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Abstract— Learning in multi-player games can model a large
variety of practical scenarios, where each player seeks to
optimize its own local objective function, which at the same time
relies on the actions taken by others. Motivated by the frequent
absence of first-order information such as partial gradients
in solving local optimization problems and the prevalence of
asynchronicity and feedback delays in multi-agent systems,
we introduce a bandit learning algorithm, which integrates
mirror descent, residual pseudo-gradient estimates, and the
priority-based feedback utilization strategy, to contend with
these challenges. We establish that for pseudo-monotone plus
games, the actual sequences of play generated by the proposed
algorithm converge a.s. to critical points. Compared with the
existing method, the proposed algorithm yields more consistent
estimates with less variation and allows for more aggressive
choices of parameters. Finally, we illustrate the validity of
the proposed algorithm through a thermal load management
problem of building complexes.

I. INTRODUCTION
With the proliferation of cyber-physical engineering sys-

tems and modern network applications, the non-cooperative
multi-player game has emerged as a valuable tool for model-
ing and investigating the decision-making process of agents
with interest conflicts [1]. Each participant in the game
seeks to unilaterally optimize its own objective, whose
value also depends on the action taken by others. Notable
practical applications include thermal load management of
autonomous buildings [2], supply-side risk management in
power markets [3], power control in wireless communication
[4], path planning and control of self-driving cars [5], etc.

Over the past few decades, the control and optimization
communities have devoted significant effort to developing
solution algorithms for non-cooperative games by reformu-
lating them as variational inequalities [6]. Recently, there
has been growing interest in distributed solutions under
partial information settings, as they offer advantages in
scalability and privacy preservation [7], [8], [9]. Despite their
promise in some cases, the applicability of these methods is
often limited by the requirement for the existence of first-
order/pseudo-gradient oracles or the full knowledge of the
objectives, which may not be available in practical settings.
Prompted by the need to relax the information requirement,
researchers approximate the missing pseudo-gradient infor-
mation with the actions taken and the resulting objective
values. This problem can then be fit into the framework of
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bandit online learning [10], where at every updating step,
each player selects an action, observes the realized objective
value, and updates its strategy according to the observed
result and the process repeats.

Another practical challenge that hinders the implementa-
tion in real-world scenarios is the latency between taking
action and receiving bandit feedback, which is further exacer-
bated in multi-agent systems, where agents could experience
heterogeneous delays. Latency can arise as a result of sig-
nificant communication delays or the fundamental limitation
that certain actions take time to manifest their effects. In the
context of routing problems [11], assessing the effectiveness
of a navigation strategy entails waiting for a driver to execute
the instructions, operate the vehicle, and record the time
elapsed. In light of the preceding consideration, the primary
objective of this work is to propose a bandit online learning
algorithm for multi-player continuous games that can ensure
convergence despite the presence of feedback delays.

Related Work: In the context of bandit learning in games
with instantaneous feedback, Bravo et al. [12] introduced a
bandit mirror descent (MD) method that ensures a.s. conver-
gence when the game is strictly monotone. The single-point
pseudo-gradient estimate is obtained via the simultaneous
perturbation stochastic approximation (SPSA) approach [13].
In the context of strongly monotone games and their variants,
the algorithms proposed in [14], [15], [16], [17] similarly
employ single-point estimates of the pseudo-gradient and
attain a O(1/𝑡1/2) convergence rate. The single-point estimates
are also applied in [18] and [19] for merely monotone games
and their variants. Given the susceptibility of single-point
estimates to large variances, a critical factor impacting the
efficiency of algorithms, Tatarenko et al. [15] introduced
the two-point estimate. This strategy mitigates variance-
related issues and enhances the convergence rate to O(1/𝑡)
for strongly monotone games. In the field of zeroth-order
optimization, Zhang et al. [20] considered a residual feedback
scheme to control the estimation variance. By integrating
residual pseudo-gradient estimate into the single-call extra-
gradient scheme, Huang et al. [21] developed two bandit
algorithms. The proposed algorithms only require a single
query per iteration and ensure a.s. convergence for pseudo-
monotone plus games and achieve 𝑂 (1/𝑡1−𝜖 ) convergence rate
for strongly monotone games.

