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Abstract— In this paper, we present an approach for de-
signing correct-by-design controllers for cyber-physical systems
composed of multiple dynamically interconnected uncertain sys-
tems. We consider networked discrete-time uncertain nonlinear
systems with additive stochastic noise and model parametric
uncertainty. Such settings arise when multiple systems interact
in an uncertain environment and only observational data is
available. We address two limitations of existing approaches for
formal synthesis of controllers for networks of uncertain sys-
tems satisfying complex temporal specifications. Firstly, whilst
existing approaches rely on the stochasticity to be Gaussian,
the heterogeneous nature of composed systems typically yields
a more complex stochastic behavior. Secondly, exact models of
the systems involved are generally not available or difficult to
acquire. To address these challenges, we show how abstraction-
based control synthesis for uncertain systems based on sub-
probability couplings can be extended to networked systems.
We design controllers based on parameter uncertainty sets
identified from observational data and approximate possibly
arbitrary noise distributions using Gaussian mixture models
whilst quantifying the incurred stochastic coupling. Finally, we
demonstrate the effectiveness of our approach on a nonlinear
package delivery case study with a complex specification, and
a platoon of cars.

I. INTRODUCTION

Cyber-physical systems (CPS) have become ubiquitous in
almost all areas of modern life. Their adaptation in safety-
critical areas, however, has lead to serious failures originating
from the embedded controllers [1]. Designing CPSs that will
not exhibit undesired or unsafe behavior when operating in
an uncertain environment proves to be challenging. Suppose
we want to design a controller for an autonomous car. When
driving in traffic, the car will perform various maneuvers
among other vehicles and in possibly unseen scenarios.
Whilst some knowledge of the dynamics of the car is
usually available, exact models of the surrounding vehicles
to which it is dynamically connected are generally not
available. Moreover, the heterogeneous mixture of systems
involved typically yields complex stochastic behavior. How
do we verify safe behavior if we are uncertain about the
environment and system and have to base our decisions on
observations? This is just one example of a typical problem
arising in many domains of application.
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Control synthesis for networks of stochastic systems to
satisfy requirements expressed as temporal logic specifi-
cations is a challenging task. To obtain controllers with
formal guarantees, a promising approach is to construct
abstractions of the system and establish formal relations
between the abstraction and the original system [4], [10],
[19]. Current abstraction-based approaches for networks of
stochastic systems are limited in two main directions. Firstly,
exact models of the systems in the network are usually not
available or expensive to acquire. Existing work, however, is
mainly focused on systems with known mathematical models
[15], [13], [11]. Secondly, the known stochastic behavior is
assumed to be either bounded [12] or of Gaussian nature
[7]. Real-world examples of networked systems exhibit a
more complex stochastic behavior [5], [18], e.g., due to a
conglomerate of heterogeneous components. This is a central
feature disregarded in prior works on compositionality.

There is a limited body of work addressing systems
with both stochastic and epistemic uncertainties. Badings
et al. [3] have studied monolithic linear systems with un-
known additive noise for reach-avoid specifications. This
work is extended in [2] to fully unknown linear systems.
In contrast, our approach can handle more complex speci-
fications and nonlinear dynamics. Compositional results for
networks of unknown stochastic systems are provided in [9]
based on reinforcement learning, which rely on knowing
the Lipschitz constants and are limited to finite-horizon
specifications. In the recent work [17], we have shown that a
relaxed version of stochastic simulation relations, called sub-
simulation relations, allows us to establish relations between
uncertain stochastic systems and their abstractions. However,
the considered uncertainty is limited to the deterministic part
of the dynamics whereas the stochastic behavior is assumed
to be known a-priori. Moreover, it remains to be proved that
these relations can similarly be applied to networked systems.

In this work, we discuss the notion of sub-simulation rela-
tions for systems in a network. We show that such relations
can be composed together to form a sub-simulation relation
between networked systems. We consider specifications that
are conjunctions of local specifications defined on systems in
the network. To capture the expressive stochastic behavior of
realistic networked systems, we construct surrogate models
of systems with arbitrary additive noise distributions by ap-
proximating the noise using finite Gaussian mixture models
(GMM). We show that the incurred error can be bounded
even when the true noise distribution is unknown. This allows
us to design controllers that are robust for networked systems
subject to both stochastic and epistemic uncertainties.
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The paper is organized as follows. In Sec. II, we give
the preliminaries, introduce the class of models and spec-
ifications, and formulate a two-stage problem statement.
Secs. III and IV are dedicated to providing solutions to
these problems. In Sec. III, we provide the definition of sub-
simulation relations for networks of systems and establish
compositional results. In Sec. IV, we quantify the closeness
for two systems with GMM noise distribution. Finally, we
demonstrate the proposed approach on a nonlinear package
delivery case study and a platoon of cars in Sec. V.

II. PRELIMINARIES AND PROBLEM STATEMENT

The following notation is used. The transpose of a matrix
M is indicated by M⊤. Borrowing from common notation,
for a column vector x = [x1; . . . ;xn] ∈ Rn we denote
by x−i the vector deprecated by the ith element, namely
x−i := [x1; . . . ;xi−1;xi+1; . . . ;xn]. Similarly, we define the
deprecated product of sets {Ai}ni=1 as A−i :=

∏
j ̸=iA

j .
A measurable space is a pair (X,F) with sample space

X and σ-algebra F defined over X, which is equipped with
a topology. In this work, we restrict our attention to Polish
sample spaces [6]. As a specific instance of F , consider Borel
measurable spaces, i.e., (X,B(X)), where B(X) is the Borel
σ-algebra on X, that is the smallest σ-algebra containing
open subsets of X. A positive measure ν on (X,B(X))
is a non-negative map ν : B(X) → R≥0 such that for
all countable collections {Ai}∞i=1 of pairwise disjoint sets
in B(X) it holds that ν (

⋃
iAi) =

∑
i ν(Ai). A positive

measure ν is called a probability measure if ν(X) = 1, and
is called a sub-probability measure if ν(X) ≤ 1.

