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Abstract— Connected and automated vehicles (CAVs) tech-
nologies promise to attenuate undesired traffic disturbances.
However, in mixed traffic where human-driven vehicles (HDVs)
also exist, the nonlinear human-driving behavior has brought
critical challenges for effective CAV control. This paper em-
ploys the policy iteration method to learn the optimal robust
controller for nonlinear mixed traffic systems. Precisely, we
consider the H∞ control framework and formulate it as a
zero-sum game, the equivalent condition for whose solution is
converted into a Hamilton–Jacobi inequality with a Hamilto-
nian constraint. Then, a policy iteration algorithm is designed to
generate stabilizing controllers with desired attenuation perfor-
mance. Based on the updated robust controller, the attenuation
level is further optimized in sum of squares program by
leveraging the gap of the Hamiltonian constraint. Simulation
studies verify that the obtained controller enables the CAVs to
dampen traffic perturbations and smooth traffic flow.

I. INTRODUCTION

Undesired traffic disturbances may easily lead to the
occurrence of traffic waves, where the involved vehicles
periodically accelerate and decelerate, resulting in decreased
travel efficiency, fuel economy and driving safety [1]. The
emergence of connected and automated vehicles (CAVs)
promises efficient attenuation of traffic disturbances [2]. Re-
cent research has either theoretically or empirically revealed
that in mixed traffic, where human-driven vehicles (HDVs)
also exist, CAVs could mitigate traffic waves and stabilize
traffic flow even in a low penetration rate [3]–[5].

Regarding the specific control methods of CAVs, ex-
isting model-based research mostly relies on a linearized
dynamics model for the mixed traffic system. Common
modeling frameworks include Lagrangian control [6], [7],
connected cruise control (CCC) [8], and leading cruise
control (LCC) [9]. To obtain such a model, these research
usually needs to linearize a car-following model of HDVs,
e.g., optimal velocity model (OVM) [10], around certain
traffic equilibrium state. In practice, however, the perfor-
mance of these methods may easily be compromised due to
the nonlinear human-driving behaviors and the time-varying
traffic equilibrium states. To address these issues, some
model-free learning policies have been recently proposed
via reinforcement learning (RL) [11], [12] or data-driven
predictive control [13], [14], but the dependence on large-
scale traffic data has limited its practical deployment.
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To our best knowledge, very few studies have addressed
the disturbance attenuation problem in nonlinear mixed traf-
fic systems, with a very recent exception in [15], where
Lyapunov methods are employed for stability analysis. Be-
sides, existing methods have not considered optimizing the
disturbance attenuation performance of CAVs in mixed traffic
flow. To optimize and control the nonlinear traffic system
via CAVs, approximate dynamic programming (ADP) pro-
vides a promising technique through solving the nonlinear
H∞ optimal control problem of the mixed traffic system.
Particularly, this work utilizes the tool of policy iteration
(PI) from ADP to learn a robust optimal controller for
mixed traffic systems with explicit consideration of nonlinear
human-driving behaviors.

PI is a class of effective numerical method for nonlinear
robust control [16], [17], and has been recently applied to
a wide range of diverse fields; see, e.g., robot manipula-
tor [18] and vehicle platooning [19]. Compared with RL, PI
enjoys complete theoretical foundations, including algorithm
convergence and closed-loop stability [20], which play a
critical role in connected vehicle control. Indeed, benefiting
from the advantages of this method, an adaptive optimal
controller has been recently designed in [21] with respect to
unknown and heterogeneous HDV behaviors in mixed traffic.
However, how to achieve an optimal disturbance attenuation
performance remains an open question. To address this issue,
this paper develops a model-based learning algorithm to
optimize the disturbance attenuation level and derive an H∞
optimal controller for the CAVs from the nonlinear mixed
traffic dynamics. Precisely, the main contributions of this
paper are as follows:

• An affine nonlinear model is established for the mixed
traffic system based on the LCC framework. Compared
with existing work where linearized dynamics around
equilibrium states are under consideration [7]–[9], we
directly focus on the nonlinear dynamics to design
model-based learning control policies for the CAVs.