To contend with the feedback delays in games, Huang
et al. [22] proposed an algorithm based on the improved
accelerated gradient descent for potential games, which can
tackle cases ranging from sublinear delays to superlinear
delays. Zhang et al. [23] focused on the general-sum Markov
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games where the agents are impacted by heterogeneous
reward delays and proposed the delay-adaptive multi-agent V-
learning to procure coarse-correlated equilibria. Of particular
relevance is [24], in which Helious et al. delved into the de-
velopment of a no-regret bandit learning algorithm for strictly
monotone games corrupted by homogeneous sublinear re-
ward delays. Nevertheless, the delicate balance between bias
and variance of the proposed method is elusive and requires
careful calibration. Moreover, its stringent requirements on
step sizes and query radius hinder its applicability.

Contributions: First, we propose a bandit learning al-
gorithm under feedback delays, where the delays can be
heterogeneous but upper-bounded by a constant or homo-
geneous with a sublinearly growing upper bound. Our al-
gorithm integrates mirror descent, residual pseudo-gradient
estimates, and the priority-based feedback utilization strategy.
It is the first algorithm that employs the variance control
strategy via single-point residual estimates in the scenario
of bandit learning with delays. Second, we establish the
a.s. convergence of the proposed algorithm for pseudo-
monotone plus games. While some of the proving techniques
have been previously established in [21], this paper places
additional emphasis on addressing the error caused by delays,
which can complicate the problem, particularly when two
subsequent realized objective values are required for each
single estimate. Compared to the existing method in [24],
the proposed algorithm in this work maintains a constant
upper bound for the estimation variance and relaxes the
conditions on step size and query radius by incorporating the
residual pseudo-gradient estimates. In addition, we evaluate
the performance of the solution algorithms using the thermal
load management problem of buildings. Compared to the
existing work, the proposed algorithm achieves faster and
more consistent convergence.

Basic Notations: For a set of vectors {𝑣𝑖}𝑖∈𝑆 , [𝑣𝑖]𝑖∈𝑆 or
[𝑣1; · · · ; 𝑣 |𝑆 |] denotes their vertical stack. For a vector 𝑣 and
a positive integer 𝑖, [𝑣]𝑖 denotes the 𝑖-th entry of 𝑣. Denote
N+ B N\{0} and R++ B (0, +∞). We let ∥·∥2 represent the
Euclidean norm, ∥·∥ a general norm, and ∥·∥∗ its dual. For a
set S, let 1S denote the indicator function for this set, i.e.,
1S (𝑥) = 1 if 𝑥 ∈ S and 0 otherwise. Let cl(S) denote the
closure of set S, int(S) the interior, and 𝜕S the boundary.
The symbols 𝑎 ∧ 𝑏 and 𝑎 ∨ 𝑏 stand for the lesser and the
greater of the two real numbers 𝑎 and 𝑏, respectively.

II. SETUP AND PRELIMINARIES
A. Problem Setup

In this subsection, we formalize the multi-player continu-
ous game with feedback delays that we will investigate and
introduce the assumptions to impose. In this 𝑁-player game
G, with the player set given by N B {1, . . . , 𝑁}, each player
𝑖 needs to optimize its own local objective by determining
its local action 𝑥𝑖 ∈ X𝑖, where X𝑖 ⊆ R𝑛𝑖 represents the
local strategy space of player 𝑖. For brevity, we let the
stack vector 𝑥 B [𝑥 𝑗] 𝑗∈N denote the global action, the stack
vector 𝑥 B [𝑥 𝑗] 𝑗∈N−𝑖 denote the action taken by all players
except player 𝑖 with N−𝑖 B N\{𝑖}. Similarly, denote the

global strategy space X B ∏
𝑗∈N X 𝑗 ⊆ R𝑛 with 𝑛 B

∑
𝑗∈N 𝑛

𝑗 .
Formally, given the action 𝑥−𝑖 taken by other players, each
player 𝑖 aims to solve the following local problem:

minimize𝑥𝑖 ∈X𝑖 𝐽𝑖 (𝑥𝑖; 𝑥−𝑖). (1)

The following conditions are imposed regarding the smooth-
ness of objective 𝐽𝑖’s and the properties of X𝑖’s.