A probability measure p together with the measurable
space (X,B(X)) defines a probability space denoted by
(X,B(X), p) and has realizations x ∼ p. We denote the
set of all probability measures for a given measurable space
(X,B(X)) as P(X). For two measurable spaces (X,B(X))
and (Y,B(Y)), a kernel is a mapping p : X×B(Y)→ R≥0

such that p (x, · ) : B(Y)→ R≥0 is a measure for all x ∈ X,
and p ( · , B) : X → R≥0 is measurable for all B ∈ B(Y).
A kernel associates to each point x ∈ X a measure denoted
by p ( · |x). We refer to p as a (sub-)probability kernel if
in addition p ( · |x) : B(Y) → [0, 1] is a (sub-)probability
measure. The Dirac delta measure δa : B(X) → [0, 1]
concentrated at a point a ∈ X is defined as δa(A) = 1
if a ∈ A and δa(A) = 0 otherwise, for any measurable
A ∈ B (X). The multivariate normal stochastic kernel with
mean µ and covariance matrix Σ is denoted as N (dx|µ,Σ).

For given sets A and B, a relation R ⊂ A×B is a subset
of the Cartesian product A×B. The relation R relates x ∈ A
with y ∈ B if (x, y) ∈ R, written equivalently as xRy. For
a given set Y, a metric or distance function dY is a function
dY : Y × Y → R≥0 satisfying the following conditions for
all y1, y2, y3 ∈ Y: dY(y1, y2) = 0 iff y1 = y2; dY(y1, y2) =
dY(y2, y1); and dY(y1, y3) ≤ dY(y1, y2) + dY(y2, y3).

A. Networks of uncertain stochastic systems

In this work, we consider networked discrete-time uncer-
tain nonlinear systems with two sources of uncertainty: (1)

additive stochastic noise and (2) model parametric uncer-
tainty. Systems of this class can be represented by a model
M(θ) parametrized with θ = [θ1; . . . ; θN ] and partitioned
into N subsystems Mi(θi), i ∈ {1, . . . , N}, as

Mi(θi) :

{
xit+1 = f i(xit, u

i
t; θ

i) + wit,
yit = hi(xit),

(1)

where the state, input, and observation of the ith subsystem
Mi(θi) at the tth time-step are denoted by xit ∈ Xi, uit ∈
Ui, and yit ∈ Yi, respectively. The state evolution and
observation mapping are captured by the functions f i and
hi, respectively. The additive noise wit ∈ W is an i.i.d.
sequence with distribution wit ∼ piw( · |θi). Note that both
the state evolution f i and the additive noise distribution
piw are conditional on the uncertain parametrization θi for
which we will assume an uncertainty set Θ such that θ ∈ Θ.
This set can be constructed from observed input-output data
with respect to a given confidence using system identification
techniques as it is done in [16]. We assume that the input
and observation of the ith subsystem can be partitioned as
uit = [ui1t ; . . . ;u

iN
t ] and yit = [yi1t ; . . . ; yiNt ], respectively.

The subsystems are dynamically linked via their internal
inputs and outputs u−it ∈ U−i and y−it ∈ Y−i, respectively,
as follows: uijt = yjit ,∀i ̸= j. We will refer to uiit ∈ Uii
and yiit ∈ Yii as external. For the network M(θ), we
recover the state, input, and observation as the concatenations
xt = [x1t ; . . . ;x

N
t ], ut = [u1t ; . . . ;u

N
t ], yt = [y1t ; . . . ; y

N
t ].

B. Gaussian mixture models

We consider the noise distribution piw(w
i
t|θi) to be a Gaus-

sian mixture model (GMM). As a subclass of finite mixture
models, GMMs are a widely used modeling framework for
approximating probability distributions. Apart from being
particularly useful for capturing multiple sources of random-
ness, any continuous distribution can be approximated with
arbitrary precision using GMMs [14].

Definition 1 (Gaussian Mixture Model (GMM)): A GMM
is a probability measure NNK : B(X) → [0, 1] which is
a weighted sum of finitely many (K) normal densities or
component densities N (x|µk,Σk), k ∈ {1, . . . ,K}, i.e.,

NNK(dx|π, µ,Σ) :=
K∑

k=1

πkN (dx|µk,Σk),

with mixing weights π := (π1, . . . , πK), 0 ≤ πk ≤ 1,∑K
k=1 πk = 1, mean values µ := (µ1, . . . , µK), and

covariance matrices Σ := (Σ1, . . . ,ΣK).

A GMM is called homoscedastic if all K components
share the same covariance matrix and heteroscedastic other-
wise. Fig. 1 depicts an example of a heteroscedastic GMM.
We omit the index indicating the number of components, i.e.,
NN ( · |π, µ,Σ), when the number of components is uncertain.

For the networked system in (1), the noise distributions
can hence be written as wit ∼ NN ( · |πi, µi,Σi), where
the parameters (πi, µi,Σi) are contained in the unknown
parametrization θi.



x1 x2

p

Fig. 1: Example of a 2D Gaussian mixture with three compo-
nents: (π1 = 0.2, µ1 = [1;−1],Σ1 = 0.5I), (π2 = 0.3, µ2 =
[−1; 0],Σ2 = 0.2I), and (π3 = 0.5, µ3 = [0; 2],Σ3 = I).

C. Local control policies

For each subsystem Mi in (1) initialized with an initial
state xi0 at t = 0 and an input sequence ui0, u

i
1, u

i
2, . . .,

consecutive states xit+1 ∈ Xi are obtained as realizations
xit+1 ∼ f i(xit, u

i
t; θ

i) + NN (wit|θi). The execution history
(xi0, u

i
0, x

i
1, . . . , u

i
N−1, x

i
N ) grows with the number of obser-

vations N and takes values in the history space HiN := (Xi×
Ui)N×Xi. A local control policy or controller for Mi(θi) is
a sequence of policies mapping the current execution history
to an external control input.

