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Abstract— The identification of distribution network topology
and parameters is a critical problem that lays the foundation
for improving network efficiency, enhancing reliability, and
increasing its capacity to host distributed energy resources.
Network identification problems often involve estimating a
large number of parameters based on highly correlated mea-
surements, resulting in an ill-conditioned and computationally
demanding estimation process. We address these challenges by
proposing two admittance matrix estimation methods. In the
first method, we use the eigendecomposition of the admittance
matrix to generalize the notion of stationarity to electrical
signals and demonstrate how the stationarity property can be
used to facilitate a maximum a posteriori estimation procedure.
We relax the stationarity assumption in the second proposed
method by employing Linear Minimum Mean Square Error
(LMMSE) estimation. Since LMMSE estimation is often ill-
conditioned, we introduce an approximate well-conditioned
solution. Our quantitative results demonstrate the improvement
in computational efficiency compared to the state-of-the-art
methods while preserving the estimation accuracy.

I. INTRODUCTION

Electric distribution networks are a vital component of
the energy infrastructure, serving as the final layer in power
delivery to residential and commercial users. The increasing
integration of renewable energy sources and the imple-
mentation of decarbonization policies require modernization
of the present control and monitoring practices in power
distribution systems. The admittance matrix is at the heart of
numerous power system analysis techniques, including (opti-
mal) power flow, state estimation, and short circuit analysis
[1]. It bears the structure of graph Laplacian matrices [2],
thus unambiguously explaining the network topology and
related line parameters. However, distribution utilities often
lack accurate topology and parameter information, hindering
the construction of the admittance matrix and the use of the
available analysis tools [3].

The recent installation of a significant number of micro
Phasor Measurement Units (µPMUs) [4] and smart meters
[5] in distribution grids provides network operators with
high-precision and high-sampling-rate measurements. These
data streams enhance the observability of distribution grids
and enable network identification. In general, network iden-
tification problems involve determining network connectivity
(i.e., topology) [3, 6–8], line parameters [9], or both [10–17],
using bus voltage, current injection, or branch flow measure-
ments. In this work, we address the problem of estimating the
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admittance matrix using µPMU measurements of bus voltage
and current injection phasors. Although prior research has
examined various network identification problems, we only
provide a focused overview of the literature on estimating the
admittance matrix in the following paragraph. Please refer to
[3] for a more detailed review.

In [10], matrix least squares estimation is applied on
phasor measurements to approximate the admittance matrix.
A constrained least squares approach is developed in [11] to
enforce the Laplacian matrix structure in the least squares
estimate. Instead of batch processing, a recursive least
squares method is developed in [12] to enable frequent online
updates. In [13], a sparsity promoting ℓ1-norm regularizer
is introduced to enhance the least squares estimation when
the admittance matrix is known to be sparse. An alternative
approach to promote sparsity is proposed in [14], where lines
with small conductance values are progressively removed
after performing the least squares estimation. The works
above assume noise-free measurements of the independent
variables, which leads to biased estimates when using real-
istic data with errors in all measurements (variables). This
limitation of the least squares approaches can be successfully
tackled by error-in-variables methods, such as total least
squares [15]. A weighted total least squares method is
introduced in [16] and then extended in [17] to a Bayesian
framework that allows exploiting different forms of prior
knowledge of the admittance matrix, thus creating a flexible
framework that can achieve high estimation accuracy.

Despite previous methods laying a solid foundation
for admittance matrix estimation, challenges involving ill-
conditioning and high computational and memory require-
ments in the estimation process remain unaddressed. Poor
conditioning is common to least squares approaches [10, 11,
13] and arises even in the estimation of small-size networks
due to high correlations in voltage or current measurements.
Significant computational burden and memory requirements
arise when solving the weighted total least squares [16, 17]
since a substantial number of measurements are required for
accuracy, and a large number of parameters contained within
the admittance matrix need to be estimated.

In this paper, we address the aforementioned challenges
by proposing two admittance matrix estimation methods that
are computationally efficient and numerically stable. The
first method is motivated by the recent developments in the
graph signal processing community [18] on the identification
of graph filters [19, 20]. Expanding on these works, we
use the eigendecomposition of the admittance matrix to
generalize the notion of stationarity to electrical signals in
power networks with a constant reactance-resistance ratio.
Subsequently, we demonstrate how a Maximum a Posteri-
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ori (MAP) estimation method (resembling [16, 17]) can be
simplified when the current injections are stationary.