• The H∞ control problem of the nonlinear mixed traffic
system is formulated as a zero-sum game, whose con-
trol policy can be obtained by solving the converted
Hamilton-Jacobi (HJ) inequality. The obtained state-
feedback controller is proved to achieve the given
attenuation level for the mixed traffic system.

• The HJ inequality reserves the optimization space for
attenuation level. Accordingly, we further develop a
model-based learning algorithm, which optimizes the
attenuation performance in outer-loop iterations through
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sum of squares programs, and generates stabilizing
controllers with attenuation performance guarantees at
every inner-loop iteration in a PI paradigm.

The rest of this paper is organized as follows. Section II
establishes the nonlinear mixed traffic model. The model-
based learning algorithm and its theoretical analysis are
presented in Section III. Section IV shows the simulation
results, and Section V concludes this work.

II. NONLINEAR MODELING OF MIXED TRAFFIC

Consider the mixed traffic system shown in Fig. 1, where
there is one head vehicle (indexed as 0), m CAVs and n−m
HDVs following behind (indexed from 1 to n). Without loss
of generality, we assume that the first vehicle behind the
head vehicle is CAV. Denote S = {l1, l2, . . . , lm} as the
set of all the CAV indexes, where 1 = l1 < l2 < · · · <
lm ≤ n. Such a multi-vehicle system in mixed traffic is
named as a special form of LCC [9], which incorporates both
upstream and downstream traffic information, and allows the
CAV to attenuate the disturbances from the head vehicle,
whilst actively leading the motion of the HDVs behind.

Denote pi(t) and vi(t) as the position and velocity of
vehicle i, respectively. Then, si(t) = pi−1(t) − pi(t) and
ṡi(t) = vi−1(t) − vi(t) represent the spacing (relative
distance) and relative velocity of vehicle i with respect
to its predecessor. Motivated by recent research on mixed
traffic [4], [6], [8], we consider the OVM model for the
HDVs, a typical nonlinear car-following model, to represent
its longitudinal driving behavior, which is given by [10]

v̇i(t) = αi

(
vd(si(t))− vi(t)

)
+ βiṡi(t), i /∈ S, (1)

where αi, βi denote the sensitivity coefficients for vehicle i,
and the spacing-dependent desired velocity vd(si(t)) is

vd(si(t)) =


0, si(t) ≤ sst,

v̄d (si(t)) , sst < si(t) < sgo,

vmax, si(t) ≥ sgo,

(2)

with v̄d given by

v̄d (si(t)) =
vmax

2

(
1− cos

(
si(t)− sst
sgo − sst

π

))
.

Define the deviation state of each vehicle from the equi-
librium state as s̃i(t) = si(t) − s∗, ṽi(t) = vi(t) − v∗,
where s∗, v∗ denote the equilibrium spacing and velocity,
respectively. For simplicity, a homogeneous setup for s∗ is
under consideration, but all the results can be generalized
to the heterogeneous case. Denote xi(t) = [s̃i(t), ṽi(t)]

⊤ as
the states of vehicle i. Then, the nonlinear dynamics model
for each HDV around the equilibrium state is obtained as
follows

˙̃si(t) = ṽi−1(t)− ṽi(t),

˙̃vi(t) = hi (s̃i(t), ṽi(t), ṽi−1(t)) ,
(3)

where

hi(·) = αi

(
vd(s̃i(t) + s∗)− (ṽi(t) + v∗)

)
+ βi (ṽi−1(t)− ṽi(t)) .

(4)

Fig. 1. Schematic of the mixed traffic system in the LCC framework.
There are multiple CAVs (colored in blue) and HDVs (colored in gray, with
a nonlinear car-following model) following behind the head vehicle. The
first vehicle behind the head vehicle is CAV.

