly, we have

that n − k ≤ n and
(
n

n−k
)
cn−k ≤

(
n
dn/2e

)
max(c, cn) < ∞

for all k. Let c′ =
(

n
dn/2e

)
max(c, cn) and then we have that

Ak ∈ An(W, c′) for all k.
Example 1: For clarity let us consider the controller for

the case n = 3. Then the controller is

U(s) = Uref(s) +

(
s3I −

3∏
k=1

(sI + Lk)

)
X(s)

= Uref(s)−
(
s2(L1 + L2 + L3)+

s(L1L2 + L1L3 + L2L3) + L1L2L3)X(s)

Here, A0 = L1L2L3, A1 = L1L2 + L1L3 + L2L3, and
A2 = L1L2L3. The proposition asserts that if L1, L2, and
L3 share a sparsity pattern and have bounded gains, then the
resulting controller gains A0, A1, and A2 will be sparse and
have bounded gains.

F. Scalable stability

Coordinating a multi-agent system is inherently a de-
centralized problem where the goal for each agent is to
coordinate with its nearest neighbors. However when the
controllers only depend on local measurements there is a
possibility that controllers that manage to coordinate N
agents stop stabilizing as the number of agents increases.
In [9] it was shown that for the 3rd and higher order
consensus problem with controller Ak = akLN in (4), the
closed loop system will become unstable if the algebraic
connectivity λ2(LN ) → 0 as N → ∞. This motivates the
notion of Scalable stability

Definition 4 (Scalable stability [9, Def. 2.1]): A consen-
sus control design is scalably stable if the resulting closed-
loop system achieves consensus over any graph in the
family {GN}.

III. MAIN RESULTS

Our main contribution is two-fold. First we show the serial
consensus achieves scalable stability and then we show that
the implementation is robust to two classes of perturbations

A. Scalable stability

Theorem 4: Consider the nth order serial consensus sys-
tem as defined in Definition 3 under Assumption A1 and
with Uref ∈ RH∞. Then the closed loop dynamics have the
following properties:

(i) The poles of (6) are given by the union of the eigen-
values of −Lk.

(ii) The solution achieves nth order consensus.

Proof: (i) Any square matrix can be unitarily trans-
formed to upper triangular form by the Schur traingular-
ization theorem. Let UkLkUHk = Tk be upper triangular.
Then the block diagonal matrix U = diag(U1, U2, . . . Un) is
a unitary matrix that upper triangularizes A in (7). For any
triangular matrix the eigenvalues lie on the diagonal and this
will be the eigenvalues of each −Lk.



(ii) First, consider the closed loop dynamics of (6) which
will be

X(s) =

(
1∏

k=n

(sI + Lk)−1

)
Uref(s).

Since, Uref is stable, we know that the limit
lims→0 Uref(s) = Uref(0) exists. To prove that the
system achieves nth order consensus we want to show that

lim
t→∞

y(t) = lim
s→0

C(s)X(s) = 0

for some transfer matrix C(s), which encodes the consensus
states. But since the reference dependence is only related
to Uref(0), we can simplify the problem to only consider
impulse responses. But the impulse response has the same
transfer function as the initial value response where ξn(0) =
Uref(0). Therefore, WLOG, assume that Uref(s) = 0 and an
arbitrary initial condition

ξ(0) = [ξ1(0)T , ξT2 , . . . , ξn(0)T ]T .