Definition 2 (Local control policy): A local control policy
φi is a sequence φi = (φi0, φ

i
1, φ

i
2, . . .) of universally

measurable maps φit : Hit → P(Uii,B(Uii)), t ∈ N :=
{0, 1, 2, . . .}, from the execution history to a set of distribu-
tions on the external input space.

As special types of control policies, we differentiate
Markov policies and finite memory policies. A Markov policy
φi is a sequence φi = (φi0, φ

i
1, φ

i
2, . . .) of universally

measurable maps φit : Xi → P(Uii,B(Uii)), t ∈ N, from
the state space Xi to a set of distributions on the external
input space. We say that a Markov policy is stationary, if
φi = (φi, φi, φi, . . .) for some φi. Finite memory policies
first map the finite state execution of the system to a finite set
(memory). The input is then chosen similar to the Markov
policy as a function of the system state and the memory
state. This class of policies is needed for satisfying temporal
specifications on the system executions. In the following, a
local controller for each subsystem in (1) is denoted by Ci

and the controlled subsystem by Ci ×Mi.

D. Temporal logic specifications

Consider a set of atomic propositions AP := {p1, . . . , pL}
that defines an alphabet Σ := 2AP , where any letter l ∈ Σ
is composed of a set of atomic propositions. An infinite
string of letters forms a word π = l0l1l2 . . . ∈ ΣN. We
denote the suffix of π by πj = lj lj+1lj+2 . . . for any
j ∈ N. Specifications imposed on the behavior of the system
are defined as formulas composed of atomic propositions

and operators. We consider the co-safe subset of linear-
time temporal logic properties [8] abbreviated as scLTL.
This subset of interest consists of temporal logic formulas
constructed according to the following syntax

ψ ::= p | ¬p | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | ψ1 U ψ2 | ⃝ ψ,

where p ∈ AP is an atomic proposition. The semantics of
scLTL are defined recursively over πj as πj ⊨ p iff p ∈ lj ;
πj ⊨ ψ1 ∧ ψ2 iff (πj ⊨ ψ1) ∧ (πj ⊨ ψ2); πj ⊨ ψ1 ∨
ψ2 iff (πj ⊨ ψ1) ∨ (πj ⊨ ψ2); πj ⊨ ψ1 U ψ2 iff ∃m ≥
j subject to (πm ⊨ ψ2) and πt ⊨ ψ1,∀t ∈ {j, . . .m − 1};
and πj ⊨ ⃝ψ iff πj+1 ⊨ ψ. The eventually operator ♢ ψ
is used in the sequel as a shorthand for true U ψ. We say
that π ⊨ ψ iff π0 ⊨ ψ.

Consider a labeling function Li : Yi → Σi of Mi that
assigns a letter to each output. Using this labeling map, we
can define temporal logic specifications over the output of the
system. Each output trace of the system yi = yi0, y

i
1, y

i
2, . . .

can be translated to a word as πi =Li(yi). We say that a
system satisfies the specification ψi with the probability of
at least pψi if P(πi ⊨ ψi) ≥ pψi . When the labeling function
Li is known from the context, we write P(Ci ×Mi ⊨ ψi)
to emphasize that the output traces of the controlled system
Ci ×Mi are used for checking the satisfaction.

E. Problem statement

In this work, we restrict ourselves to specifications that
are decomposable as follows.

Assumption 1: Let the system be decomposable into N
subsystems M1, . . . ,MN and the global specification ψ into
N local specifications ψ1, . . . , ψN such that ψ =

∧N
i=1 ψ

i.

With this, we address networks of uncertain systems by
solving the following two problems.

Problem 1: Consider a networked uncertain system
M(θ) in (1) and specification ψ satisfying Asm. 1. Let
thresholds pψi ∈ (0, 1) for all i ∈ {1, . . . , N} be given.
Design a global controller C with lower bound pψ s.t.

P (C×M(θ) ⊨ ψ) ≥ pψ, ∀θ ∈ Θ =
∏

i

Θi,

from local controllers Ci for Mi(θi) that satisfy

P
(
Ci ×Mi(θi) ⊨ ψi | πj ⊨ ψj , j ̸= i

)
≥ pψi ,∀θi ∈ Θi.

Then, for the local control synthesis we have the following.

Problem 2: Given specification ψi and threshold pψi ∈
(0, 1), design a local controller Ci for the model
Mi(θi) in (1) such that Ci is independent of θi and

P
(
Ci ×Mi(θi) ⊨ ψi

)
≥ pψi , ∀θi ∈ Θi.

As in [17], we solve Prob. 2 by computing a robust con-
troller for a nominal system M̂ in the set of feasible models



{M(θ)|θ ∈ Θ} and constructing a sub-simulation relation
between the nominal controller and the set of models. In
particular, we design the coupling s.t. neither the interface
function nor state refinement are dependent on the uncertain
parametrization. Note that here, in contrast to [17], both the
deterministic and stochastic part of the system dynamics are
considered uncertain and the noise distribution is arbitrary.
In order to solve Prob. 1, we synthesize local controllers by
bounding the internal inputs and including the satisfaction of
these bounds in the local specifications. We derive a lower
bound on the satisfaction probability of the networked system
M(θ) by showing that the local sub-simulation relations
induce a global sub-simulation relation analogous to [11].
To solve Prob. 2, we provide results for establishing sub-
simulation relations for systems with noise distributions in
the form of GMMs.

III. SUB-SIMULATION RELATIONS FOR NETWORKS OF
UNCERTAIN SYSTEMS

As in [11], our approach to Prob. 1 relies on construct-
ing abstractions M̂i of each individual subsystem Mi and
designing local abstraction-based controllers Ĉi. Based on
local simulation relations between Mi and M̂i, the con-
trollers Ĉi can be refined to controllers Ci for the original
subsystems Mi. Fig. 2 illustrates the overall setup.

