
ar
X

iv
:2

30
4.

02
32

4v
1 

 [
ee

ss
.S

Y
] 

 5
 A

pr
 2

02
3

Convex Optimization-based Policy Adaptation to

Compensate for Distributional Shifts

Navid Hashemi1, Justin Ruths2 and Jyotirmoy Deshmukh1

1 University of Southern California, Los Angeles CA, USA
2 University of Texas at Dallas, Dallas TX, USA

Abstract. Many real-world systems often involve physical components
or operating environments with highly nonlinear and uncertain dynam-
ics. A number of different control algorithms can be used to design op-
timal controllers for such systems, assuming a reasonably high-fidelity
model of the actual system. However, the assumptions made on the
stochastic dynamics of the model when designing the optimal controller
may no longer be valid when the system is deployed in the real-world.
The problem addressed by this paper is the following: Suppose we obtain
an optimal trajectory by solving a control problem in the training envi-
ronment, how do we ensure that the real-world system trajectory tracks
this optimal trajectory with minimal amount of error in a deployment
environment. In other words, we want to learn how we can adapt an
optimal trained policy to distribution shifts in the environment. Distri-
bution shifts are problematic in safety-critical systems, where a trained
policy may lead to unsafe outcomes during deployment. We show that
this problem can be cast as a nonlinear optimization problem that could
be solved using heuristic method such as particle swarm optimization
(PSO). However, if we instead consider a convex relaxation of this prob-
lem, we can learn policies that track the optimal trajectory with much
better error performance, and faster computation times. We demonstrate
the efficacy of our approach on tracking an optimal path using a Dubin’s
car model, and collision avoidance using both a linear and nonlinear
model for adaptive cruise control.

1 Introduction

Systems operating in highly uncertain environments are often modeled as stochas-
tic dynamical systems that satisfy Markov assumptions, i.e. Markov decision
processes (MDPs). Given a state st (i.e., the state at time t), a (discrete-time)
MDP defines a distribution on st+1 conditioned on st and the control action at
time t (denoted at). We call this distribution the transition dynamics. For such
systems, a number of model-based and data-driven control design methods have
been explored to learn an optimal policy (i.e. a function from the set of states
to the set of actions) that minimizes some control-theoretic cost function [14].
Model-based methods explicitly, and data-driven methods implicitly, assume a
specific distribution for the transition dynamics. However, when the system is
deployed in the real-world, this distribution may not be the same; this change
in distribution is called a distribution shift.

http://arxiv.org/abs/2304.02324v1


2 N. Hashemi et al.

The fundamental problem addressed by this paper is adapting a pre-learned
control policy to compensate for distribution shifts. While it is possible to re-
train the control policy on the new environment, it is typically expensive to learn
the optimal control policy. However, a crucial observation that we make is that
while learning an optimal policy is expensive, learning a reasonable high-fidelity
model of the transition dynamics may be feasible. We call such a learned model a
surrogate model. In this paper, we show that under certain kinds of distribution
shifts, the problem of adapting an existing optimal policy to the new deploy-
ment environment can be framed as a nonlinear optimization problem over the
optimal trained trajectory and the surrogate model. Furthermore, we show that
if the surrogate is a neural network (with rectified linear unit or ReLU based
activation), then there is a convex relaxation of the original optimization prob-
lem. This convex relaxation permits an efficient procedure to find a modified
action that minimizes the error between the optimal trained trajectory and the
system trajectory in the deployment environment. Finally, we empirically show
that if the trained trajectory meets desired objectives of safety, then such policy
adaptation can provide safety in the deployment setting.

The main technical idea in our work is inspired by recent work in [8], where
the authors proposed an efficient method to provide probabilistic bounds on the
output of a neural network, given a Gaussian distribution on its inputs. We show
how we can use this result to propagate the effects of a distribution shift. How-
ever, the result in [8] does not consider the problem of finding optimal actions
(which is a non-convex problem). In this research, we propose a methodology
to convexify this result for finding optimal actions. We demonstrate our tech-
nique on a tracking problem using a Dubin’s car model and a collision avoidance
problem that uses adaptive cruise control.

The rest of the paper is organized as follows. In Section 2 we discuss the
preliminaries, terminology and technical notation. In Section 3, we discuss our
policy adaptation approach, and provide experimental results in Section 4. We
conclude with related work in Section 5.

2 Preliminaries

Notation. A multi-variate Gaussian distribution is denoted as N (µ,Σ), where µ
and Σ represent the mean vector and covariance, respectively. For a Gaussian-
distributed random vector r ∈ R

n, we denote its mean value by µr and its
covariance by Σr. Let c ∈ R

n, then an ellipsoid centered at c with the shape
matrix Ω is denoted as E(c,Ω), i.e., E(c,Ω) =

{

x
∣

∣(x− c)⊤Ω−1(x− c) ≤ 1
}

.
Given a non-convex set, Y we use the notation H(Y) to denote the set of ellipsoids
that contain Y, i.e., {E(c,Ω) | Y ⊆ E(c,Ω)}.

Markov Decision Process, Optimal Policy. We now formalize the notion of the
type of stochastic dynamical systems that we address in this paper as a Markov
Decision process.

Definition 1 (Markov Decision Process (MDP)). A Markov decision pro-
cess is a tuple M = (S,A, T, ι), where S and A denote the set of states and



Convex Optimization-based Policy Adaptation 3

actions respectively, T (s′ | s, a) is the probability distribution on the next state
conditioned on the current state and action, and ι is a distribution on S that is
sampled to identify an initial state of the MDP3.