For the CAV, its acceleration signal ˙̃vli(t) is regarded as
the control input ui(t), i ∈ Nm

1 , where Nm
1 denotes all the

natural numbers within [1,m]. Then, the longitudinal control
model of the CAVs is given by [9]

˙̃vli(t) = ui(t), i ∈ Nm
1 . (5)

Lumping the dynamics of the CAV and the HDVs, a
nonlinear model for the LCC system can be established as
follows

ẋ(t) = f(x(t)) + g(x(t))u(t) + k(x(t))w(t), (6)

where the lumped state and control input are defined as

x(t) =
[
x⊤
1 (t), x

⊤
2 (t), · · · , x⊤

n (t)
]⊤ ∈ R2n,

u(t) =
[
u⊤
1 (t), u

⊤
2 (t), · · · , u⊤

m(t)
]⊤ ∈ Rm,

respectively, and the disturbance w(t) = ṽ0(t) ∈ R repre-
sents the velocity deviation of the head vehicle. The functions
f : R2n → R2n, g : R2n → R2n×m and k : R2n → R2n are
known vector-valued functions. In the system model (6), the
dynamics of the rear n − 1 vehicles satisfy (3). In the case
of n = 3, m = 1, for example, the specific expression of the
dynamic model (6) is as follows

f(x(t)) =


−ṽ1(t)

0
ṽ1(t)− ṽ2(t)

h (s̃2(t), ṽ2(t), ṽ1(t))
ṽ2(t)− ṽ3(t)

h (s̃3(t), ṽ3(t), ṽ2(t))

 ,

g(x(t)) = [0, 1, 0, 0, 0, 0]
⊤
, k(x(t)) = [1, 0, 0, 0, 0, 0]

⊤
.

To describe the performance of the mixed traffic system,
we define z(t) ∈ R2n+m as the output

z(t) ≜

[√
Qx(t)√
Ru(t)

]
, (7)

and the square of its norm is given by

∥z(t)∥2 = z⊤(t)z(t) = x⊤(t)Qx(t) + u⊤(t)Ru(t), (8)

where
√
Q = diag(θs, θv, . . . , θs, θv) ∈ R2n×2n and

√
R =

diag(θu, . . . , θu) ∈ Rm×m are positive definite matrices,
with θs, θv , θu denoting the weight coefficients for penalizing
spacing deviations, velocity deviations and control inputs.
Note that the system (6)-(7) is zero-state observable.

Remark 1: Existing research mostly considers the lin-
earized dynamics of the mixed traffic system to design the



control policies for the CAVs. In this paper, we directly focus
on the affine model (6), and aim at developing model-based
learning method with theoretical guarantees and ability to
process nonlinear mixed traffic systems. Note that although
the OVM model (1) is utilized for describing the HDVs’
dynamics and the resulting expression of g(x) is a constant
function, our control method is applicable to any mixed
traffic system in the general nonlinear affine form of (6).

III. H∞ OPTIMAL CONTROL BY POLICY ITERATION

This section first formulates the H∞ control problem of
the mixed traffic system as a zero-sum game. Based on
the PI framework, a model-based learning algorithm is then
developed to solve the equivalent HJ inequality.

A. Problem Formulation
To characterize the disturbance attenuation performance of

the closed-loop system, we first give the following definition.
For the convenience of writing, the time t will be omitted in
the subsequent content.

Definition 1 (Disturbance Attenuation): For all distur-
bance w ∈ L2[0,∞), the closed-loop system (6)-(7) with
the initial state x(0) = 0 is said to have an L2-gain ≤ γ, if∫ ∞

0

∥z∥2 dt ≤ γ2

∫ ∞

0

∥w∥2 dt.

In other words, the system satisfies the disturbance attenua-
tion performance with attenuation level γ > 0.

The attenuation level γ captures the influence of the ex-
ternal disturbance w on the performance output z. Precisely,
a smaller value of γ indicates a better capability of CAVs
in dissipating traffic waves. Then, given the nonlinear mixed
traffic system (6), define the value function of the initial state
x = x(0) as

V (x) ≜
∫ ∞

0

(l (x(τ), u(τ), w(τ)))dτ, (9)

where the cost function is defined as

l (x, u, w) ≜ x⊤Qx+ u⊤Ru− γ2w⊤w. (10)

From the point of view of game theory, disturbance aims at
deteriorating control performance, while control policy opti-
mizes the worst-case performance in H∞ control [22]. Given
a suitable attenuation level γ > 0, the H∞ control problem
can be formulated as the following zero-sum game [23]