M1(θ1)i1( · ) = u11 y11

w1

M2(θ2)y22 u22 = i2( · )

w2

y12

u21y21

u12
M̂1(Ĉ1 →)û11 ŷ11

ŵ1

M̂2
ŷ22 û22(← Ĉ2)

ŵ2

ŷ12

û21ŷ21

û12

Ru1

Ru2

Rx1

Rx2

M̂1 ⪯δ1ε1 M1(θ1)

M̂2 ⪯δ2ε2 M2(θ2)

Fig. 2: The network with parametric uncertainty (left) and
its abstraction (right) are related by establishing simulation
relations for each subsystem. These simulation relations
quantify the similarity of the systems based on relations on
the states and internal inputs.

In this section, we show how the previous definition of
sub-simulation relations extends to networks of uncertain
systems and derive the corresponding compositional results.

A. gMDPs and interconnections

We represent the networked system in (1) as an intercon-
nection of general Markov decision processes, defined next.

Definition 3 (General Markov decision process (gMDP)):
A gMDP is a tuple M = (X, x0,U, t, h,Y), with a state
space X containing states x ∈ X; an initial state x0 ∈ X;
an input space U with inputs u ∈ U; a probability kernel
t : X × U × B(X) → [0, 1]; and an output space Y with a
measurable output map h : X → Y. The output space Y is
decorated with a metric dY.

The transition kernel t assigns to each state-input pair
(x, u) ∈ X×U a probability measure t( · |x, u) on (X,B(X)).
Hence, for a given system (1), the probability of transitioning
from a state x with input u to a state x+ ∈ S is given by
P(x+ ∈ S|x, u) =

∫
S
t(dx+|x, u; θ), where the transition

kernel can be written via the Dirac delta function as

t(dx+|x, u; θ) =
∫

w

δf(x,u;θ)+w(dx+) NN (dw|θ).

The network of subsystems in (1) can hence be written as
an interconnection of gMDPs. We now provide the formal
definition of an interconnection of N subsystems described
as gMDPs (cf. Fig. 2).

Definition 4 (Interconnection of subsystems): Consider
N ∈ N gMDPs Mi = (Xi, xi0,Ui, ti, hi,Yi), i ∈
{1, . . . , N}, with an input-output configuration that can be
partitioned as outlined in Sec. II-A. Then, the interconnection
of the subsystems is itself a gMDP M=(X, x0,U, t, h,Y),
also denoted as I (M1, . . . ,MN ), with X =

∏
i Xi, U =∏

iUi, Y =
∏
iUi, and h = [h11; . . . ;hNN ], and intercon-

nection constraints

∀i ̸= j : uijt = yjit , Yji ⊆ Uij . (2)

The kernel and initial state are given by t =
∏
i t
i and

x0 = [x10; . . . ;x
N
0 ], respectively.

Next, we provide the definition of sub-simulation relations
for networked systems.

B. Relation on subsystem level

For each subsystem Mi in (1) we construct an abstract
nominal model

M̂i :

{
x̂it+1 = f i(x̂it, û

i
t; θ̂

i) + ŵit, ŵit ∼ NN ( · |θ̂i),
ŷit = ĥi(xit),

(3)

with nominal parameters θ̂i. Note that M̂i := Mi(θ̂i) if
ĥi( · ) = hi( · ). Based on the sub-probability coupling in
[17, Def. 5], we establish sub-simulation relations for each
subsystem pair (Mi(θi), M̂i) that are independent of the
concrete choice of the uncertain parametrizations θi. The
following definition extends the original definition of sub-
simulation relations in [17, Def. 6] to systems with both
internal and external inputs.

Definition 5 ((εi, δi)-sub-simulation relation (SSR)):
Consider two gMDPs Mi=(Xi, xi0,Ui, ti, hi,Yi) and M̂i=
(X̂i, x̂i0, Ûi, t̂i, ĥi,Yi), measurable relations Rxi ⊂ X̂i ×Xi
and Ru−i ⊂ Û−i × U−i, and an interface function ii :
X̂i ×Xi × Ûi → Uii. If there exists a sub-probability kernel
vi( · |x̂i, xi, ûi, u−i) such that
(a) (x̂i0, x

i
0) ∈ Rxi ;

(b) ∀(x̂i, xi) ∈ Rxi , ∀ûi ∈ Ûi we have uii = ii(x̂i, xi, ûi)
such that ∀u−i ∈ R−1

u−i û
−i: vi( · |x̂i, xi, ûi, u−i) is a

sub-probability coupling of t̂i( · |x̂i, ûi) and ti( · |xi, ui)
over Rxi with respect to δi (see [17, Def. 5]); and

(c) ∀(x̂i, xi) ∈ Rxi : dY(ĥ
i(x̂i), hi(xi)) ≤ εi,

then M̂i is in an (εi, δi)-SSR with Mi, denoted as
M̂i ⪯δiεi Mi.



Intuitively, Def. 5 imposes three conditions on the com-
posed system M̂i × Mi evolving on the product space
X̂i × Xi. They roughly correspond to its initial state, state
transition, and output mapping (see Fig. 2). Condition (a)
requires that the states of both systems start in Rxi upon
initialization. Once in Rxi , condition (b) certifies that for
any external input ûii to M̂i there exists a corresponding
external input uii to Mi such that the systems stay in Rxi

with probability (1− δi) provided that the internal inputs of
the two systems stay in relation Ru−i . Note that the external
input ûii is mapped onto uii by an interface function. Finally,
according to condition (c), given that the two systems are in
Rxi , the corresponding outputs will be εi-close.

Def. 5 reduces to the original definition of (ε, δ)-sub-
simulation relations for monolithic systems [17, Def. 6] if
i ∈ {1}, or equivalently, N = 1.

In the next section, we prove that, as shown in [11]
for approximate simulation relations, local SSRs similarly
induce a global SSR between the emerging interconnections.