The solution of (7) is given by exp(At)ξ(0) =
S exp(J(A)t)S−1ξ(0) where J(A) is the Jordan normal
form of A and S is an invertible matrix. From (i) and
the diagonal dominance of the graph Laplacians we know
that all eigenvalues of A lie in the left half plane. By
Assumption A1 it follows that the zero eigenvalue for each
Lk is simple. Now we prove that these n zero eigenvalues
form a Jordan block of size n. Let ek denote the kth 1-
block vector, e.g. e1 =

[
1TN 0N . . . 0N

]T
and e2 =[

0N 1TN 0N . . . 0N
]T

. Then e1 is an eigenvector
since Ae1 = 0. For k ∈ {2, 3 . . . , n} we have Aek = ek−1
which implies that Akek = 0. This shows that there is a
Jordan block of size n with an invariant subspace spanned
by the vectors ek. Since all other eigenvectors make up an
asymptotically stable invariant subspace, it follows that ξ(t)
will converge towards a solution in span(e1, e2 . . . , en) and
thus limt→∞ ξk(t) = αk(t)1N . Now, since x(t) = ξ1(t),
it follows that limt→∞ x(t) = α1(t)1N , and furthermore,
since

ξ̇k = −Lkξk + ξk+1 → ξk+1 as t→∞

for k ∈ {1, . . . , n − 1}, it follows that limt→∞ x(k)(t) =
αk+1(t)1N which shows that the system achieves nth order
consensus.
This proposition shows that the stability of the consensus for
the nth order serial consensus can be reduced to verifying
that the n first-order consensus systems ẋ = −Lkx achieve
consensus. This is equivalent to determining whether the
graphs underlying each Lk contains a connected spanning
tree. This result together with Proposition 1 shows that
nth order consensus can be achieved with a local relative
feedback controller with finite gain and thus achieve scalable
stability. This result can be compared with [9] where it is
shown that the conventional consensus is not scalably stable
for any order larger than n = 3 if a graph Laplacian with
vanishing algebraic connectivity is used. We can summarize
this fact in the following corollary:

Corollary 5: For any n, the controller (5) is scalably sta-
ble over any graph family {GN} that underlies Lk, provided
each GN satisfies Assumption A1.

Remark 1: Note that, by Theorem 4, scalable stability
is achieved also with different graph families underlying
each Lk, and ||Lk||∞ are allowed to be arbitrarily small.

B. Robustness of serial consensus

The proposed controller in (5) is a relative state-feedback
controller which is designed to ensure that the closed loop
system achieves nth order consensus as guaranteed through
Theorem 4. However, the nth order integrator system may be
an idealization of the system and the relative state feedback
may need observers to be fully realized, and there could be
unmodeled dynamics. These potential sources of errors call
for a robust controller. We will now present two theorems,
which prove that the serial consensus is robust towards two
different types of uncertainties.

1) Additive perturbation: The following theorem asserts
that the nth order serial consensus controller can handle
additive uncertainties.

Theorem 6: Consider the nth order serial consensus sys-
tem as defined in Definition 3, under Assumption A1, with
Lk = L for all k, and L = LT . Then the perturbed system

(sI + L)nX = Uref +

(
n∑
k=0

∆ks
kLn−k

)
X,

where Uref ,∆k ∈ RH∞, achieves nth order consensus if

‖∆0‖H∞ + ‖∆n‖H∞ +

n−1∑
k=1

‖∆k‖H∞

√
kk

nn
(n− k)n−k < 1

Proof: First, note that the closed-loop system can be
represented by the block diagram in Fig. 1, which in turn
can be simplified to Fig. 2. Since Uref is stable we can apply
the small-gain theorem which asserts that U(s) (as defined
in the figures) will be stable if

‖
n∑
k=0

∆ks
kLn−k(sI + L)−n‖H∞ < 1.

Applying the triangle inequality and submultiplicativity on
the left-hand side (LH) yields

LH ≤
n∑
k=0

‖∆k‖H∞‖skLn−k(sI + L)−n‖H∞ (8)

Since L is symmetric, it is possible to unitarily diagonalize
it. Let U = UH denote one such unitary matrix. Then L =
UΛUH where Λ is a non-negative real diagonal matrix.

‖skLn−k(sI + L)−n‖H∞ = ‖skΛn−k(sI + Λ)−n‖H∞ .