In the second proposed method, we relax the adopted
assumptions and consider a Linear Minimum Mean Square
Error (LMMSE) estimation method which is applicable to
general power networks and generic current statistics. The
solution to LMMSE is known as the Wiener filter, which
may suffer from poor conditioning and might not respect the
Laplacian structure of the admittance matrix. To address the
ill-conditioning issue, we introduce an approximate solution
based on eigenvalue truncation. Furthermore, we demonstrate
that the Laplacian structure can be enforced via a postfiltering
procedure without significant additional computational effort.
Previous works which examined the voltage and current
injection statistics in a similar way focused on topology
identification rather than admittance matrix estimation [6, 7].

Notation. We denote the sets of real and complex numbers
by R and C. Given a matrix A, A⊤ denotes its transpose, A∗

denotes the entrywise conjugate, and AH = (A∗)⊤ denotes
the conjugate transpose. For column vectors x ∈ Cn and
y ∈ Cm, we use (x, y) := [x⊤, y⊤]⊤ ∈ Cn+m to denote
a stacked vector. For a random vector X , we use E[X] to
denote its mean and ΣX to denote its covariance matrix.
Finally, In denotes the n×n identity matrix, 1n and 0n are
n-dimensional vectors of all ones and zeros, respectively.

II. ADMITTANCE MATRIX MODEL OF POWER GRIDS

Consider a static (steady-state), single-phase equivalent
distribution network composed of n nodes N = {1, . . . , n}
and m undirected branches E ⊆ N×N . The network is mod-
eled as a connected and undirected graph G := (N , E ,W),
with complex-valued edge weights W := {yij ∈ C : yij =
gij + jbij , gij > 0, bij ≤ 0,∀{i, j} ∈ E} representing the
series admittances in the standard lumped π-model of a
transmission line. For the purpose of defining the incidence
matrix of G, let us assign to each edge a unique identifier
e = {1, . . . ,m} and an arbitrary orientation. Admittances
connected to the ground are defined by yi0 := gi0 + jbi0,
with gi0 ≥ 0, bi0 ≥ 0,∀i ∈ N , and referred to as shunt
admittances. Each node i ∈ N in the network is associated
with a nodal current injection Īi ∈ C and a nodal voltage
V̄i ∈ C. Kirchhoff’s and Ohm’s laws lead to the following
model of the considered electric network [2]:

Ī = B diag({ye}me=1)B
⊤V̄ +diag({yi0}ni=1)V̄ = Y V̄ , (1)

where V̄ := (V̄1, . . . , V̄n) and Ī := (Ī1, . . . , Īn) collect the
bus voltages and the current injections, respectively, and B ∈
{−1, 0, 1}n×m is the node-edge incidence matrix of G.

Definition 1. The admittance matrix Y is a complex sym-
metric matrix, with diagonal elements given by Yii =∑n

j=1,j ̸=i yij + yi0,∀i ∈ N , and off-diagonal elements
defined by Yij = −yij ,∀{i, j} ∈ E and Yij = 0 otherwise.

Under the adopted assumptions on the real and imaginary
parts of the series and shunt admittances, the necessary and
sufficient condition for the invertibility of Y is the existence
of at least one shunt admittance. The assumptions made are

reasonable for distribution networks, and we refer the reader
to [21, 22] for a broader discussion on the invertibility of Y .

Therefore, singular admittance matrices under the adopted
assumptions have zero row sums, i.e., Y 1n = 0n iff Y is
singular. The linear map defined by the singular admittance
matrix Y : Cn → Cn has the nullspace of dimension one
consisting of vectors in span(1n) = {α1n, α ∈ C}. Hence,
the Moore-Penrose pseudoinverse of Y , denoted by Y †, can
be used to form a subspace of solutions to (1), given by

V̄ = Y †Ī + α1n, (2)

where α ∈ C. The preceding relationship holds if and only
if the current injections are balanced, that is, 1⊤

n Ī = 0. The
same relationship can be used for invertible Y in which case
Ī ∈ Cn is unrestricted and α = 0. Equation (2) represents
the so-called impedance matrix model of the network.