Assumption 1: For each player 𝑖, the local objective func-
tion 𝐽𝑖 is continuously differentiable (𝐶1) in 𝑥 over the strat-
egy space X. The individual strategy space X𝑖 is compact and
convex. Moreover, each X𝑖 possesses a non-empty interior.

The underlying probability space is given by (Ω, F , P).
One operator we will leverage throughout is the pseudo-
gradient operator 𝐹 : X → R𝑛, which is defined as the
stack of the partial gradient given the smoothness imposed
in Assumption 1, i.e.,

𝐹 : 𝑥 ↦→ [∇𝑥𝑖 𝐽𝑖 (𝑥𝑖; 𝑥−𝑖)]𝑖∈N . (2)

The Lipschitz continuity of 𝐹 then entails the fact that each 𝐽𝑖
is 𝐶1 and X𝑖 compact, i.e., there exists some constant 𝐿, such
that for arbitrary 𝑥 and 𝑦 ∈ X, ∥𝐹 (𝑥) − 𝐹 (𝑦)∥∗ ≤ 𝐿∥𝑥 − 𝑦∥. In
the same vein, the gradient ∇𝑥𝐽𝑖 : X → R𝑛𝑖 is also Lipschitz
continuous and admits a tighter Lipschitz constant denoted by
𝐿𝑖. Throughout this work, we will concentrate on the solution
concept known as critical points (CPs) [25, Section 2], whose
definition is given as follows.

Definition 1: (Critical Points) A decision profile 𝑥∗ ∈ X is
a critical point of the non-cooperative game G if it solves the
associated (Stampacchia) variational inequality (VI), i.e.,

⟨𝐹 (𝑥∗), 𝑥 − 𝑥∗⟩ ≥ 0, ∀𝑥 ∈ X, (3)

which is typically denoted by the abbreviation VI(X, 𝐹).
Besides, the following assumption is postulated regarding the
monotonicity of 𝐹 to facilitate the convergence analysis.

Assumption 2: The pseudo-gradient 𝐹 is pseudo-
monotone plus on X, i.e., 𝐹 is pseudo-monotone, i.e., for
all 𝑥, 𝑦 ∈ X, ⟨𝐹 (𝑦), 𝑥 − 𝑦⟩ ≥ 0 =⇒ ⟨𝐹 (𝑥), 𝑥 − 𝑦⟩ ≥ 0, and
satisfies for any action profiles 𝑥, 𝑦 ∈ X, ⟨𝐹 (𝑦), 𝑥 − 𝑦⟩ ≥ 0 and
⟨𝐹 (𝑥), 𝑥 − 𝑦⟩ = 0 =⇒ 𝐹 (𝑥) = 𝐹 (𝑦).

Pseudo-monotone plus games are a broader class of games
than strictly monotone games, but they are not a subset or
a superset of merely monotone games. Examples of pseudo-
monotone plus games that are not merely monotone can be
found in [21, Section V.A][26].

B. Setup for Feedback Delays
In this work, we consider the scenario where there exists

some time lag between the time when an action is taken
and the time when the associated realized objective value
is received by the player. To simplify notation, we let the
realized objective value of player 𝑖 at the 𝑘-th iteration be
denoted by 𝐽𝑖

𝑘
. Then, for player 𝑖, the delay time of 𝐽𝑖

𝑘

is denoted by 𝑑𝑖
𝑘
, and this piece of bandit information is

available at iteration ⌈𝑘 + 𝑑𝑖
𝑘
⌉. We impose that the delay

time should grow at most sublinearly in the iteration 𝑘

when the delays are homogeneous or be upper bounded by



some constant when the delays are heterogeneous, which is
formally stated in the assumptions below.