In our approach, we are interested in finite-horizon trajectories sampled from
the MDP’s transition dynamics. A policy π(a | s) of the MDP is a distribution
on the set of actions conditioned on the current state. Given a fixed policy of the
MDP, a T -length trajectory (denoted τ) or behavior of the MDP is a sequence of
states s0, . . . , sT such that s0 ∼ ι, and for all t ∈ [0, T−1], st+1 ∼ T (s′ | st, π(st)).
In control-design problems, we assume that there is a cost function J on the space
of trajectories that maps each trajectory to real value. An optimal policy π∗ is
defined as the one that minimizes the expected value of the cost function over
trajectories starting from a state s0 sampled according to the initial distribution
ι.

Distribution shifts. Obtaining an optimal control policy is often a computation-
ally expensive procedure for MDPs where the underlying transition dynamics
are highly nonlinear. Several design methods, both model-based methods such
as model-predictive control [10], stochastic optimal control [2], and model-free
methods such as data predictive control [12] and deep reinforcement learning
[17] have been proposed to solve the optimal control problem for such systems.
Regardless of whether the method is model-based or model-free, these methods
explicitly or implicitly assume a model or the distribution encoded by the tran-
sition dynamics of the environment. A key issue is that this distribution may
change once the system is deployed in the real-world. To differentiate between
the training environment and the deployment environment, we use Ttrn and Tdpl

to respectively denote the transition distributions.

Problem Definition. Suppose we have a system where we have trained an optimal
policy π∗ under the transition dynamics Ttrn, and for a given initial state s0
sampled from ι, we sample an optimal trajectory τopt for the system using the
policy π∗. We denote this as τ ∼ (ι, π∗). Let τ = (s0, s1, . . . , sT ). Let τ(t) be
short-hand to denote st. For a trajectory that starts from the same initial state
(but in the deployment environment), we want to find the adapted policy π̂
such that the error between τopt and the trajectory under Tdpl dynamics at time
instant t ∈ [1, T ] is small. Formally,

π̂ = argmin
π

E
at∼π(a|st),

st+1∼Tdpl(s
′|st,at)

‖τopt(t+ 1)− st+1‖ (1)

A key challenge in solving the optimization problem in (1) is that Tdpl is
not known. In this paper, we propose that we learn a surrogate model for the
deployment transition dynamics. Essentially, a surrogate model is a data-driven

3 Technically, this definition pertains to the transition structure of a stochastic dy-
namical system. Typically, dynamical systems are defined in terms of difference or
differential equations describing the temporal evolution of a state variable. We as-
sume that T (s′|s, a) is thus the infinite set of transitions consistent with any given
system dynamics.



4 N. Hashemi et al.

model that approximates the actual system dynamics reasonably accurately.
There are several choices for surrogate models including Gaussian Processes [1],
probabilistic ensembles [4], and deep neural networks (NN). In this paper, we
focus on NN surrogates as they allow us to consider convex relaxations of the
policy adaptation problem.

Surrogate-based policy adaptation. We now show that surrogate-based policy
adaptation can be phrased as a nonlinear optimization problem. First we spec-
ify the problem of finding good surrogates. Recall that Tdpl(st+1 | st, at) is
assumed to be a time-invariant Gaussian distribution with mean µ(s, a) and
covariance Σ(s, a). A surrogate model for the transition dynamics is a tuple
(µNN (s, a; θµ), ΣNN(s, a; θΣ)), where µNN and ΣNN are deep neural networks
with parameters θµ and θΣ respectively. We can train such NNs by minimizing
the following loss functions:

Lµ(θµ) = E
s∼S,s′∼Tdpl(s′|s,a)

‖µNN (s, a; θµ)− s′‖ (2)

LΣ(θΣ) = E
s∼S

‖ΣNN(s, a; θΣ)−Σs(s
′)‖ (3)

In the above equations, the expectation is computed by standard Monte Carlo
based sampling. In the second equation, Σs represents the sample covariance of
s′ w.r.t. the sample mean.

Assuming that we have learned surrogate models to a desired level of accu-
racy, the next step is to frame policy adaptation as a nonlinear optimization
problem. We state the problem w.r.t. a specific optimal trajectory τopt sam-
pled from the optimal policy (though the problem generalizes to any optimal
trajectory sampled from an arbitrary initial state). Note that τopt(0) = s0.

∀t ∈ [0, T−1] : at = argmin
a∈A

‖τopt(t+ 1)− µNN (st, at; θµ)‖ (4)

We observe that as the equation above consists of a neural network, it is highly
nonlinear optimization problem. In the next section, we will show how we can
convexify this problem.

3 Policy adaptation

Solution Overview. The quantity in Eq. (4) being minimized is at each time
t, the residual error between the optimal trajectory and the mean predicted
state by the deployment environment, conditioned on its state and action. Let
rt+1 = τopt(t+ 1)− µNN (st, at; θµ). Our main idea is:

1. At any given time t, assume that the state st lies in a confidence set described
by an ellipsoid E(µst , Ωst),

2. Assume that the action at lies in a confidence set also described by an ellip-
soid E(µat

, Ωat
),

3. Show that the residual error rt can be bounded by an ellipsoid, the center
and shape matrix of which depends on the action at.