It is evident from Definition 1 that Y is not necessarily a
normal matrix since it is non-Hermitian complex symmetric.
Hence, it is not always unitarily diagonalizable. Nevertheless,
if the conductance-susceptance ratio1 is identical for all lines
across the network, then Y is normal [21]. This assumption
is typically valid for lines at the same voltage level.

Theorem 1 (Pseudoinverse of Y ). Suppose the conductance-
susceptance ratio gij

bij
is the same for all (i, j) ∈ E . Then

1) Y is a normal matrix and has a spectral decomposition
Y = WΛWH, where Λ is the diagonal matrix with the
eigenvalues of Y on its diagonal, and the columns of
W are the corresponding eigenvectors.

2) The Moore-Penrose pseudoinverse of Y is Y † =
WΛ†WH, where Λ† is the diagonal matrix obtained
from Λ by replacing nonzero eigenvalues of Y by their
reciprocals.

III. NETWORK IDENTIFICATION PROBLEM

A. Problem Formulation
We take a statistical perspective and consider zero-mean

random vectors I := Ī − E[Ī] and V := V̄ − E[V̄ ], defined
such that their means satisfy E[I] = Y E[V ]. Let us further
define the voltage covariance matrix ΣV = E[V V H], the
current injection covariance matrix ΣI = E[IIH], and their
cross-covariance ΣIV = E[IV H]. The considered network
identification problem is formally stated in the following.

Problem 1. Given a set S := {(Ṽ 1, Ĩ1), . . . , (Ṽ N , ĨN )}
of N pairs of noisy, zero-centered bus voltage and current
injection measurements pertaining to different steady-state
operating points, the objective is to infer the underlying dis-
tribution network – its edges and the associated admittance
values – or equivalently, the admittance matrix Y (Def. 1).

The N measurements of voltage and current phasors are
further collected in matrices Ṽ =

[
Ṽ 1 Ṽ 2 . . . Ṽ N

]
and

Ĩ =
[
Ĩ1 Ĩ2 . . . ĨN

]
that will be used to characterize

solutions to Problem 1. We are putting forth the following
two assumptions to limit the scope of our analysis.

1The conductance-susceptance ratio is more commonly referred to as the
reactance-resistance ratio or the “x/r ratio” in the power systems literature.
These terms are used interchangeably in this work.



Assumption 1. The measurement matrices are assumed to
be full rank, i.e., rank(Ṽ) = n and rank(̃I) = n.

Assumption 2. The nodes j where the current is neither
injected nor extracted (Ij = 0) have been removed a priori
by applying the Kron [23] or subKron [10] reduction.

The first assumption implies that N ≥ n. Additionally, ex-
periment design [24] might be required to guarantee that the
measurement matrices are full rank. The second assumption
implies that all the nodes i at which Ii ̸= 0 are collected in N
and are assumed to be observed. Note that Kron reduction of
the network may lead to a non-sparse admittance matrix, and
the Kron-reduced graph G may not be a tree graph, which
are common assumptions in distribution network studies [8].

B. Measurement Model

The available µPMU or smart meter measurements are
corrupted by measurement noise. We adopt a generic linear
statistical model to represent the individual bus voltage Ṽ ∈
Cn and current injection Ĩ ∈ Cn observations as follows:

Ṽ = V + εv, Ĩ = I + εi, (3)

where εv and εi are complex random vectors describing the
measurement noise. We assume that the noise vectors fol-
low uncorrelated complex multivariate Gaussian distributions
with zero mean: εv ∼ NC(0n, σ

2
vIn), εi ∼ NC(0n, σ

2
i In).

The covariances σv and σi might be time-varying, but there is
no temporal or spatial correlation in the measurement noise.
Note that other noise models may be applicable [16, 25].

IV. NETWORK IDENTIFICATION UNDER STATIONARY
CURRENT INJECTIONS

This section extends the standard notions of wide-sense
stationarity in discrete time to define stationarity with respect
to Y for networks that satisfy the following assumption.

Assumption 3. The conductance-susceptance ratio gij
bij

is the
same for all lines (i, j) ∈ E across the network.

It is first demonstrated that the eigenvectors of Y can be
identified from the voltage covariance matrix when the cur-
rent injections satisfy the stationarity property. Subsequently,
we employ a MAP procedure to estimate the corresponding
eigenvalues, hence identifying Y according to Theorem 1.