For a diagonal matrix the singular values are given by the
absolute value of the diagonal. Let, λ > 0 be an arbitrary
positive constant. The maximum gain for each diagonal can
then be calculated through

max
ω

∣∣∣∣ ωkλn−k(jω + λ)n

∣∣∣∣ =

√
max
ω

ω2kλ2n−2k

(ω2 + λ2)n
.



Fig. 1: Block diagram illustrating the perturbation model in proof
of Theorem 6.

Fig. 2: Block diagram illustrating the perturbation model in proof
of Theorem 6.

The latter optimization problem is given by a continuous
function and thus the derivative must be 0 at the maximum.
Simple calculus shows that the optimum is found at ω2 =
λ2k/(n−k) for k = 0, 1, . . . n−1 and at ω =∞ for k = n.
Inserting yields

max
ω

∣∣∣∣ ωkλn−k(jω + λ)n

∣∣∣∣ =

{√
kk

nn (n− k)n−k if 0 < k < n

1 else

Now for the case where λ = 0. Then we have for k =
0, . . . , n− 1

max
ω

∣∣∣∣ ωk0n−k

(jω + 0)n

∣∣∣∣ = 0

and for k = n

max
ω

∣∣∣∣ ωn

(jω + 0)n

∣∣∣∣ = 1.

This is less restrictive than for λ > 0 and thus we can use
the result for λ > 0. Plugging this into the upper bound of
the LH (8) results in the sought inequality.

Finally, we must ensure that stability of the closed loop in
Fig. 2 implies nth order consensus. Since the transfer matrix
from u to y in Fig. 1 is stable it follows that Y (s) will
be stable. This means that we have shown the following
limt→∞ Ln−kx(k)(t) = 0. By Assumption A1 the 0 eigen-
value of L is unique and therefore 0 is a unique eigenvalue
of Ln−k too. Subsequently, limt→∞ x(k)(t) ∈ ker(Ln−k).
Since Ln−k1N = 0 it follows that limt→∞ x(k)(t) ∈
span(1N ) and that the agents will reach consensus in all
the n − 1 first time derivatives and thus achieve nth order
consensus.
It is worth noting that the norm bound on the uncertainty
blocks ∆ is independent of the number of agents in the
system. Therefore, the serial consensus implementation is
scalably robust in the sense that it allows equally sized
perturbations regardless of network size. This is not the case

for localized conventional consensus, following the results
in [9].

2) Multiplicative perturbation: It is also possible to
see the closed-loop serial consensus system as a series
of interconnected first-order systems. Therefore it is also
interesting to consider the robustness with respect to the
individual factors. The following theorem gives a sufficient
condition for the unforced closed loop system to achieve nth

order consensus.
Theorem 7: The following perturbed nth order serial con-

sensus system

(sI + s∆0 + (I + ∆n)Ln)

n−1∏
k=1

(sI + (I + ∆k)Lk)X = Uref

where Uref ,∆k ∈ RH∞ and Lk = LTk for k = 1, . . . , n,
achieves nth order consensus if

‖∆k‖H∞ < 1, for all k

and
‖∆0‖H∞ + ‖∆n‖H∞ < 1.

Proof: First, note that we can construct X(s) = Ξ1(s)
and sΞk = −(I + ∆k)LkΞk + Ξk+1 for k = 1, . . . , n − 1
and s(I + ∆0)Ξn = −(I + ∆n)LnΞn + Uref . For Ξn
we have exactly the 1st order case of Theorem 6 and thus
limt→∞ ξn(t) = αn(t)1N if ‖∆0‖H∞ + ‖∆n‖H∞ < 1.
Consider the following induction hypothesis: if Ξk+1(s) =
1NGk+1(s) +Hk+1(s) where Hk+1(s) ∈ RH∞ then Ξk =
1NGk(s) +Hk(s) for some Hk(s) ∈ RH∞. We have

sΞk = −(I + ∆k)LkΞk + Ξk+1

which can be represented by the block diagram Fig. 3. Here,
note that

Lk(sI + Lk)−1Ξk+1 = (sI + Lk)−1Lk(Hk+1(s))