C. Relation on network level

We now apply the introduced framework to net-
works subject to parametric uncertainty. We establish an
SSR M̂i ⪯δiεi Mi between subsystems (Mi(θi), M̂i) in
Eqs. (1) and (3). We choose the interface function uii =
ii(x̂i, xi, ûi) := ûii and the noise coupling

ŵi ≡ γi(xi, ui, θi; θ̂i) + wi, with an offset (4)

γi(xi, ui, θi; θ̂i) := f i(xi, ui; θi)− f i(xi, ui; θ̂i), (5)

to get a state mapping which is not dependent on θ:

x̂i+ = xi+ − f i(xi, ui; θ̂i) + f i(x̂i, ûi; θ̂i). (6)

Note that the noise coupling in (4) implies that the distribu-
tions NN (w|θ), NN (ŵ|θ̂) are of pairwise identical covariance,
i.e., K̂ = K and Σ̂k = Σk, ∀k ∈ {1, . . . ,K}. This does not,
however, limit the expressiveness of the noise distributions
that can be addressed and is more general than assuming
homoscedasticity. The following choice of relations enables
us to find a convenient formulation of the coupling:

Rxi :=
{
(x̂i, xi) ∈ X̂i × Xi | x̂i = xi

}
, (7)

Ru−i :=
{
(û−i, u−i) ∈ Û−i × U−i | û−i = u−i

}
, (8)

Rx :=
{
(x̂, x) ∈ X̂× X | x̂ = x

}
, (9)

≡
{
(x̂, x) ∈ X̂× X | ∀i ∈ {1, 2} : (x̂i, xi) ∈ Rxi

}
.

Condition (a) of Def. 5 holds by setting the initial states
x̂i0 = xi0, i ∈ {1, . . . , N}. For condition (b), we define the
sub-probability coupling vi of t̂i and ti over Rxi as

vi(dx̂i+×dxi+|θi) =
∫

wi

δfi(θ̂i)+wi+γi(dx̂
i
+)δfi(θi)+wi(dxi+)

min
{
NNKi(dwi|θi),NNKi(dwi|π̂i, µ̂i − γi,Σi)

}
, (10)

where we dropped the dependence on (xi, ui) for brevity.
Notice that the marginals of the coupling vi represent a
lower-bound on the transition kernels of Mi(θi) and M̂i.

Theorem 1 (Induced compositional SSR): Let gMDPs
{Mi}Ni=1 and {M̂i}Ni=1 as in (1) and (3) be given with
common metric dY = ∥ · ∥, SSRs M̂i ⪯δiεi Mi for i ∈
{1, . . . , N} with relations Rxi and Ru−i in (7)-(8), sub-
probability couplings vi in (10), and interface functions
uii = ûii. Furthermore, let M=I (M1, . . . ,MN ) and M̂=

I (M̂1, . . . , M̂N ) be the corresponding interconnections. If
∀i ∈ {1, . . . , N} with j ̸= i and ûij ≡ hji(xj) we have

∀(x̂i, xi) ∈ Rxi : (û−i, u−i) ∈ Ru−i ,

then M̂ is in an induced compositional (ε, δ)-SSR with M,
denoted M̂ ⪯δε M with relation Rx in (9) and ε =

∑
i ε
i,

δ = 1 − ∏
i(1 − δi). Furthermore, we obtain the sub-

probability coupling v =
∏
i v

i and the interface function
i =

∏
i i
i, applying the interconnection constraints (2).

The proofs of statements have been deferred to the ap-
pendix. Given the results of Thm. 1, we proceed to providing
global guarantees for the networked system.

D. Global guarantees

The probability of a local controlled subsystem Ci ×Mi

satisfying the specification ψi is conditioned on the other
subsystems. We obtain the probability that the interconnected
system C ×M satisfies the global specification ψ as the
intersection of events (Ci ×Mi ⊨ ψi).

We establish results for two different network structures. In
a cascaded network, the interconnection between subsystem
is unidirectional and every subsystem is only influenced by
its predecessors. In a cyclic network, there is at least one
cycle in the interconnection graph of the subsystems. Let us
index the predecessors of the ith subsystem in the network
via Pre(i).

Theorem 2 (Global guarantees (cascaded)): Consider a
cascaded network of local controlled subsystems Ci ×Mi.
The global probability of satisfaction w.r.t. ψ is lower
bounded by

P(C×M⊨ψ)≥
N∏

i=1

min
yj∈Yj

P
(
Ci ×Mi⊨ψi |yj , j ∈ Pre(i)

)
,

(11)
where Yj :=

{
yj : Lj(yj) ⊨ ψj

}
.

For a general circular network configuration, i.e., when
there are feedback loops or cycles in the interconnection
graph of the subsystems, we obtain a more conservative
lower bound. For this, we bound the internal outputs of the
subsystems, i.e., Ci ⊂ Yi for all i ∈ {1, . . . , N}, and assign
an output label pCi . We define the event of a subsystem satis-
fying this bound as the safety specificationAi := (Ci×Mi ⊨
□pCi). We obtain the probability that the interconnected
system C ×M satisfies the global specification ψ as the
intersection of events (Ci ×Mi ⊨ ψi ∧ Ai).
Theorem 3 (Global guarantees (cyclic)): Consider a cyclic
network of locally controlled subsystems Ci × Mi. The
global probability of satisfaction w.r.t. ψ is lower bounded by



P(C×M⊨ψ)≥
N∏

i=1

min
yj∈Yj

P
(
(Ci×Mi⊨ψi)∧Ai|yj, j∈Pre(i)

)
,

(12)
where Yj :=

{
yj : Lj(yj) ⊨ Aj

}
.

IV. SUB-SIMULATION RELATIONS FOR GAUSSIAN
MIXTURE MODELS

Now that we can compute global guarantees on the net-
worked system based on local guarantees on the individual
subsystems Mi, we solve Prob. 2 by showing how to
establish an SSR (Def. 5) for a system with GMM noise as in
(1). Note that we consider the noise to be uncertain as well.
In the following, we consider every subsystem individually
and hence drop the exponent i.