Convex Optimization-based Policy Adaptation 5

4. Find the action at that minimizes the residual error by convex optimization.

We now explain each of these steps in sequence. First, we motivate why
need to consider confidence sets. Suppose the system starts in state s0, then the
state s1 is distributed according to the transition dynamics of the deployment
environment. In reality, we are only interested in the next states that are likely
with at least probability threshold p. For a multi-variate Gaussian distribution,
this corresponds to the sublevel set of the inverse CDF of this distribution, which
according to the following lemma can be described by an ellipsoid:

Lemma 1. A random vector r ∈ R
n, with Gaussian distribution r ∼ N (µ,Σ),

satisfies,

Pr

[

1

ρn
(r − µ)⊤Σ−1(r − µ) ≤ 1

]

= p, (5)

where, ρn = Γ−1(n2 ,
p
2 ) and Γ−1(., .) indicates the n dimensional lower incom-

plete Gamma function.

The above lemma allows us to define ellipsoidal confidence sets using trun-
cated Gaussian distributions. An ellipsoidal confidence region with center µ and
shape matrix ρnΣ (where ρn is as defined Lemma 1) defines a set with proba-
bility measure p.

Now, as the policy we are considering is stochastic (which we also model as a
Gaussian distribution), an action that can be taken is described by a conditional
Gaussian distribution. Let µat

be the mean of the distribution of the action at
time t, then all actions with probability greater than p can be described by a
ellipsoid confidence set E(µat

, Ωat
).

Because the distribution of transition dynamics may have shifted, applying
the same action π∗(st) may result in a residual error rt+1 that is unacceptable.
So, we want to find a new action, at which reduces the residual error. We assume
that at is in an ellipsoidal uncertainty set by picking actions that have probability
greater than a fixed threshold p. We note that the center or the shape matrix of
the ellipsoidal set for the action is not known, but is a decision variable for the
optimization problem.

We note that the relation between at and rt+1 is highly nonlinear. However,
we show, how we can convexify this problem.

Before we present the convexification of the optimization problem, we need
to introduce the notion of the reachable set of residual values. We call this the
residual reach set. Formally, given ellispoidal confidence region E(µst , Ωst) for
the state st, and the ellipsoidal confidence region E(µat

, Ωat
) for the action at,

the residual reach set Rt+1 is defined as follows:

Rt+1(µat
, Ωat

) ={µNN(st, at; θµ)− τopt(t+ 1) | st ∈ E(µst , Ωst),
at ∈ E(µat

, Ωat
)}

(6)

In the above equation, we note that the residual reach set is parameterized
by at and Ωat

, and we wish to find the values for at and Ωat
that minimize the

size of the residual reach set. However, the residual reach set is a non-convex
set. To make the optimization problem convex, we basically approximate the



6 N. Hashemi et al.

residual reach set by an ellipsoidal upper bound in the set H(Rt+1(µat
, Ωat

))
(the set of all ellipsoidal upper bounds).

We can now express the problem of finding the best adapted action distribu-
tion as the following optimization problem:

(µ̂at
, Ω̂at

, Ω̂Rt+1
) = argminµat

,Ωat
Logdet(ΩRt+1

)

s.t.Rt+1(µat
, Ωat

) ⊂ E(0, ΩRt+1
)

(7)

Consider we set the center of ellipsoidal bound of residual reach set to be
0. This is motivated by the goal that we need to minimize the size of residu-
als. Equation (7) selects the best action ât ∈ E(µ̂at

, Ω̂at
) s.t. the the ellipsoid

E(0, Ω̂Rt+1
) is the smallest ellipsoid that bounds the residual reach set.

The construction of an ellipsoidal bound over the reach-set of a neural net-
work given a single ellipsoidal confidence region is derived in [7]. The author
has upgraded this technique later for multiple ellipsoidal confidence regions in
Theorem 1 of [11]. We rephrase the key results from these papers in our context
in Lemma 2.

Lemma 2. Suppose st ∈ E(µst , Ωst), at ∈ E(µat
, Ωat

). Then, the residual reach-
set Rt+1(µat

, Ωat
) is upper-bounded by E(0, ΩRt+1

) (as defined in (7)) if the
constraint in (8) holds. In what follows, (bℓ,Wℓ) ∈ θµ represent the bias vector
and the weights of the last layer in µNN .

τ1Mst + τ2Mat
+Mφ −Mout ≤ 0, for some τ1, τ2 ≥ 0. (8)

Here, Mφ is a quadratic constraint proposed in [7], representing ReLU hidden
layers in the neural network and4,

Mst =
1

ρn
E⊤

1

[

−Σ−1
st

Σ−1
st

µst

µ⊤
st
Σ−1

st
−µ⊤

st
Σ−1

st
µst + ρn

]

E1,

Mat
= E⊤

2

[

−Ω−1
at

Ω−1
at

µat

µ⊤
at
Ω−1

at
−µ⊤

at
Ω−1

at
µat

+ 1

]

E2

E1 =

[

In 0n×m 0
n×(

∑ℓ+1

i=2
Ni) 0n×1

01×n+m 01×(
∑ℓ+1

i=2
Ni) 1

]

,

E2 =

[

0m×n Im 0
m×(

∑ℓ+1

i=2
Ni) 0m×1

01×n+m 01×(
∑ℓ+1

i=2
Ni) 1

]

Mout =

[

C b
0 1

]⊤ [
−Ω−1

Rt+1
0

0 1

] [

C b
0 1

]

,

and C =
[

0 0 · · · Wℓ

]