V ∗(x) = min
u(·)

max
w(·)

∫ ∞

0

(l (x(τ), u(τ), w(τ)))dτ, (11)

where V ∗(x) is the Nash value, control u(·) and disturbance
w(·) are two sides of the game. Moreover, the controller at
the Nash equilibrium should stabilize the system at w ≡ 0,
and allow the closed-loop system to have an L2-gain ≤ γ for
all w ∈ L2[0, ∞). Further, the H∞ optimal control problem
explores the lowest attenuation level γ∗ > 0 and resolves
the corresponding zero-sum game (11). The existence of
the lowest attenuation level of nonlinear affine systems is
guaranteed by [22]. The following assumption declares the
existence of the desired controller in mixed traffic flow.

Assumption 1: Given an attenuation level γ ≥ γ∗, there
exits a robust controller u = π(x) with π(0) = 0 such that
the system (6)-(7) is stabilized at w ≡ 0 and that the closed-
loop system has an L2-gain ≤ γ for all w ∈ L2[0, ∞).

On the premise of zero-state observability, the solution to
the following Hamilton–Jacobi–Isaacs (HJI) equation solves
the zero-sum game [23]

x⊤Qx+ (∇V ∗(x))⊤f(x)

− 1

4
(∇V ∗(x))⊤g(x)R−1g⊤(x)∇V ∗(x)

+
1

4γ2
(∇V ∗(x))⊤k(x)k⊤(x)∇V ∗(x) = 0,

(12)

which is a nonlinear partial differential equation about the
optimal value function V ∗(x) with the boundary condition
V ∗(0) = 0. If the HJI equation has a smooth positive semi-
definite solution V ∗(x), then the controller is derived as

u∗(x) = −1

2
R−1g⊤(x)∇V ∗(x).

Traditional PI algorithms usually focus on providing
numerical methods for solving the HJI equation (12) to
generate robust controllers. Through the following lemma,
or as shown in Theorem 1, we can also derive a robust
controller from the associated HJ inequality (13). Compared
with solving HJI equation directly, the gap of HJ inequality
allows for further optimizing the attenuation level.

Lemma 1 ([24, Theorem 16 & Corollary 17]): Consider
the nonlinear system (6)-(7) with an attenuation level
γ. Suppose that there is a smooth positive semi-definite
solution V (x) to the HJI equation (12) or the HJ inequality

x⊤Qx+ (∇V (x))⊤f(x)

− 1

4
(∇V (x))⊤g(x)R−1g⊤(x)∇V (x)

+
1

4γ2
(∇V (x))⊤k(x)k⊤(x)∇V (x) ≤ 0,

(13)

with the boundary condition V (0) = 0, then the closed-loop
system with the state feedback controller

u(x) = −1

2
R−1g⊤(x)∇V (x),

is asymptotically stable at w ≡ 0, and has an L2-gain ≤ γ
for all disturbance w ∈ L2[0,∞).

Besides, the existence of the solution to the HJ inequality
is guaranteed by the following lemma.

Lemma 2 ( [24, Theorem 18]): Consider the nonlinear
system (6)-(7) and an attenuation level γ. If there is a
controller u = π(x) satisfying Assumption 1, there exists
a smooth positive semi-definite solution Va(x) to the HJ
inequality (13).

Similar to the HJI equation (12), the HJ inequality (13)
contains two nonlinear terms about the differential of value
function, which are related to control input function g(x) and
disturbance input function k(x), respectively. This makes it
non-trivial to get the problem solutions.



B. Inequality Conversion

We proceed to provide a concrete procedure to solve
the HJ inequality (13). To begin with, the inequality is
transformed to eliminate the nonlinear differential term about
disturbance input function k(x) while retaining the charac-
teristics of the control policy.

In order to facilitate the solution through conversion, add
the following square term

−γ2

∥∥∥∥w − 1

2γ2
k⊤(x)∇V (x)

∥∥∥∥2 ≤ 0,

to both sides of the HJ inequality (13) and get the following
converted inequality for all disturbance signal w

x⊤Qx+ (∇V (x))⊤f(x)

− 1

4
(∇V (x))⊤g(x)R−1g⊤(x)∇V (x)

+ (∇V (x))⊤k(x)w − γ2w⊤w ≤ 0.