A. Recovering the Eigenvectors of Y

Definition 2. Given an admittance matrix Y with a spectral
decomposition Y = WΛWH, a zero-mean random variable
X is said to be Wide-Sense Stationary (WSS) with respect
to Y if its covariance matrix ΣX also has a spectral
decomposition with the unitary W, i.e., ΣX = WΛXWH

where ΛX is a diagonal matrix of eigenvalues of ΣX .

A practically relevant example of a variable that is WSS
with respect to Y is white noise W , characterized by
E[W ] = 0 and E[WWH] = σ2In. Current injections in
distribution grids are predominantly determined by loads
that can reliably be modeled as white noise over short time
intervals (on the order of seconds). Hence, the assumption

of white noise current injection statistics has been common
in the distribution network identification literature [26]. The
following proposition establishes a connection between the
voltage statistics and the admittance matrix when the network
is subjected to stationary current injections.

Proposition 1. Let I be WSS with respect to Y and I = Y V .
Then V is also WSS with respect to Y .

Proof. Since V is already defined to be zero-mean, we only
need to show that the covariance matrix ΣV of V is unitarily
diagonalized by W, which is derived by considering that

ΣV = E[V V H] = E[Y †I(Y †I)H] = Y †ΣI(Y
†)H

= WΛ†WHWΛIWH(WΛ†WH)H

= W(|Λ†|2ΛI)W
H,

where ΣI = WΛIWH is the covariance of I . Hence, ΣV is
unitarily diagonalized by W, which concludes the proof.

Remarkably, the eigenvectors of the voltage covariance
matrix ΣV are the eigenvectors of the admittance matrix
Y given WSS current injections. In general, we cannot
verify if I is WSS since the admittance matrix is unknown.
However, in a practically relevant case when I is white noise,
stationarity holds trivially, and the eigendecomposition of
ΣV can be performed to identify the eigenvectors of Y . On
the other hand, the eigenvalues cannot be recovered similarly
since only their magnitude can be computed from the above
decomposition, i.e., from ΛV = |Λ†|2ΛI , but not the phase.

B. Maximum a Posteriori Estimation

Upon recovering the eigenvectors of Y , maximum a poste-
riori estimation can be leveraged to determine the eigenvalues
in diag (Λ). The MAP estimate gives the most likely choice
of the latent variables (V, I, Y ) given the observations (Ṽ , Ĩ).
To this end, the posterior distribution can be formulated using
Bayes’ rule and the conditional independence axioms:

p(V, I, Y |Ṽ , Ĩ) ∝ p(Ṽ |V, Y )p(Ĩ|I, Y )
p(V, I)

p(Ṽ , Ĩ)
p(Y )

s.t. I = Y V , (4)

where the admittance matrix is assumed to be independent
of the electric variables and their measurements. According
to the measurement model in (3), the distributions p(Ṽ |V, Y )
and p(Ĩ|I, Y ) are Gaussian and can be expressed using
the change of variables formula. For simplicity, priors on
voltages and currents are considered noninformative, thus
represented as uniform distributions over their respective
domains. Under this assumption, the quotient of priors
p(V, I)/p(Ṽ , Ĩ) can be neglected. Finally, a prior commonly
imposed on Y assumes a unit variance Gaussian distribution
on all entries of Y . Such prior can be represented by a
matrix Gaussian distribution p(Y ) = exp (− trace (Y Y H))
and leads to ridge regularization. An elaborate discussion on
other practically relevant prior distributions p(Y ) is given
in [17]. The negative log minimization of the posterior



distribution given in (4) is constructed, resulting in

min
I,V,Y

∥Ṽ − V ∥22 + ∥Ĩ − I∥22 + β∥Y ∥2F (5)

s.t. I = Y V ,

where β > 0 is a constant regularization parameter propor-
tional to the measurement noise variance. The problem at
hand is nonconvex and is characterized by a large number of
decision variables. Furthermore, previous works [17] apply
vectorization of the admittance matrix as a part of the
solution approach, which further increases the scale of the
problem. We next demonstrate how the formulation can be
simplified by leveraging the obtained spectral template W.