, b = bℓ − τopt(t+ 1),

4 The parameter Ni in transformation matrices E1, E2 is the number of ReLU activa-
tions in layer i of µNN .



Convex Optimization-based Policy Adaptation 7

In the above lemma, as the adapted action and the shape matrix represent-
ing its covariance is assumed to be known Mat

is a fixed matrix; however, in
the optimization problem that we wish to solve, in the corresponding matrix
Mat

, µat
and Ωat

will appear as variables, which causes the problem to become
nonlinear. We can address this by performing two transformations. The first
transformation, through a change of variables concentrates the nonlinearity in
a single scalar entry of Mat

. We set Uat
= τ2Ω

−1
at

, Vat
= τ2Ω

−1
at

µat
, and the

resulting Mat
is shown as below:

M∗
at

= E⊤
2

[

−Uat
Vat

V ⊤
at

−
(

τ2µ
⊤
at
Ω−1

at

)

(

Ωat

τ2

)

(

τ2Ω
−1
at

µat

)

+ τ2

]

E2

= E⊤
2

[

−Uat
Vat

V ⊤
at

−V ⊤
at
U−1
at

Vat
+ τ2

]

E2

(9)

The proposed matrix, M∗
at

, is nonlinear where the nonlinearity shows up in the

scalar variable V ⊤
a U−1

a Va.
We also note that the adapted actions should satisfy actuator bounds [ℓ,u],

we include this as a convex constraint below:

Uat
ℓ ≤ Vat

≤ Uat
u, (10)

and we defer the proof to the appendix B. Before stating the final theorem,
we make an observation about (7). Without additional constraints, the optimal

solution to (7) always returns Ω̂at
such that tr(Ω̂at

) = 0 (proof in the appendix
A). This causes numerical errors, as the inverse of this matrix is appeared in
Lemma 2 which is not defined. To avoid such a problem, we impose a tiny lower
bound on the trace of this matrix.

Finally, given that all the constraints for the optimization of E(µat
, Ωat

)
are provided, we can collect them in a convex optimization that results in the
modified action set. The following Theorem characterizes the correctness of the
modified action and its conservatism. We defer the proof to the appendix.

Theorem 1. Given the regulation factor δ > 0, and defining Ω = Ω−1
Rt+1

, as-

sume decision variables τ1, τ2 ≥ 0. Then the following convex optimization,






















min
Mφ,Vat

,Uat
,τ1,τ2

−Logdet(Ω)

s.t. − τ1Mst − E⊤
2

[

−Uat
Vat

V ⊤
at

τ2

]

E2 −Mφ +Mout ≥ 0,

Uat
ℓ ≤ Vat

≤ Uat
u, tr(Uat

)δ ≤ τ2.

(11)

results in values (Vat
, Uat

) such that the modified deterministic decision âct can
be approximated with âct = µ̂at

= U−1
at

Vat
.

Regarding the possible robustness issues with models (adversarial examples) we
need to make a comparison between π∗ and âct as a precautionary measure and
select for the best choice for the modified action ât, via,

ât = argmin
a∈{π∗, âc

t}

‖τopt(t+ 1)− µNN (st, a; θµ)‖2. (12)



8 N. Hashemi et al.

Algorithm 1: Compensation Process for Distributional shifts

Input: s1 and trained autonomous agent, π∗

Result: Small reachset for residual with its center closer to origin.
1 • Sample the optimal trajectory τopt.
2 foreach time step t do

3 •











if(t = 1) [â1 ← π
∗]

else(t ≥ 2)

{

1- Apply Theorem 1 and compute â
c
t

2- Select the best action between â
c
t and π

∗, with (12) and return ât.

4 • Employ the observation st and ât to characterize the confidence region
St+1 Using the deep surrogate (see Appendix D) for the deployment
environment.

5 • Record the observation st+1 generated by exertion of ât to the
environment

6 end

See Appendix D for more detail. We summarize the main steps of our proposed
method in algorithm 1.

3.1 Scalability

The conservatism of tight ellipsoidal bound approximation introduced in [7] in-
creases with the complexity of neural network’s structure and results in inaccu-
rate solution for Theorem 1. However, for a highly nonlinear deployment envi-
ronment, this is necessary to train a deep neural network for the surrogate. In
response to this problem, (similar to [16]), we utilize an embedder network, Mp,

which maps the state st to another space s′t ∈ R
n′

(s′t = Mp(st; θp)), such that
s′t is more tractable than st for training purposes. We next define the surrogate
model and it’s parameters θµ based on s′t as,

µst+1
= µNN (s′t, ât; θµ).

Given this setting for a highly nonlinear deployment environment, the neural
network µNN is not necessarily a deep neural network. Thus, given the pair
(st, at) as the input vector and st+1 as output, we arrange a training procedure
for the function,

µst+1
= µNN (Mp(st; θp), at; θµ)

to learn the parameters θµ, θp together and utilize θµ in the convex programming.
In another word, given the distribution of st and the parameters θp, we can
approximate the distribution for s′t with Gaussian mixture model techniques [20]
to introduce its confidence region to the convex optimization (through µNN ) for
policy modification.