(14)

This transformed inequality (14) is exactly the problem
that we aim to solve in this work. It can be proved that the
controller derived from the feasible solution of the converted
inequality (14) reserves the stability and disturbance attenu-
ation performance. With Lemma 2 in place, it follows that
the inequality (14) admits a feasible solution Va(x).

Theorem 1 (Stability and Robustness): Suppose that the
converted inequality (14) admits a feasible solution V (x).
Then, the closed-loop system with the controller

u(x) = −1

2
R−1g⊤(x)∇V (x),

is asymptotically stable at w ≡ 0, and has an L2-gain ≤ γ
for all w ∈ L2[0,∞).

Proof: Substituting the expression of u(x) into the
transformed inequality (14) yields

(∇V (x))⊤
(
f(x) + g(x)u(x) + k(x)w

)
≤− x⊤Qx− u⊤(x)Ru(x) + γ2w⊤w.

(15)

When w ≡ 0, one has

(∇V (x))⊤
(
f(x)+g(x)u(x)

)
≤ −x⊤Qx−u⊤(x)Ru(x) ≤ 0.

Therefore, the asymptotic stability is obtained by Lyapunov’s
direct method, where V (x) is a Lyapunov function candidate.
For all w ∈ L2[0,∞), by integrating the derived inequal-
ity (15), it can be directly obtained by [24, Theorem 16]
that the closed-loop system has an L2-gain ≤ γ.

C. Model-based Learning Algorithm

With stability and robustness results shown in Theorem 1,
we are ready to design a model-based learning algorithm to
solve the converted inequality (14). Precisely, given a desired
attenuation level γ, the inner-loop iteration of the algorithm
employs the policy iteration method to derive stabilizing con-
trollers. When the iterative process converges, the converted
inequality (14) can be restored by substituting the improved
control policy (18) into the Hamiltonian constraint (17b).
In outer-loop iteration, the attenuation level is optimized by
using the gap of the Hamiltonian constraint. The pseudocode

Algorithm 1: Model-based Learning Algorithm

Input: initial control policy u(0)(x).
1 for i = 1, 2, · · · do
2 Attenuation Level Optimization:

γ(i) = argmin
γ>0

γ (16a)

s.t. L
(
V (x), u(i−1)(x), γ

)
≥ 0 (16b)

V (x) ≥ 0. (16c)

3 Let V (i)
0 (x)← V (x) and u

(i)
0 (x)← u(i−1)(x).

4 for k = 1, 2, · · · do
5 Policy Evaluation:

V
(i)
k (x) = argmin

V

∫
Ω

V (x)dx (17a)

s.t. L
(
V (x), u

(i)
k−1(x), γ

(i)
)
≥ 0 (17b)

V
(i)
k−1(x)− V (x) ≥ 0 (17c)

V (x) ≥ 0. (17d)

6 Policy Improvement:

u
(i)
k (x) = −1

2
R−1g⊤(x)∇V (i)

k (x). (18)

7 end
8 Let u(i)(x)← u

(i)
∞ (x).

9 end

of the developed method is shown in Algorithm 1. In the
following, we present further elaborations and theoretical
guarantees on the developed algorithm.

(Inner-loop) Policy Iteration: For an attenuation level
γ(i) ≥ γ∗, a stabilizing controller is designed in the inner-
loop iteration to allow the closed-loop system to have an L2-
gain smaller than γ(i). Enlightened by the existing PI frame-
work [20], the step of policy improvement (18) allows the
nonlinear differential term about control input function g(x)
to be simplified to a linear term (17b) in the step of policy
evaluation (17a). Consider the negative Hamiltonian as

L (V (x), u(x), γ) ≜ −(∇V (x))⊤
(
f(x)+g(x)u(x)+k(x)w

)
− x⊤Qx− u⊤(x)Ru(x) + γ2w⊤w.