and the potentially unstable term of Ξk+1 can be ignored.
Reusing a result from the previous proof we have ‖Lk(sI +
Lk)−1‖H∞ = 1 and therefore LkΞk ∈ RH∞ if ‖∆k‖H∞ <
1. Since the 0 eigenvalue of Lk is unique, it follows that
Ξk(s) = 1NGk(s) +Hk(s) with Hk ∈ RH∞ which proves
the induction hypothesis since we have already shown the
base case Ξn(s) = 1NGn(s) + Hn(s). Left is to prove
that the system will reach nth order consensus. Note that
L1X(s) = L1Ξ1(s) is stable and therefore we get through
the final value theorem

lim
t→∞

L1x(t) = lim
s→0

sL1Ξ1(s) = 0.

Furthermore, we have for all k: lims→0 sLkΞk(s) = 0. This,
combined with s2Ξk(s) = −(I + ∆k)sLkΞk(s) + sΞk+1(s)
shows that

lim
t→∞

Lk+1x
(k)(t) = lim

s→0
s(skLk+1X(s))

= lim
s→0

sLk+1Ξk+1(s) = 0

Finally, since the 0 eigenvalues for each Lk are unique
with corresponding eigenvector 1N we see that nth order
consensus will be achieved.



Fig. 3: Block diagram illustrating the perturbation model of a
general first-order consensus block which is used in the proof of
Theorem 7.

This theorem shows that the nth order serial consensus is
robust in its construction.

IV. EXAMPLES

A. 2nd order consensus on circular graph

Consider the directed cycle graph, which is represented by
the adjacecncy matrix

[W ]i,j = 1 iff i− j = 1 mod N.

The corresponding graph Laplacian Lc is a circulant matrix
and therefore, the eigenvalues are known analytically. In
particular, the eigenvalue with the second smallest real part is
λ2(Lc) = 1−exp(2π/N) = 1−cos (2π/N)− i sin (2π/N).
For large N , this eigenvalue can be approximated with a
1st order Taylor approximation, which yields λ2(Lc) ≈
−i2π/N . This eigenvalue will cause problems when design-
ing a controller using the conventional consensus. To see
this, consider the closed loop dynamics

s2I + 2p1sLc + p0Lc = Uref .

The system can be diagonalized and, in particular, two of
the poles are given by the equation

s2 + 2p1λ2(Lc) + p0λ(Lc) = 0.

In the case that p0 and p1 are designed independently of the
network size N , then for sufficiently large N the roots can
be approximated as

sp = −p1λ2 ±
√
p21λ

2
2 − p0λ ≈ ±(1 + i)

√
πp0
N

Since one of these poles will eventually lie in the RHP, it
follows that the closed loop system will become unstable
when N is sufficiently large, regardless of the choice of p0
and p1.

For the serial consensus it suffices to check that all
eigenvalues but the unique 0 eigenvalue of Lc lie in the
RHP or equivalently if 0 < Re(λ2(LC)) = 1 − cos(2π/N)
which is clearly true for any finite N . Alternatively, it is
also sufficient that the underlying graph contains a connected
spanning tree.

B. 3rd order consensus

It has been shown that for n ≥ 3 it is not possible to
achieve scalable stability for any graph family {GN} where
the corresponding graph Laplacian LN has an eigenvalue
with vanishing real part as the graph is growing, i.e. if
limN→∞Re(λ2(LN )) = 0. At least, this is not possible with

(a) Conventional with N = 12. (b) Conventional with N = 13.