Convex Optimization-based Policy Adaptation 9

4 Experimental Results

Comparison with PSO. We assume simple car environment and compare the per-
formance of our convex programming technique with Particle Swarm Optimiza-
tion, (PSO) [13]5, on solving the optimization (4). PSO has shown acceptable
performance in low dimensional environments. Thus, we plan to show our con-
vex programming technique can outperform PSO even if the scalability is not
an important issue. The environment represents the following simple car model:

ẋ = ucos(θ), ẏ = usin(θ), ˙sin(θ) =
u

ℓ
tan(φ)cos(θ),

˙cos(θ) = −
u

ℓ
tan(φ)sin(θ)

(13)

The system represents a car of length ℓ moving with constant velocity u and
driven with control action φ. The training environment is characterized by ℓ =
2.5 and, u = 4.9 while the deployment environment is slightly different with
ℓ = 2.1 and u = 5.1. We collect a training data set from deployment environment
with time step 0.01 second.

We train two surrogates for the deployment environment µNN , µ∗
NN from de-

ployment environment. The former is utilized in optimization (11) and is a ReLU
neural network with dimension [5, 8, 4]. This ReLU neural network is obtained
from the proposed procedure in section 3.1. The latter is utilized for compari-
son discussed in equation (12) and Appendix D, which is a deep tanh() neural
network of dimension [5, 200, 200, 200, 200, 200, 200, 200, 4]. The results of policy
modification are presented in Fig.1. This figure presents the optimal trajectory,
τopt, in green color. This trajectory is simulated with an optimal control and
hight-fidelity surrogate for the training environment computed from a model-
based algorithm. The blue curves are the results of algorithm 1 for (500 steps),
which closely tracks the optimal trajectory in all the three states x, y, θ. The red
curves represent the deployment environment’s trajectory when there is no policy
modification. The run time for convex programming is between[0.005, 0.027] on
a personal laptop with YALMIP and MOSEK solver. Thus, we restrict the run
time of PSO with 0.027 and employ it for policy modification. In one attempt,
we utilize PSO for optimization (4) on the same model with convex program-
ming, µNN where the resultant trajectory is demonstrated in black. In another
attempt we utilize PSO over the deep model µ∗

NN and the resultant trajectory
is demonstrated in magenta. The results clearly shows our convex programming
outperforms the PSO in both cases.

5 While it is well-known that nonlinear optimization techniques lack guarantees and
can suffer from local minima, techniques like particle swarm work well in practice,
especially in low-dimensional systems. Hence, we perform this comparison to show
that convexification outperforms state-of-the-art global optimization approaches to
residual minimization.



10 N. Hashemi et al.

0 100 200 300 400 500

-10

-5

0

5

0 100 200 300 400 500
-6

-4

-2

0

2

4

6

8

10

12

0 100 200 300 400 500

-1

-0.5

0

0.5

1

0 100 200 300 400 500

-1

-0.5

0

0.5

1

Fig. 1: Shows the comparison between PSO and our convex programming. The
green and blue curves are the results of algorithm 1 and optimal trajectory,
respectively . The red curves represent the deployment environment’s trajectory
when there is no policy modification. We utilize PSO for optimization (4) on the
same model with convex programming, µNN where the resultant trajectory is
demonstrated in black. We also utilize PSO over the deep model, µ∗

NN and the
resultant trajectory is demonstrated in magenta.

Linear Environment of a Car. The training environment is a stochastic linear
dynamics as follows:

xt+1 =





1 0.1 0.0047
0 1 0.0906
0 0 0.8187



xt +





0.003
0.0094
0.1813



ut + νt,

νt ∼ N
(

[

0 0 0.2
]⊤

, exp(−8)I3

)

The deployment environment is also a stochastic linear dynamics as follows:

xt+1 =





1 0.1 0.0046
0 1 0.0885
0 0 0.7788



xt +





0.004
0.0115
0.2212



ut + ηt,

ηt ∼ N (0, exp(−8)I3)

where the sampling time is ts = 0.1 s. The state xt ∈ R
3 is defined as xt =

[xt, vt, at]
⊤ that are position, velocity and acceleration of car respectively. The

scalar action ut is also bounded within ut ∈ [−3, 3]. Since the environment is
linear, it is not required to use the embedder network. Thus, we train only one
surrogate for the deployment environment µNN with a 2 hidden layer ReLU
neural network of dimension [4, 10, 5, 3]. We also have access to the model of
training environment and a trained optimal feedback policy. Therefore, we per-
form policy modification through algorithm 1 for deployment environment and
the results are presented in Fig.2. In this figure, the green curve presents the sim-
ulated optimal trajectory. Blue and red curves also represent the trajectory of
deployment environment in the presence and absence of policy modification, re-
spectively. This figure shows the algorithm 1 forces the deployment environment
to track the planner τopt and the policy modification process is successful.



Convex Optimization-based Policy Adaptation 11

0 100 200
-150

0

60

0 100 200
-15

-10

-5

0

5

10

15

20

25

0 100 200
-4

-2

0

2

4

0 100 200
-3

-2

-1

0

1

2

3

Fig. 2: Shows the results of policy modification on stochastic linear environment
of a car. In this figure, the green curve presents the simulated optimal trajectory.
Blue and red curves also represent the trajectory of deployment environment in
the presence and absence of policy modification, respectively.

0 1000 2000
-10

0

10

0 1000 2000
-10

0

100

Fig. 3: The green curves represent the optimal trajectory for vrel and drel, while
the red and blue curves present the trajectory of deployment environment with-
out policy adaptation and with adaptation, respectively.