(19)
Given an improved controller u(i)

k−1(x) at the beginning of
the k-th iteration, the value function V

(i)
k (x) is updated by

imposing a constraint on Hamiltonian (17b) in policy evalua-
tion, which only contains the linear term of the differential of
value function. The following lemma illustrates the existence
of the initial feasible solution of the PI framework.

Lemma 3 (Feasibility of Hamiltonian Constraint): There
exists a controller ua(x) such that the Hamiltonian constraint
L
(
V (x), ua(x), γ

(i)
)
≥ 0 has a non-empty feasible set

about the value function V (x).
Proof: According to Lemma 2, the value function Va(x)



satisfies the HJ inequality (13). Construct the controller as
ua(x) = − 1

2R
−1g⊤(x)∇Va(x). It is straightforward that

L
(
Va(x), ua(x), γ

(i)
)
≥ 0. So, Va(x) is a feasible solution

to the Hamiltonian constraint L
(
V (x), ua(x), γ

(i)
)
≥ 0.

Therefore, the value function and control policy can be
initialized as V (i)

0 (x) = Va(x) and u
(i)
0 (x) = ua(x) such that

the first iteration of policy evaluation has a feasible solution.
Besides, it can be proved recursively that the subsequent
iterations of policy evaluation (17) have a feasible solution.

Theorem 2 (Recursive Feasibility): Consider the PI
paradigm with the policy evaluation (17) and the policy
improvement (18). If policy evaluation is feasible at the k-th
iteration, it will also be feasible at the (k + 1)-th iteration.

Proof: Assume that for u
(i)
k−1(x), the Hamiltonian

constraint (17b) in policy evaluation has a feasible solution
V

(i)
k (x), i.e., L

(
V

(i)
k (x), u

(i)
k−1(x), γ

(i)
)
≥ 0. After updat-

ing the control policy u
(i)
k (x) at the policy improvement

step (18), we have

L
(
V

(i)
k (x), u

(i)
k (x), γ(i)

)
= L

(
V

(i)
k (x), u

(i)
k−1(x), γ

(i)
)

+
(
u
(i)
k (x)− u

(i)
k−1(x)

)⊤
R
(
u
(i)
k (x)− u

(i)
k−1(x)

)
≥ 0.

(20)
Therefore, V (i)

k+1(x) = V
(i)
k (x) is at least a feasible solution

of the policy evaluation at the (k + 1)-th iteration.
Corollary 1 (Recursive Stability and Robustness): If the

initial control policy makes the Hamiltonian constraint (17b)
feasible, the closed-loop system with the control policy (18)
at every iteration step is asymptotically stable and has an
L2-gain ≤ γ(i).

Note that, at every inner-loop iteration, substituting the
improved control policy (18) into the Hamiltonian con-
straint (17b) yields the converted inequality (14). Thus,
Corollary 1 can be directly obtained from Theorem 1. The
aforementioned analysis establishes the stability and distur-
bance attenuation performance of the controller during the
implementation of the PI process in the inner loop of Algo-
rithm 1. Because the controller generated by each iteration
of the inner loop has desired performance, the setting of
termination condition has become an open problem.

In order to apply convergence guidance to the value
function, the two inequalities (17c) and (17d) are imposed
during the policy evaluation step to ensure that the value
function is monotonically non-increasing and semi-positive
definite, respectively. To formulate an optimization problem
in policy evaluation, the integral of value function in inter-
ested state space Ω ⊆ R2n is selected as the optimization
objective (17a), where Ω is a compact set [17].

(Outer-loop) Attenuation Level Optimization: After pol-
icy improvement step, the gap hidden in the Hamiltonian
constraint (20) implies that it is possible to find a smaller
attenuation level γ(i) ≤ γ(i−1) to ensure that

L
(
V

(i−1)
k (x), u

(i−1)
k (x), γ(i)

)
≥ 0.

Therefore, the obtained controller u(i−1)
k (x) has the potential

to achieve a smaller L2-gain for the closed-loop system. A
smaller attenuation level can be found by solving the sum
of squares program (16), which has a non-empty feasible set
that contains at least γ(i−1). By wrapping the optimization
of attenuation level in the outer loop of the PI framework, a
numerical method for approximating the solution to the H∞
optimal control problem is obtained.