Theorem 4 (GMM δ): The subsystems in (1) and (3) are
in an SSR M̂ ⪯δε M(θ) with interface function uk = ûk,
relation (7), and sub-probability coupling (10). The state
mapping (6) defines a valid control refinement with ε = 0
and

δ(x, u) = sup
θ∈Θ

{
1−

K∑

k=1

[
πkcdf

(
−
(
1

2
− ηk

)
∥βk∥

)
(13)

+ π̂kcdf

(
−
(
1

2
+ ηk

)
∥βk∥

)]}
,

with coefficients

ηk(x, u, θ) :=
1

βk(x, u, θ)⊤βk(x, u, θ)
log

πk
π̂k
, and

βk(x, u, θ) := µk − µ̂k + γ(x, u, θ),

where cdf ( · ) denotes the cumulative distribution
function of a Gaussian distribution, i.e., cdf (ζ) :=∫ ζ
−∞

1√
2π

exp(−β2/2)dβ, and offset γ as defined in (5).

Thm. 4 extends the results from [17] to more general noise
distributions. The results from [17, Thm. 4] are recovered for
µk = µ̂k and K = 1 (implying πk = π̂k = 1).

V. CASE STUDIES

In this section, we demonstrate the capabilities of the
proposed extensions on a monolithic package delivery case
study and a platoon of cars with two coupled subsystems.

A. Package delivery

Consider a monolithic uncertain nonlinear system

M(θ) :




xt+1 =

[
0.9x1t + 0.6 sin(0.1x2t ) + 1.7θ̄u1t

0.9x2t + 1.7u2t

]
+ wt,

yt = xt,

with state xt = [x1t ;x
2
t ] and input ut = [u1t ;u

2
t ], describing

an agent translating in a 2D space. Note that here, the super-
script ‘1’, ‘2’ refers to the elements of xt and ut. The goal is
to compute a controller to navigate the agent for collecting
a parcel in region P1 and delivering it to target region P3. If
the agent visits the avoid region P2 on its path, it loses the
package and must collect a new one at P1. This behavior is

Fig. 3: Lower bound on the satisfaction probability as a
function of the initial state and the actual satisfaction proba-
bility estimated via Monte Carlo simulation for the package
delivery case study for Θ in blue. The robust lower bound
is boosted for a contracting uncertainty set (Θ̄ in red).

captured by the specification ψ = ♢ (P1 ∧ (¬P2 U P3)).
Note that this is a complex specification that cannot be
expressed as a reach-avoid specification. The regions are
given on the xs-plane in Fig. 3. The homoscedastic noise
distribution wt ∼ NN2( · |π, µ,Σ) has the common covariance
matrix Σ := (Σ̄, Σ̄), Σ̄ = [

√
0.2, 0; 0,

√
0.2]. The uncertain

parameterization is θ := (θ̄, π, µ) with θ̄ = 1. We define
the state space X = [−6, 6]2, input space U = [−1, 1]2, and
output space Y = X.

The uncertainty set Θ has the elements θ̄ ∈ [0.950, 1.050],
π = (0.8, 0.2), µ1 ∈ [−0.010, 0.010] × [0.790, 0.810], and
µ2 ∈ [−0.810,−0.790]2. We select a nominal model M̂ =
M(θ̂) where θ̂ has the elements θ̄ = 0.99, π = (0.8, 0.2),
µ1 = [0; 0.8], and µ2 = [−0.8;−0.8], and get ε1 = 0. An
input-dependent δ1 is computed using Eq. (13). We compute
a second abstract model M̃ by discretizing the space of
M̂ using the method outlined in [21]. Then, we use the
results therein to get M̃ ⪯δ2ε2 M̂ with ε2 = 0.060 and a
state-dependent δ2. Thus, using the transitivity property in
[17, Thm. 2], we have M̃ ⪯δε M(θ) with δ = δ1 + δ2
and ε = ε1 + ε2. We compare the robust probability of
satisfying the specification computed using this ε and δ based
on [17, Prop. 1] with the true satisfaction probability for a
parametrization θ with the elements θ̄ = 1, π = (0.8, 0.2),
µ1 = [0; 0.8], and µ2 = [−0.8;−0.8], estimated using Monte
Carlo simulation for several representative initial states.
We run 105 simulations per initial state with a maximum
length of 30 time steps. Fig. 3 shows the robust satisfaction
probability (in blue) as a function of the initial state of M(θ)
alongside the actual satisfaction probability (blue mesh) es-
timated via Monte Carlo simulation. Moreover, Fig. 3 shows
(in red) the robust satisfaction probability of a controller
synthesized for a tighter uncertainty set Θ̄ with the elements
θ̄ ∈ [0.999, 1.001], π = (0.8, 0.2), µ1 ∈ [−0.001, 0.001] ×
[0.799, 0.801], and µ2 ∈ [−0.801,−0.799]2, obtained using



a bigger data set.

B. Car platoon

Now, we look at a networked system consisting of two
subsystems. In particular, we consider a platoon of two cars
driving behind each other. The dynamics of the leading
vehicle M1(θ1) are given by

[
s1t+1

v1t+1

]
=

[
1 τ
0 0.9

] [
s1t
v1t

]
+

[
0
τ
m1

]
u1t + w1

t ,

with constant τ = 0.5, output mapping y1t = x1t , and a
homoscedastic noise distribution w1

t ∼ NN2( · |π1, µ1,Σ1)
with common covariance matrix Σ̄1 := [0.050, 0; 0, 0.025],
i.e., Σ1 := (Σ̄1, Σ̄1). The uncertain parameters are θ1 :=
(m1, π1, µ1). The state, input, and output spaces are X1 =
[0, 5]×[0.95, 1.05], U1 = [0.3, 1], and Y1 = X1, respectively.
The dynamics of the following vehicle M2(θ2) are


s2t+1

v2t+1

dt+1


 =



1 1.8τ 0
0 0.9 0
0 −τ 1





s2t
v2t
dt


+




0
τ
m2

0


u2t +



0
0
τ


 v1t +w2

t ,

where the third state variable couples the two subsystems via
v1t , capturing the distance between the vehicles. Similarly
as before, we have the output mapping y2t = x2t , and a
noise distribution w2

t ∼ NN2( · |π2, µ2,Σ2) with common
covariance matrix Σ̄2 := [0.075, 0, 0; 0, 0.025, 0; 0, 0, 0.050],
Σ2 := (Σ̄2, Σ̄2). Note how the GMM allows to capture the
sensor noise on the velocity measurements of M1(θ1). The
uncertain parameters are θ2 := (m2, π2, µ2). Define the
state space X2 = [0, 5] × [0.9, 1.1] × [0.2, 2.2], input space
U2 = [0.5, 1.5], and output space Y2 = X2.