Adaptive Cruise Control. Consider the Simulink environment for adaptive cruise
control in MATLAB documentation 6. We consider this trained feedback con-
troller and assume we have access to the model of training environment. We then
simulate the optimal trajectory τopt with model and controller. This controller
is trained over 14 hours, which clearly shows how learning a new controller can
be expensive and justifies the contribution of our technique. The input of the
trained controller is the vector x = [

∫

verr, verr, vego]
⊤. Thus, we take this vec-

tor as the state of the environment 7. This implies lead-car, ego-car and signal

6 https://www.mathworks.com/help/reinforcement-learning/ug/train-ddpg-agent-
for-adaptive-cruise-control.html

7 Here verr is a logic based function of xego, xlead, vego and vlead. See the MATLAB
documentation for more detail. Here, (vego, vlead) and (xego, xlead) are the velocity
and position for ego and lead car, respectively.



12 N. Hashemi et al.

processing block are all together the environment. Consider, this environment is
highly nonlinear due to the presence of logic based relations in the signal pro-
cessing block. The implemented value of Vset on the training environment is set
on 30 m/s while it is mistakenly set on 34.5 m/s in the deployment environment.
This difference characterizes the distributional shift.

Fig.3 shows the evolution of relative velocity and relative position, vrel, drel
between lead and ego cars. The green line shows the simulation for vrel, drel when
the optimal policy, π∗ is applied on the training environment. On the other hand,
blue and red lines show the evolution of vrel, drel in the presence and absence of
policy modification, respectively. Policy modification process aims to force the
states of deployment environment to track optimal trajectory τopt. Consider the
parameter drel < 0 on red line at time t = 183s. Thus, the distributional shift
leads to accident in the absence of policy modification. Fig.3 shows, our policy
modification technique secures the system against the possible accident.

5 Conclusion and Related Work

Related work. In [5], the authors separate the learned policy from the raw in-
puts and outputs to ease the transfer from simulation. In [3] a method to use a
learned deep inverse dynamics model to decide which real-world action is most
suitable to achieve the same state as the simulator is proposed. Mutual align-
ment transfer learning approaches employ auxiliary rewards for transfer learning
under discrepancies in system dynamics for simulation to robot transfer ([21]).
Approaches such as [6] compensate for the difference in dynamics by modifying
the reward function such that the modified reward function penalizes the agent
for visiting states and taking actions in the source domain which are not possible
in the target domain. In [19], the authors study robust adversarial reinforcement
learning. Inspired with the ‖H‖∞ control idea, they assume the destabilizing
adversaries like the gap between simulation and environment as uncertainties
and devise a learning algorithm which considers the worst case adversary and is
robust against it. Transfer learning has also been investigated in the multi-agent
setting [15], where the problem of training agents with continuous actions is stud-
ied to ensure that the trained agents can still generalize when their opponent’s
policies alter. [18] proposed to use Bayesian optimization (BO) to actively select
the distribution of the environment variable that maximizes the improvement
generated by each iteration of the policy gradient method. Unlike the authors of
[6] who propose a reward modification technique, in this work we propose a pol-
icy modification technique to tackle the problem when the environment model
in training is different from what is expected.

Conclusion & Broader Impact. In this work, we presented a linearization algo-
rithm for a non-linear system trained by deep neural networks equipped with
ReLU activation function and proposed a convex optimization based framework
to do the distributional shift compensation on an unknown model with unknown
distributional shift. The benefit is the convenience of computation and ability of
the controller to respond to the distributional shift instantaneously, with a small
cost of added conservatism due to the ellipsoidal bound based linearization.



Convex Optimization-based Policy Adaptation 13

Future work. Algorithm 1 is currently running the optimization step by step that
is a greedy method. We plan to derive a single optimization that covers all the
trajectory to improve the result.

References

1. Alpaydin, E.: Introduction to machine learning. MIT press (2020)
2. Bertsekas, D., Shreve, S.E.: Stochastic optimal control: the discrete-time case,

vol. 5. Athena Scientific (1996)
3. Christiano, P., Shah, Z., Mordatch, I., Schneider, J., Blackwell, T., Tobin, J.,

Abbeel, P., Zaremba, W.: Transfer from simulation to real world through learning
deep inverse dynamics model. arXiv preprint arXiv:1610.03518 (2016)

4. Chua, K., Calandra, R., McAllister, R., Levine, S.: Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. arXiv preprint
arXiv:1805.12114 (2018)

5. Clavera, I., Held, D., Abbeel, P.: Policy transfer via modularity and reward guiding.
In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). pp. 1537–1544. IEEE (2017)

6. Eysenbach, B., Asawa, S., Chaudhari, S., Salakhutdinov, R., Levine, S.: Off-
dynamics reinforcement learning: Training for transfer with domain classifiers.
arXiv preprint arXiv:2006.13916 (2020)

7. Fazlyab, M., Morari, M., Pappas, G.J.: Probabilistic verification and reachabil-
ity analysis of neural networks via semidefinite programming. arXiv preprint
arXiv:1910.04249 (2019)

8. Fazlyab, M., Morari, M., Pappas, G.J.: Safety verification and robustness analysis
of neural networks via quadratic constraints and semidefinite programming. CoRR
abs:1903.01287 (2019)

9. Fazlyab, M., Morari, M., Pappas, G.J.: Safety verification and robustness analysis
of neural networks via quadratic constraints and semidefinite programming. IEEE
Transactions on Automatic Control (2020)

10. Garcia, C.E., Prett, D.M., Morari, M.: Model predictive control: Theory and prac-
tice—a survey. Automatica 25(3), 335–348 (1989)

11. Hashemi, N., Fazlyab, M., Ruths, J.: Performance bounds for
neural network estimators: Applications in fault detection. In:
2021 American Control Conference (ACC). pp. 3260–3266 (2021).
https://doi.org/10.23919/ACC50511.2021.9482752