Remark 2: In the implementation of the algorithm, the
value function is parameterized as

V (x) =

m∑
i=1

ciφi(x), (21)

where {φi(x)}mi=1 is a set of basis functions, such as polyno-
mials, and {ci}mi=1 are the parameters to be optimized. The
attenuation level optimization (16) and the policy evaluation
step (17) are constructed as sum of squares programs [17],
which can be conveniently solved via SOSTOOLS.

IV. TRAFFIC SIMULATIONS

In this section, we present the nonlinear traffic simulations
and analyze the performance of the developed model-based
learning control policy. The nonlinear OVM model with a
typical parameter setup [8] is employed for the HDVs.

For the parameter setup in the controller, the weight
coefficients are set as θs = 0.03, θv = 0.15, θu = 1. To
conveniently solve sum of squares programs via SOSTOOLS
toolbox, the piecewise function (2) is approximated by a
quintic polynomial. In Algorithm 1, a quartic polynomial
consisting of 144 terms is employed to approximate the value
function by (21). The set Ω is in the range of |si| ≤ 4
and |vi| ≤ 5. The initial controller is chosen as u(0) =
0.5s1 − 1.0v1.

In the simulations, a sinusoidal disturbance signal w(t) =
5sin(20t/π) m/s is imposed on the head vehicle. We first
consider a small-scale mixed traffic system with three follow-
ing vehicles, i.e., n = 3. As shown in Fig. 2(a), when all the
vehicles are HDVs, the velocity oscillations persist during its
propagation. For comparison, the velocity perturbations are
apparently mitigated by the proposed controller even after
one single iteration (see Fig. 2(b)). This result validates the
effectiveness of the inner-loop PI paradigm in Algorithm 1:
the proposed controller can stabilize the mixed traffic system
at each iteration step with attenuation performance guaran-
tees. Further, with more iterations conducted, the attenua-
tion level can be gradually and continuously improved (see
Fig. 2(c) for the performance after 20 iterations and Fig. 2(d)
for the attenuation level during the simulations after different
iterations). These results validate the performance of the
outer-loop attenuation level optimization in Algorithm 1.

In addition, we also consider a moderate-scale mixed
traffic system with n = 15, m = 5 to demonstrate the
control performance (see Fig. 3). In this case, a quadratic
polynomial function consisting of 900 terms is employed
to approximate the value function, and after 50 outer-loop
iterations, a centralized controller for the 5 CAVs is obtained.
It can be clearly observed in Fig. 3 that our method enables



(a) all HDVs (b) Controller after 1 iteration

(c) Controller after 20 iterations (d) Attenuation comparison

Fig. 2. Small-scale simulation results with n = 3, m = 1. The black,
gray and blue profiles represent the velocity of the head vehicle, the HDVs
and the CAV, respectively. (a) Simulation results when all the vehicles are
HDVs. (b)(c) Simulation results under the learned control policies after 1 or
20 iterations, respectively. (d) The attenuation level γ during the simulations
under the controller after different iteration numbers.

Fig. 3. Moderate-scale simulation results with n = 15,m = 5. The
meaning of different profiles is consistent with that in Fig. 2.

the CAVs to cooperatively dampen traffic perturbations and
smooth traffic flow.

V. CONCLUSION

This work investigates the optimal robust control problem
of nonlinear mixed traffic systems. In order to reduce the
influence of external disturbances from the head vehicle
on the entire traffic flow, a zero-sum game is first formu-
lated to optimize the worst-case performance. The converted
Hamilton-Jacobi inequality is employed to derive robust con-
trollers and reserve space for the optimization of disturbance
attenuation performance. A model-based learning algorithm
is then presented, combining inner-loop policy iterations and
outer-loop attenuation level optimization. Simulation studies
verify the effectiveness of the obtained control policy for the
CAVs to mitigate traffic waves. Considering possible traffic
model mismatches, one future direction is to design similar
policy iteration algorithms to address the corresponding
robust performance problem. Another interesting topic is
to extend the presented method to a model-free learning
version, which does not require any priori knowledge of
nonlinear mixed traffic dynamics.
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