(c) Serial with N = 12. (d) Serial with N = 13

Fig. 4: 3rd order consensus in a chain of vehicles is considered.
The plots show the intervehicle relative errors over time when the
lead vehicle moves at constant acceleration. Panels (a) and (b) show
that the addition of one agent destabilizes the closed loop for the
conventional consensus. Panels (c) and (d) illustrate the fact that
the serial consensus will remain stable under such agent additions.

the conventional consensus control. On the serial consensus
form this is no longer a problem. The controller

U(s) = Uref +

(
s3I −

3∏
k=1

(sI + LN )

)
X(s)

will achieve consensus as long as the underlying
graphs {GN} all contains a connected spanning tree. To
illustrate this, consider the graph defined by W ∈ RN×N ,
the adjacency matrix

Wi,j =

{
1 if |i− j| = 1 and i 6= 1
0 else .

This corresponds to a bidirectional string with a leader
(Agent 1). Let L be the associated graph Laplacian. It is true
that limN→∞ λ2(L) = 0 and thus any conventional control
design with L will eventually lead to an unstable closed
loop. For this example, let the conventional control law be
u(t) = uref(t)− 6Lẍ− 4Lẋ− 2Lx and the serial consensus
controller (5) be defined with the same graph Laplacians
Lk = 2kL. The response to a constant acceleration of the
leader is shown in Fig. 4. Here we see that the addition of
a 13th agent to the system destabilizes the closed loop for
the conventional consensus while the serial consensus only
loses some performance.

C. Robustness of the 2nd order serial Consensus.

Theorems 6 and 7 show that the serial consensus can be
perturbed and still achieve nth order consensus. Now we want
to illustrate what the block ∆k can be. Consider the perturbed
2nd order consensus system in Theorem 6. Writing out all
terms we get

s2(I + ∆2)X = Uref − (s(2I + ∆1)LX + (I + ∆0)L2X).



In this form, the ∆2 block can be thought of as representing
model errors; we may control a system which we model as
being N identical double integrator systems but in reality
they may differ. This is obviously the case for vehicle
platoons, which are often modeled as chains of identical
double integrators. Through our theorem we can for instance
allow ∆2 to be a diagonal transfer matrix with elements
[∆2]i,i = ki

Tis+1 where |ki| < 1 and Ti > 0 for all i.
Then, the closed loop system would remain stable despite
the heterogeneous agents. The blocks ∆1 and ∆0 are also
important. For instance the signals L2x(t) and Lẋ(t) may
not be directly measured but estimated through linear filters.
This could be thought of as unmodeled dynamics which these
blocks can capture.

If we focus on Theorem 7, then the perturbed model is

(s(∆0 + I) + (∆1 + I)L1)(sI + (∆2 + I)L2)X = Uref

The theorem only asserts robustness for symmetrical graph
Laplacians Lk. However, since ∆k can also be constant
matrices, it is also possible to construct new (asymmetric)
graph Laplacians L′k = (I + ∆k)Lk by designing the ∆k

blocks.

V. CONCLUSION

This work has introduced the nth order serial consensus
system which can be seen as a natural generalization of
the well-known consensus protocols. The stability of the
introduced system can be analysed by considering n regular
first order consensus protocol. The proposed controller to
achieve nth order serial consensus has been shown to be
implementable using relative measurements confined to a
local neighborhood of each agent and can therefore be
considered a decentralized control scheme. Robustness of
the proposed system has also been analyzed. This has been
addressed in terms of additive and model perturbations. The
analysis showed that the size, measured in the H∞ norm, of
the allowable uncertainties were independent of the number
of agents.

Future and ongoing work includes looking into the per-
formance of the serial consensus and how this relates to
string stability. It would also be interesting to look into an
implementation where each agent implements an observer to
compute their control action.

APPENDIX

Here we prove Lemmas 2, 3 which describe how the
sparsity pattern of two matrices changes through addition and
multiplication. The Lemmas are restated for convenience.

Lemma 2: If A1 ∈ Aq1(W, c1) and A2 ∈ Aq2 (W, c2)
then the sum (A1 +A2) ∈ Amax(q1,q2) (W, c1 + c2)

Proof: First, we have ‖A1 + A2‖∞ ≤ ‖A1‖∞ +
‖A2‖∞ ≤ c1+c2 which follows from the triangle inequality.