12. Jain, A., Smarra, F., Mangharam, R.: Data predictive control using regression
trees and ensemble learning. In: 2017 IEEE 56th annual conference on decision
and control (CDC). pp. 4446–4451. IEEE (2017)

13. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of
ICNN’95-international conference on neural networks. vol. 4, pp. 1942–1948. IEEE
(1995)

14. Khalil, I., Doyle, J., Glover, K.: Robust and optimal control. Prentice hall (1996)
15. Li, S., Wu, Y., Cui, X., Dong, H., Fang, F., Russell, S.: Robust multi-agent rein-

forcement learning via minimax deep deterministic policy gradient. In: Proceedings
of the AAAI Conference on Artificial Intelligence. vol. 33, pp. 4213–4220 (2019)

16. Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings
of nonlinear dynamics. Nature communications 9(1), 1–10 (2018)

17. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level
control through deep reinforcement learning. nature 518(7540), 529–533 (2015)

https://doi.org/10.23919/ACC50511.2021.9482752
https://doi.org/10.23919/ACC50511.2021.9482752


14 N. Hashemi et al.

18. Paul, S., Osborne, M.A., Whiteson, S.: Fingerprint policy optimisation for ro-
bust reinforcement learning. In: International Conference on Machine Learning.
pp. 5082–5091 (2019)

19. Pinto, L., Davidson, J., Sukthankar, R., Gupta, A.: Robust adversarial reinforce-
ment learning. In: International Conference on Machine Learning. pp. 2817–2826
(2017)

20. Reynolds, D.A., et al.: Gaussian mixture models. Encyclopedia of biometrics
741(659-663) (2009)

21. Wulfmeier, M., Posner, I., Abbeel, P.: Mutual alignment transfer learning. In: Con-
ference on Robot Learning. pp. 281–290 (2017)

6 Appendix

Appendix A: Generic computational Error

We present a brief summary of [7] and [11] in Appendix E and here we directly
focus on the necessary steps for the proof. We denote Mt : (S × A) → Rt+1

as the neural network where represents the residual. This network is equivalent
with µNN but the last bias vector is shifted with τopt(t+1). Assume Rt+1,Rc

t+1

are the residual reachsets when (St × At) and (St × Ac
t) are introduced in, Mt

respectively (Ac
t ⊂ At). This implies, if at ∈ Ac

t , then at ∈ At and therefore, for
At = E(µat

, Ωat
),
[

at
1

]⊤ [
−Ω−1

at
Ω−1

at
µat

µ⊤
at
Ω−1

at
−µ⊤

at
Ω−1

at
µat

+ 1

] [

at
1

]

≥ 0,

which suffices to say, regarding the optimization (22), the optimal upper-bound
for the Rt+1 produced by (St × At) is in fact a feasible solution for the upper-
bound of Rc

t+1 obtained from (St ×Ac
t) (see the summary of [7,11] in Appendix

E). This implies the optimal objective function of optimization (22) in the second
problem (taking (St × Ac

t) as input) is less than the optimal objective function
of optimization(22) in the first problem (taking (St × At) as input). Therefore,
we conclude Logdet(ΩRc

t+1
) < Logdet(ΩRt+1

). In another word, we conclude,
replacing At with Ac

t results in smaller upper-bound on the residual reachset.
Now assume the optimal confidence region for modified action, At in opti-

mization (7) contains nonempty subset, Ac
t ⊂ At. However, we know the el-

lipsoidal bound of residual reachset is still reducible by replacing At with Ac
t .

This is a contradiction because we have already concluded At results in smallest
upper-bound for the residual reachset. Thus, the optimal confidence region At

contains no subset and is a singleton. In another word tr(Ωat
) = 0.

Appendix B: Construction of Actuator Bound

The proposed action should be inside the following hyper-rectangle: ℓ ≤ at ≤ u.
In Appendix A we proved that the solution of optimization (11) is a singleton
At = {at}, therefore we neglect the shape matrix, τ2U

−1
at

and only bound the
mean value in the mentioned hyper-rectangle, ℓ ≤ U−1

at
Vat

≤ u, which implies,
Uat

ℓ ≤ Vat
≤ Uat

u



Convex Optimization-based Policy Adaptation 15

Appendix C. Proof of Theorem 1:

Based on [7] we know the sufficient condition for an ellipsoid E(0, Ω) to bound
the reachset of the residual is,

τ1Mst + E⊤
2

[

−Uat
Vat

V ⊤
at

−V ⊤
at
U−1
at

Vat
+ τ2

]

E2 +Mφ −Mout ≤ 0 (14)

we move the linear terms to the right and keep the nonlinear term at the left,

E⊤
2

[

0 0
0 −V ⊤

at
U−1
at

Vat

]

E2 ≤− τ1Mst − E⊤
2

[

−Uat
Vat

V ⊤
at

τ2

]

E2

−Mφ +Mout

(15)

The matrix in the left of inequality is negative definite, therefore if we introduce
the new constraint,

−τ1Mst − E⊤
2

[

−Uat
Vat

V ⊤
at

τ2

]

E2 −Mφ +Mout ≥ 0 (16)

we have satisfied the required constraint in (15). Based on our observations, this
new linear constraint will not impose conservatism because the value V ⊤

at
U−1
at

Vat

is always near to zero, thus we are neglecting the negative value of the nonlinear
term. As we discussed before, we know Ωat