Changing the coordinates to the orthonormal basis consist-
ing of the columns of W, the bus voltage and current injection
vectors are defined as ν := WHV and φ := WHI . Then, (i)
the network model (1) reduces to φ = Λν and the model (2)
to ν = Λ†φ; (ii) given that the Frobenius norm is unitarily
invariant, the regularization term can be reformulated as
∥Y ∥F = ∥WHY W∥F = ∥λ∥2, where λ = diag(Λ); (iii) the
complex power loss2 in the network is given by

Sloss = trace
(
V IH

)
= trace

(
W
(
ννH

)
ΛHWH

)
= trace

((
ννH

)
ΛH

)
= trace

(
Λ† (φφH

))
,

that is, Sloss =
∑n

i=1 λ
∗
i |νi|2 =

∑n
i=1 λ

†
i |φi|2.

The optimization in (5) is equivalent to the following
problem in voltages ν, currents φ, and eigenvalues λ of Y :

min
φ,ν,λ

∥Ṽ − Wν∥22 + ∥Ĩ − Wφ∥22 + β∥λ∥22 (6a)

s.t. φ = Λν, (6b)

with a convex objective function and bilinear constraints Λν
enforcing the network model. The classical algorithm for
solving this problem is the alternate block coordinate descent
[27], which alternates between setting (φ, ν) constant and
solving for λ, and vice versa, until convergence. Therefore,
the two optimization problems that need to be iteratively
solved are given by

λ̂ = argmin ∥φ− diag (ν)λ∥22 + β∥λ∥22, (7)

ν̂ = argmin ∥Ṽ − Wν∥22 + ∥Ĩ − WΛν∥22, (8)

where (8) is a quadratic program and (7) is a regularized
least-squares problem, both solvable in closed-form as

λ̂ =
(
βIn + diag (|ν|)

)−1
diag (φνH), (9)

ν̂ =
(
In + Λ2

)−1
(WHṼ + ΛWHĨ). (10)

The matrices subject to inversion are guaranteed to be
invertible since both λ2 and |ν| are nonnegative and β > 0.

2An interesting physical interpretation can be given to the voltage and
current representations based on this property. By taking the complex mag-
nitude of the loss, we obtain |Sloss| =

∑n
i=1 |λ∗

i ||νi|2. The components in
ν weighted by higher magnitude eigenvalues contribute more to the power
loss magnitude. Thus, the magnitudes of entries in ν inform the complex
power loss-efficiency of a steady-state operating point.

V. WIENER FILTER-BASED NETWORK IDENTIFICATION

In this section, we consider a more general approach when
the assumptions of current injection stationarity (Def. 2)
and constant x/r ratio (Assumption 3) used in the previous
section may not hold. To this end, let us define Z := (I, V ),
with the corresponding joint covariance matrix given by

ΣZ =

[
ΣI ΣIV

ΣIV
H ΣV

]
. (11)

In linear minimum mean square error estimation, the aim
is to estimate I from V using a filter Y such that the
estimate Y V minimizes the mean square error E[∥V Y −I∥22].
Assuming that ΣV is full rank, the Wiener-Hopf equation
admits a simple closed-form solution, namely

YW := ΣIV ΣV
−1, (12)

called the Wiener filter. The corresponding minimum mean
square error matrix is the Shur complement of ΣV in the joint
covariance matrix, that is ΣI − ΣIV Σ

−1
V ΣH

IV . The quality
of the Wiener filter estimate might be degraded by the effect
of additive noise in the current injection and bus voltage
measurements (3). Furthermore, large condition numbers
of ΣV are commonly encountered and might hinder the
numerical computation of ΣV

−1. These issues are addressed
in the next subsection.

A. A Well-Conditioned Wiener Filter Approximation

A square matrix is ill-conditioned if it is invertible but
becomes singular for a small perturbation of some of its
entries. More formally, given a normal matrix A ∈ Cn×n the
condition number κ(A) = |λmax(A)|/|λmin(A)| is the ratio
of its largest eigenvalue λmax(A) to its smallest eigenvalue
λmin(A) by moduli. If κ(A) is high, A is said to be ill-
conditioned. We begin our analysis by illustrating the physi-
cal nature of the conditioning issue in network identification.