The global specification can be decomposed as follows.
The goal for M1 is to start in initial region P 1

init :=
[1.2, 2.2] × [0.95, 1.05] and reach target region P 1

targ :=
[4, 5] × [0.95, 1.05] whilst remaining in P 1

safe := [1.2, 5] ×
[0.95, 1.05], written as ψ1 := P 1

init ∧⃝(P 1
safe U P 1

targ). Simi-
larly, we define ψ2 := P 2

init ∧⃝(P 2
safe U P 2

targ) with P 2
init :=

[0, 1]× [0.9, 1.1]× [0.2, 2.2], P 2
targ := [2.8, 3.8]× [0.9, 1.1]×

[0.2, 2.2], and P 2
safe := [1, 3.8] × [0.9, 1.1] × [0.2, 2.2]. Note

that (ψ1, ψ2) bound the velocities via v1t ∈ C1 := [0.95, 1.05]
and v2t ∈ C2 := [0.9, 1.1], ∀t ≥ 0, respectively.

The uncertainty sets Θ̂i are given as Θ̂1 with the
elements m1 ∈ [3.9, 4.1], π1 = (0.3, 0.7), µ1 ∈
([0.09, 0.11] × [−0.01, 0.01], [−0.01, 0.01] × [−0.01, 0.01]),
and Θ̂2 with the elements m2 ∈ [3.8, 4.0], π2 = (0.3, 0.7),
µ2 ∈ ([−0.010, 0.010]2 × [0.009, 0.011], [−0.010, 0.010]2 ×
[−0.011,−0.009]). We select nominal models M̂i = Mi(θ̂i)
based on θ̂1 with the elements m1 = 4, π1 = (0.3, 0.7),
µ1 = ([0.1; 0], [0; 0]), and θ̂2 with the elements m2 = 3.9,
π2 = (0.3, 0.7), µ2 = ([0; 0; 0.01], [0; 0;−0.01]), and get
εi1 = 0. Input-dependent δi1 are computed using Eq. (13).
We construct a second batch of abstract models M̃i by
discretizing the space of M̂i. Then, we use the results of
[7] to get M̃i ⪯δ

i
2

εi2
M̂i with (ε12 = 0.006, δ12 = 0.002) and

(ε22 = 0.030, δ22 = 0.007). Note that we account for the
error inflicted by the internal input by augmenting the dis-
cretization error in the invariance constraint [20, Eq. (20d)].

Using the transitivity property in [17, Thm. 2], we have
M̃i ⪯δiεi Mi(θi) with δi = δi1+ δ

i
2 and εi = εi1+ε

i
2. To syn-

thesize local controllers, we bound (v1t −v2t ) ∈ [−0.15, 0.15]
and take the worst case in each step. The robust probability
of each subsystem satisfying their respective specification
is computed based on [17, Prop. 1] and is depicted in
Fig. 4 (left and middle) as functions of the initial state of
M1(θ1),M2(θ2). The global satisfaction probability of the
network is computed based on the individual probabilities
using Eq. (11) and is depicted in Fig. 4 (right) as a function
of the initial state of M2(θ2) for M1(θ1) initialized at
[s10; v

1
0 ] = [1.5; 1.05].

VI. CONCLUSION

In this paper, we extended the definition of sub-
simulation relations to establish quantitative relations be-
tween parametrized networks of systems and their ab-
stractions. Moreover, we provided results for systems with
complex stochastic behavior by approximating the uncer-
tain noise distribution using Gaussian mixture models. We
demonstrated the extensions on two intricate case studies. In
the future, we plan to address systems with noisy observa-
tions and partially observable systems.
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APPENDIX

A. Proof of Thm. 1

Proof. We show that M̂ is in an SSR with M by proving
that the conditions in Def. 5 hold, for the monolithic case of
i ∈ {1} (equivalent to [17, Def. 6]). Condition (a) holds by
setting the initial states x̂0 = x0.
ε-deviation: The proof of condition (c) is a trivial extension
to the one given for [11, Thm. 4.3].
δ-deviation: For condition (b), we complete the sub-
probability coupling vi in (10) to a probability kernel via

v̄i(dx̂i × dxi) = vi(dx̂i × dxi) + 1
1−vi(Rxi )

(14)
(
t(dxi)− vi(X̂i × dxi)

)(
t̂i(dx̂i)− vi(dx̂i × Xi)

)
,

omitting the argument θi for conciseness. Reference [16,
Thm. 1] for more details. We establish the following lemma.

Lemma 1: The sub-probability coupling vi in Eq. (10) is
maximal w.r.t. transition kernels (t̂i, ti) in (1) and (3) and
relation Rxi in (7), i.e., for the corresponding probability
kernel v̄i [16, Thm. 1] we have v̄i(Rxi) = vi(Rxi).

Proof. In the following, we drop the superscript i for clarity
of notation. We integrate v̄ in (14) over Rx and get
v(Rx) = v̄(Rx)− 1

1−v(Rx )
ϕ(Rx), where (15)

ϕ(Rx) :=
∫

X

(
t(dx)− v(X̂× dx)

)(
t̂(dx)− v(dx × X)

)
.