= τ2U
−1
at

converges to zero, this
implies there is a chance for Uat

to become unbounded and this is why an
infinitesimal Ωat

is problematic for our convex optimization. In order to avoid
unbounded solution for Uat

, we provide a small lower bound on the tr(Ωat
). We

know Ωat
is a positive definite matrix, therefore if tr(Ω−1

at
) is smaller than a

big number, σ, that suffices to have tr(Ωat
) to be greater than a small number

(lower bound on size of At). This can be rephrased with the convex constraint
tr(Uat

) ≤ τ2σ, or in another word, tr(Uat
)δ ≤ τ2 where δ = 1

σ
is preferably

a small number. Thus, to justify the presence of convex constraint tr(Uat
)δ ≤

τ2, we mention this is just a precautionary measure (δ is very small) to avoid
unbounded solutions.

Appendix D. Comparison

Due to presence of adversarial examples, we need to certify the modified action
performs better than autonomous agent on deployment environment. Since we
can not utilize the environment directly for this purpose, we must employ a
deep surrogate model for deployment environment. On the other hand, reading
through [9] clarifies, although a deep network is accurate, it results in noticeable
conservatism for convex programming in Theorem 1. Therefore, we train two
networks for surrogate in a highly nonlinear environment. The former will be
obtained from Embedded technique in section 3.1 and will be utilized for convex
programming. The latter is a very deep network that provides reliability for an
accurate comparison between, π∗ and act . We call this deep neural network as,
µ∗
NN .



16 N. Hashemi et al.

Appendix E. Brief summary of [7]

We present the solution summary with parameters of our specific problem for
more clarification. Assume the confidence regions for state and actions st ∈
St, at ∈ At are fixed and known. Then the tool provided in [7,11] proposes a
convex optimization for tightest ellipsoidal upper-bound over residual’s reachset
Rt+1. In this research, we add another constraint and fix the center of the men-
tioned upper-bound on the origin to make it certain that the residual decreases
in Euclidean norm. Therefore, the tool [7,11] is utilized to present the tightest
upper-bound such that, Rt+1 ⊂ E(0, Ω−1

Rt+1
). We know at ∈ At := E(µat

, Ωat
)

therefore:
[

at
1

]⊤ [
−Ω−1

at
Ω−1

at
µat

µ⊤
at
Ω−1

at
−µ⊤

at
Ω−1

at
µat

+ 1

]

Q1

[

at
1

]

≥ 0 (17)

We also know st ∈ St := E(µst , ρnΣst) therefore:

1

ρn

[

st
1

]⊤ [
−Σ−1

st
Σ−1

st
µst

µ⊤
st
Σ−1

st
−µ⊤

st
Σ−1

st
µst + ρn

]

Q2

[

st
1

]

≥ 0, (18)

In the next attempt [7] suggests us to concatenate all the post-activations, in
the residual’s model Mt and generate vector x = [z1⊤, z2⊤, · · · , zL−1 ⊤]⊤. Then
they propose a symmetric matrix Qφ which satisfies the quadratic constraint,

[

x

1

]⊤

Qφ

[

x

1

]

≥ 0. (19)

The ultimate goal is to prove the residual ∆t+1 ∈ E(0, ΩRt+1
). Therefore, defin-

ing Ω = Ω−1
Rt+1

we should propose a constraint that implies,
[

rt+1

1

]⊤ [
−Ω 0
0 1

] [

rt+1

1

]

≥ 0 (20)

To propose such a constraint authors in [7] suggest defining the base vector
z = [s⊤t , a⊤t , x⊤, 1]⊤ and define the linear transformation matrices E1, E2, E3

and matrix C as,
[

st
1

]

= E1z,

[

at
1

]

= E2z,

[

x

1

]

= E3z,

[

rt+1

1

]

=

[

C b
0 1

]

z,

and C =
[

0 0 · · · Wℓ

]

, b = bℓ−τopt(t+1), (bℓ,Wℓ) ∈ θµ represent the bias vector
and the weights of the last layer in µNN , and add the left side of equations (17),
(18), (19) which provides the following inequality:

z⊤
(

τ1E
⊤
1 Q1E1

Mst

+ τ2E
⊤
2 Q2E2

Mat

+ E⊤
3 QφE3

Mφ

)

z ≥ 0, (21)

for some τ1, τ2 ≥ 0. Thus, if the inequality,

z⊤ (τ1Mst + τ2Mat
+Mφ) z−

[

rt+1

1

]⊤ [
−Ω 0
0 1

] [

rt+1

1

]

≤ 0



Convex Optimization-based Policy Adaptation 17

holds, then the constraint (20) is satisfied. This constraint can be reformulated
as,

z⊤

(

τ1Mst + τ2Mat
+Mφ −

[

C bL
0 1

]⊤[
−Ω 0
0 1

] [

C bL
0 1

]

Mout

)

z≤ 0

thus applying the assumption, τ1Mst + τ2Mat
+Mφ−Mout ≤ 0, is sufficient but

not necessary to claim (20) is satisfied. Therefore, the convex optimization:

{

min
Mφ,τ1,τ2

−Logdet(Ω)

s.t. τ1Mst + τ2Mat
+Mφ −Mout ≤ 0

(22)

presents the suboptimal tightest ellipsoidal upper-bound that is centered on the
origin over the residual reachset Rt+1.


	Convex Optimization-based Policy Adaptation to Compensate for Distributional Shifts