Example 1. Let us consider a simple 3-bus example in Fig. 1.
Without loss of generality, we set V1 to 1 p.u. The covariance
matrix ΣV is obtained by averaging the outer products of
the form below over a large number of samples:

V V H = 131⊤
3 +

 0 ∆v∗12 ∆v∗13
∆v12 ∆v∗12 +∆v12 ∆v∗13 +∆v12
∆v13 ∆v∗12 +∆v13 ∆v∗13 +∆v13

 ,

V1

V2

∆i2

V3

∆i3

V2 = V1 + z12∆i2

V3 = V1 + z13∆i3

|z12| ≪ 1, |∆i2| < 1

|z23| ≪ 1, |∆i3| < 1

z12

z13

Fig. 1. A 3-bus example demonstrating the physical origin of poor
conditioning of the covariance matrix ΣV .



where ∆v1j = z1j∆i1j ,∀j ∈ {2, 3}. The cross-product
terms of voltage drops are neglected. The matrix is close
to singularity in two cases: (i) if ∆v12 ≈ ∆v13 or (ii) if the
voltage drops ∆v12, ∆v13 ≪ 1 are close to the machine
precision. The first condition occurs for similarly loaded
lines, and the second in light loading conditions.

Following [28], we say that a matrix is L-well-conditioned
if it can be computed without any inverse larger than
L × L. A well-conditioned Wiener filter solution can be
established by truncating the smallest eigenvalues of the
joint covariance matrix. Furthermore, it is well known that
discarding the smallest eigenvalues and the corresponding
eigenvectors leads to denoising. The eigendecomposition of
the joint covariance matrix can be performed to obtain

ΣZ =

[
XI

XV

]
SZ

[
XI

XV

]H
, (13)

with XZ := (XI , XV ) and eigenvalues ordered from largest
to smallest. Now let us partition the eigenvector matrices into
an n× L and an n×M matrix such that

XI =
[
XI,L XI,M

]
, XV =

[
XV,L XV,M

]
,

with L + M = 2n and L ≤ n. Similarly, SZ =
blkdiag(SZ,L, SZ,M ) is partitioned into two square diagonal
matrices of sizes L×L and M×M . Furthermore, we define
the Karhunen-Loève transform of Z by KZ := XZ

HZ,
from where Z = XZKZ . In terms of subvectors we have
I = XIKZ and V = XV KZ . Now let KZ,L be the top
L submatrix of KZ so that I ≈ XI,LKZ,L and V ≈
XV,LKZ,L. A least squares approximation of the transform
is given by KZ,L ≈ (XH

V,LXV,L)
−1XH

V,LV . Using this
estimate, we can obtain a simple approximate filter:

YWCWF = XI,L(X
H
V,LXV,L)

−1XH
V,L, (14)

which is well-conditioned, i.e., the matrix inverses are L×L.

Lemma 1. Let ρL := trace (SZ)− trace (SZ,L) define the
truncation power loss. The derived YWCWF filter converges
to the Wiener filter YW as ρL → 0.

The proof of the lemma above is available in [28].
The preceding lemma demonstrates that the obtained filter
corresponds to the Wiener filter in the limit, despite being
well-conditioned while the Wiener filter may not be.

B. Embedding the Laplacian Structure via Postfiltering

As discussed in Sec. II, the admittance matrix is symmet-
ric, and additionally, if the shunt admittances are neglected
or nonexistent, Y has zero row-sums. These properties are
not guaranteed to hold for the Wiener filter estimate (12)
or its well-conditioned counterpart (14). In this section, we
derive a simple postfiltering procedure that can be used to
enforce the Laplacian matrix structure.

Since Y has a known structure, some entries are redundant
in the sense that they can be deduced from this structure.
Firstly, the admittance matrix is symmetric, thus requiring
solely nd := 1

2n(n + 1) elements to be stored in a vector
vech (Y ) such that vec (Y ) = D vech (Y ), where D ∈

{0, 1}n2×nd is a full rank matrix called the duplication ma-
trix and vec (Y ) is the column vector stacking the columns
of Y . Furthermore, the diagonal elements are redundant as
they can be expressed as a negative sum of the off-diagonal
elements in each row. That is, vech (Y ) = R vechrs (Y ),
where R ∈ {−1, 0, 1}nd×nr , with nr := 1

2n(n − 1), is also
full rank and vechrs (Y ) collects the off-diagonal elements.

Problem 2. Let us assume that Ȳ is an admittance matrix
estimate obtained via (6) or (14). We consider a problem of
determining Ŷ that is symmetric, has zero row-sums, and is
closest to Ȳ in the Frobenius norm sense, i.e.,

Ŷ =argmin
Y ∈Cn×n

∥Ȳ − Y ∥2F (15)

s.t. Y = Y ⊤, Yii = −
∑
j ̸=i

Yij ,∀i.