Using the definitions of v, t, and t̂ we expand and get

ϕ(Rx)=
∫

X

∫

W
δf(θ̂)+w(dx)pw(dw)

∫

W
δf(θ̂)+ŵ(dx)pŵ(dŵ),

with distributions
pw(dw) := min

{
0,NNK(dw|π, µ+ γ(θ),Σ)−NNK(dw|θ̂)

}
,

pŵ(dŵ) := min
{
NNK(dŵ|θ̂)−NNK(dŵ|π, µ+ γ(θ),Σ), 0

}
.

Since the distributions are disjoint and are identically mapped
onto X, we have ψ(Rx) = 0 and it follows from Eq. (15)
that v̄(Rx) = v(Rx). ■

Analogous to the proof of [11, Thm. 4.3], there exists a
probability kernel v̄ =

∏N
i=1 v̄

i over (X̂ × X,B(X̂ × X))
that couples (t̂, t) over Rx . Using Lem. 1, we obtain that
v̄(Rx) =

∏N
i=1 v

i(Rxi). Hence, following [16, Thm. 1] we
have that v :=

∏N
i=1 v

i defines a sub-probability coupling
of (t̂, t) over Rx . Note that v satisfies all conditions for a
valid sub-probability coupling of (t̂, t) over Rx :

v(X̂× X) =
N∏

i=1

vi(X̂i × Xi) =
N∏

i=1

vi(Rxi) = v(Rx),

v(dx̂× X) =
N∏

i=1

vi(dx̂i × Xi) ≤
N∏

i=1

t̂i(dx̂i) = t̂(dx̂),

v(X̂× dx) =
N∏

i=1

vi(X̂i × dxi) ≤
N∏

i=1

ti(dxi) = t(dx).

Since v(Rx) ≥
∏N
i=1(1−δi), we have δ = 1−∏N

i=1(1−δi).
This concludes the proof of Thm. 1. ■

B. Proof of Thm. 2

Proof. Due to the acyclic network structure, we can write
the satisfaction in terms of conditional probabilities similar
to Bayesian networks, namely
P (C×M ⊨ ψ) = P

(∧N

i=1
(Ci ×Mi ⊨ ψi)

)
, (16)

=

N∏

i=1

P
(
Ci ×Mi ⊨ ψi | Cj ×Mj ⊨ ψj , ∀j ∈ Pre(i)

)
.

Recall that a system Cj×Mj satisfies its specification ψj if
all its output traces yj satisfy Lj(yj) ⊨ ψj . We obtain (11)



by taking the minimum of the terms in the right-hand side
of (16) with respect to the trajectories in the condition set
Cj ×Mj ⊨ ψj . This concludes the proof. ■

C. Proof of Thm. 3

Proof. We add the safety specifications Ai to get

P (C×M ⊨ ψ) ≥ P
(
C×M ⊨ ψ ∧

(
∧Ni=1Ai

))
,

= P
(∧N

i=1
(Ci ×Mi ⊨ ψi) ∧ Ai

)
.

Next, we use a similar technique as in [9, Thm. 3.3] to get
a lower bound based on the local satisfaction probabilities
by considering the worst-case output traces of the individual
predecessors j ∈ Pre(i) satisfying their local safety speci-
fication Aj , i.e., Yj :=

{
yj : Lj(yj) ⊨ Aj

}
, and obtain

(12). ■

D. Proof of Thm. 4

Proof. The proof is similar to prior works [16], [17], and
showing that v in (10) is a sub-probability coupling of the
systems (1) and (3) over relationRx in (7) is straightforward.
To compute the corresponding parameter δ we integrate v
over the identity relation Rx and relax using the trivial
inequality min

{∑
i fi,

∑
i gi

}
≥∑

imin {fi, gi} to get

v(R|θ) ≥
K∑

k=1

∫

W

∫

X
δf(θ̂)+w+γ(θ)(dx)δf(θ)+w(dx)

×min
{
πkN (dw|µk,Σk), π̂kN (dw|µ̂k − γ(θ),Σk)

}
,

where we omit the dependence on (x, u) for conciseness. To
reach a simpler formulation, we expand using the Cholesky
decomposition Σk = LkL

⊤
k , where Lk is the lower triangular

matrix of Σk. We rearrange and get

v(R|θ) ≥
K∑

k=1

∫

W
min

{
πkN (dw|βk, I), π̂kN (dw|0, I)

}
,

with βk := µk − µ̂k + γ and utilizing the choice of offset
γ(x, u, θ) = f(x, u; θ) − f(x, u; θ̂) for all (x, u, θ). By
similar reasoning as in [20] we split the individual integrals
into integrations over disjoint halfspaces Ek, Êk:

v(R|θ) ≥
K∑

k=1

[
πk

∫

w∈Ek

N (dw|βk, I) + π̂k

∫

w∈Êk

N (dw|0, I)
]
.

For each component, the halfspaces are given by

Êk : β⊤
k w > ηkβ

⊤
k βk, Ek : β⊤

k w ≤ ηkβ⊤
k βk,

with ηk :=
1

2
− 1

β⊤
k βk

log
πk
π̂k

. We integrate and get

v(R|θ) ≥
K∑

k=1

πk

∫

w: β⊤
k w≥ηkβ⊤

k βk

N (dw|0, I) + π̂k

∫

w: β⊤
k w<ηkβ

⊤
k βk

N (dw|βk, I),

=

K∑

k=1

πk

∫

w: β⊤
k w≤−ηkβ⊤

k βk

N (dw|0, I) + π̂k

∫

ŵ: β⊤
k ŵ<(ηk−1)β⊤

k βk

N (dŵ|0, I),

=

K∑

k=1

πkcdf
(
− ηk ∥βk∥

)
+ π̂kcdf

(
(ηk − 1) ∥βk∥

)
,

where we use the invertability of the normal centered at zero
in the first step. Hence, by considering the supremum over
all θ ∈ Θ, we obtain Eq. 13. ■
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