For the second part we have (A1 +A2)1N = 0 + 0 = 0.
For the last part, WLOG, suppose that q1 ≤ q2 =

max(q1, q2). Since W is a positive matrix, we get

0 ≤

(
q1∑
k=0

W k

)
i,j

≤

(
q2∑
k=0

W k

)
i,j

.

In particular, the following implication follows(
q2∑
k=0

W k

)
i,j

= 0 =⇒

(
q1∑
k=0

W k

)
i,j

=⇒ [A1+A2]i,j = 0

To prove the result on the product of two matrices,
Lemma 3, we need the following three lemmas:

Lemma 8: Let A,B ∈ CN×N and define Âi,j = |A|i,j
and B̂i,j = |B|i,j . If (AB)i,j 6= 0 then (ÂB̂)i,j 6= 0.

Proof: Suppose the statement is false, i.e. (ÂB̂)i,j = 0
but (AB)i,j 6= 0. Then we know that

(ÂB̂)i,j =

N∑
k=1

|Ai,k||Bk,j | = 0,

but this implies that at least one of Ai,k and Bk,j is equal
to 0 for all k. But from this it follows that

(AB)i,j =

N∑
k=1

Ai,kBk,j =

N∑
k=1

0 = 0.

This is a contradiction and concludes the proof.
Lemma 9: Let A,A1, B,B1 ∈ RN×N+ . If (AB)i,j 6= 0

then ((A+A1)(B +B1))i,j 6= 0.
Proof: Expand the product to get

((A+A1)(B +B1))i,j = (AB)i,j + (AB1)i,j

+ (A1B)i,j + (A1B1)i,j ≥ (AB)i,j

which followed from the fact that the product of 2 nonneg-
ative matrices is also nonnegative.

Lemma 10: Let A,A1, B,B1 ∈ RN×N+ be such that
Ai,j = 0 if and only if A1i,j = 0, and Bi,j = 0 if and only if
B1i,j = 0. Then, (AB)i,j = 0 if and only if (A1B1)i,j = 0.

Proof: The statement is clearly symmetrical and it is
enough to prove sufficiency. Now, if (AB)i,j = 0 then we
know that∑

k

Ai,kBk,j = 0, =⇒ Ai,kBk,j = 0, ∀k

But this implies that either Ai,k = 0 or Bk,j = 0. In turn,
this implies that either (A1)i,k = 0 or (B1)k,j = 0. And this
leads to

(A1B1)i,j =
∑
k

(A1)i,k(B1)k,j = 0

Now we can prove Lemma 3:
Lemma 3: Let A1 ∈ Aq1(W, c1) and A2 ∈ Aq2(W, c2)

then the product (A1A2) ∈ Aq1+q2(W, c1c2)
Proof: First, the gain can be bounded as ‖A1A2‖∞ ≤

‖A1‖∞‖A2‖∞ ≤ c1c2 which followed from submultiplicity
of the induced norm and from the definition of the sets.

For the second part we have A1A21N = A10 = 0.
For the last part we have to do slightly more. First replace

each element in A1 and A2 with its absolute value and denote
these B1 and B2. Now introduce two non-negative matrices



C1 and C2 such that B1 + C1 = 0 ⇐⇒
∑q1
k=0W

k and
B2 + C2 = 0 ⇐⇒

∑q2
k=0W

k. Finally note that

(

q1∑
k

W k)(

q2∑
j

W j) =

q1+q2∑
k

wkW
k

for some wk > 0. By applying Lemma 10 two times we get
that[

q1+q2∑
k

W k

]
i,j

= 0 =⇒ [(B1 + C1)(B2 + C2)]i,j = 0

Through Lemma 9 we get

[(B1 + C1)(B2 + C2)]i,j = 0 =⇒ [B1B2]i,j = 0

And finally applying Lemma 8 results in

[B1B2]i,j = 0 =⇒ [A1A2]i,j = 0
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