Interestingly, a closed-form solution based on pseudoin-
verses of D and R can be obtained.

Proposition 2. The offdiagonal entries of Ŷ , the solution to
(15), are given by vechrs (Ŷ ) = R†D† vec (Ȳ ).

Proof. By applying the vec (·) operator on the objective
function we obtain ∥Ȳ −Y ∥2F = ∥ vec (Ȳ )−vec (Y )∥22. The
constraints can be included by considering that vec (Y ) =
DR vechrs (Y ). Upon substituting the previous equality in
the objective function, the least squares solution is given
by vechrs (Ŷ ) = (DR)† vec (Ȳ ) = R†D† vec (Ȳ ). The last
equality holds as R and D are full rank.

Therefore, applying R†D† as a postfilter to an obtained
Y estimate enforces the Laplacian structure. We note that
the pseudoinverses can be constructed efficiently as their
structure is generic [29], and depends only on the number of
buses in the network. To further motivate and justify use of
the postfilter, let us consider the following problem.

Problem 3. Using the available measurements Ĩ and Ṽ
a constrained least squares network identification problem
respecting the Laplacian structure of Y is formulated as

Ŷ =argmin
Y ∈Cn×n

∥̃I − Y Ṽ∥2F (16)

s.t. Y = Y ⊤, Yii = −
∑
j ̸=i

Yij ,∀i.

Solution to the constrained least squares problem is given
in the proposition below. The proof is omitted as it resembles
the proof of Proposition 2, with the additional identity
vec (Y Ṽ) = (Ṽ⊤ ⊗ In) vec (Y ) required.

Proposition 3. The off-diagonal entries of the solution to
(16) are given by

vechrs (Ŷ ) = R†D† (Ṽ⊤ ⊗ In)† vec (̃I) (17)

= R†D† vec (ŶLS), (18)

where ŶLS := (Ṽ⊤ ⊗ In)† vec (̃I) denotes the unconstrained
least squares solution.

The result above shows that the optimal solution to the
constrained least squares problem (16) can be obtained by
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Fig. 2. Single line diagram of the IEEE 33-bus test system.

applying postfiltering (15) to the unconstrained least squares
solution. The equivalence between the unconstrained least
squares solution and the Wiener filter solution (12) when
the same measurements Ĩ and Ṽ are used to compute the
sample covariances motivates the use of the postfiltering for
ensuring the Laplacian structure in our proposed solution
(14). Note that the least squares problem in (16) was previ-
ously considered in [11]. However, the connection between
the unconstrained and constrained least squares problems via
the postfilter in (15) was not recognized.

VI. RESULTS

The proposed identification methods are evaluated on the
IEEE 33-bus network presented in Fig. 2. We assume that
a µPMU device is placed on each node in the network,
measuring both voltage and current phasors. The procedure
to generate the estimation data follows [17], where synthetic
load profiles are created using the GENETX generator, and
the power flow procedure is run using the PandaPower
library. To realistically represent µPMU measurements, the
voltage and current phasors are corrupted with 0.01% stan-
dard deviation Gaussian noise. Measurements collected at
50Hz frequency are averaged over a minute and 7 days of
thus constructed data (10080 tuples of voltage and current
phasors) are used in the considered estimation procedures.

A. Estimation Performance under Varying Noise Levels

In this section, we compare the estimation accuracy of
the proposed methods: (i) identification procedure in (6),
labeled by MAPλ henceforth, and (ii) the well-conditioned
Wiener filter (14), denoted as WCWF hereafter, to the state-
of-the-art approaches from the literature under varying noise
levels. More precisely, we use Ordinary Least Squares (OLS)
[11], Lasso [13], and MAP with ℓ2 regularization [17] for
benchmarking. The metric used to evaluate the accuracy
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Fig. 3. Comparison of the relative error of existing and proposed methods
for various noise levels.

TABLE I
ACCURACY AND COMPUTATION TIME OF THE CONSIDERED ESTIMATION

METHODS ON THREE DISTRIBUTION GRID TEST CASES.

Network
Lasso MAPℓ2 WCWF

εF[%] τ [s] εF[%] τ [s] εF[%] τ [s]

CIGRE10 51.8 0.5 10.8 33 1.9 0.002

IEEE33 59.5 14.3 2.9 780.5 2.1 0.06

IEEE123 60.1 125.3 6.36 3527 4.2 0.71

of an estimation procedure is the relative Frobenius norm
εF = ∥Ŷ − Y ∥F/∥Y ∥F, where Y is the true admittance
matrix and Ŷ denotes the estimate. The results in Fig. 3
show significant estimation bias when performing (6) due to
the violation of stationarity and constant x/r ratio assump-
tions. Furthermore, the non-errors in variables models, OLS
and Lasso, demonstrate high sensitivity to the measurement
noise. Finally, the ℓ2 regularized MAP from [17] and the
proposed well-conditioned Wiener filter (14) demonstrate
satisfactory performance over a large range of noise levels.

B. Computational Efficiency and Conditioning Analysis

To analyze the computational efficiency, we perform pa-
rameter estimation on three benchmark distribution grids: the
10-bus CIGRE MV feeder, the previously considered IEEE
33-bus system, and the three-phase part of the IEEE 123-
bus system consisting of 56 buses. Table I summarizes the
estimation results in the form of accuracy εF and computa-
tion time τ . Only Lasso, MAP with ℓ2 regularization, and
the well-conditioned Wiener filter are considered for brevity.
The nominal Gaussian noise of 0.01% is used. The table
shows that WCWF outperforms the other methods in terms
of accuracy and computation time across all tested scenarios.

Table II presents the condition numbers of three matrices,
namely ΣV , ΣI , and XH

V,LXV,L, which are subjected to
inversion in different identification methods. Specifically, ΣV

is inverted in both the OLS approach and the Wiener filter
method in (12), ΣI is commonly inverted in the impedance
matrix estimation process [10], and XH

V,LXV,L with L = n
is inverted in the proposed well-conditioned Wiener filter ap-
proach (14). The results indicate that the proposed approach
offers significant improvement in conditioning compared to
the other methods across all three test cases.

C. MAP Estimation under Stationary Current Injections

The MAP estimation of λ has thus far demonstrated
unsatisfactory performance – see Fig. 3. However, in the
previous simulation setting, neither the stationarity nor the

TABLE II
THE CONDITION NUMBER OF MATRICES SUBJECTED TO INVERSION IN

THE LEAST SQUARES AND WIENER FILTER METHODS.

Network κ(ΣV ) κ(ΣI) κ(XH
V,LXV,L)

CIGRE10 2× 1012 3× 1010 1× 107

IEEE33 7× 1012 4× 1011 1× 107

IEEE123 1× 1013 3× 1012 7× 106
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Fig. 4. Dependency of the estimation error to the deviation of the current
injection covariance matrix to a matrix diagonalizable by W.

constant x/r ratio assumptions were valid. We now enforce
the two assumptions and analyze how the performance
degrades when deviations from these assumptions are im-
posed. To this end, a modified version of the IEEE 33-bus
system is created by setting bij = −rij ,∀(i, j) ∈ E , thus
achieving a constant conductance-susceptance ratio of one
throughout the network. We introduce operator ndiag(·) :
Cn×n → Cn×n, which converts the diagonal entries of a
matrix to zeros and keeps the off-diagonal elements. To
measure the deviation of a matrix A ∈ Cn×n from being
unitarily diagonalizable by W we define the relative distance
distW(A) = ∥ndiag(WHAW)∥F/∥WHAW∥F.

The results in Fig. 4 show the increase in estimation error
with the increase in distW(ΣI) which quantifies the violation
of the stationarity property. The estimator is demonstrated to
be unbiased when applied to a constant x/r ratio network.
However, a significant bias of approximately 10% error is
present when estimating the original IEEE 33-bus network.
A constant estimation error is shown for the original network
corresponding to ΣI = In since W is not well-defined for
non-normal admittance matrices.

VII. CONCLUSION

This paper shows how a maximum a posteriori admit-
tance matrix estimation can be simplified when the current
injections are stationary. Nevertheless, the approach only
performed well for estimating networks with a constant
conductance-susceptance ratio. We have subsequently de-
rived a more general and practical admittance matrix es-
timation approach based on linear minimum mean square
error estimation. Our results demonstrate that the proposed
approach is more accurate and computationally efficient than
the state-of-the-art when applied to standard test networks.
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