Assumption 3: For each player 𝑖, the feedback delay 𝑑𝑖
𝑘

associated with the realized objective value 𝐽𝑖
𝑘

is a random
variable and 𝑑𝑖

𝑘
∈ [0, 𝑑 (𝑘)], where 𝑑 (𝑘) B 𝑘𝛼𝑑 + 𝑑, for some

constants 𝑑 ≥ 0 and 0 ≤ 𝛼𝑑 < 1.
Assumption 4: Either one of the following statements

holds:
(i) the delay 𝑑𝑖

𝑘
is upper-bounded by a constant 𝑑;

(ii) all the players experience the same delay, i.e., 𝑑1
𝑘
= · · · =

𝑑𝑁
𝑘

= 𝑑𝑘 .
The issue of handling delays that grow sublinearly or

even superlinearly relative to a global clock is receiving
increasing attention in the realm of distributed systems [27].
For example, in volunteer computing grids, the participation
of new and faster workers in the network can undermine the
performance of slower workers, causing their computation
requests to accumulate quickly over time and resulting in
growing delays.

C. Mirror Map and Mirror Descent
To streamline our subsequent discussion, we briefly intro-

duce mirror descent and related concepts in this subsection.
The interested readers are referred to [28, Ch. 4] for more
detailed information. Let B denote a Banach space and B∗
its dual. We first let 𝜓 : dom𝜓 → R with dom𝜓 ⊆ B denote
a distance generating function (DGF). Here, dom𝜓 refers to
the set where 𝜓 is well-defined and is assumed to be convex
and open. The DGF 𝜓 satisfies: (𝑖) 𝜓 is differentiable and
𝜇̃-strongly convex for some 𝜇̃ > 0; (𝑖𝑖) ∇𝜓(dom𝜓) = R𝑛; (𝑖𝑖𝑖)
cl(dom𝜓) ⊇ X and lim𝑥→𝜕(dom 𝜓) ∥∇𝜓(𝑥)∥∗ = +∞. With the
DGF 𝜓 in hand, the mirror map ∇𝜓∗ can be defined as:

∇𝜓∗ (𝑧) = argmax𝑥∈X{⟨𝑧, 𝑥⟩ − 𝜓(𝑥)}, (4)

which can be regarded as an extension of projection in
general spaces. We let 𝐷 (·, ·) : B × B → R represent the
Bregman divergence, whose formal expression is given by:

𝐷 (𝑝, 𝑥) = 𝜓(𝑝) − 𝜓(𝑥) − ⟨∇𝜓(𝑥), 𝑝 − 𝑥⟩,∀𝑝, 𝑥 ∈ dom𝜓. (5)

Assumption 5: (Bregman Reciprocity) The chosen DGF 𝜓

satisfies that when the sequence (𝑥𝑘)𝑘∈N+ converges to some
point 𝑝, i.e., ∥𝑥𝑘 − 𝑝∥ → 0, then 𝐷 (𝑝, 𝑥𝑘) → 0.
The above assumption is introduced to enable the Bregman
divergence 𝐷 (𝑝, ·) to function as a specific distance metric
with respect to 𝑝, thereby delineating a particular vicinity
around 𝑝. The prox-mapping 𝑃𝑥,X : B∗ → dom𝜓∩X, induced
by the Bregman divergence, is defined as:

𝑃𝑥,X (𝑦) = argmin𝑥′∈X{⟨𝑦, 𝑥 − 𝑥′⟩ + 𝐷 (𝑥′, 𝑥)}, (6)

which plays an essential role in mirror descent and its
variants. A lemma characterizing mirror maps and prox-
mappings that will be frequently used in the subsequent
analysis is given below.

Lemma 1: Consider the ambient Banach space B
equipped with norm ∥·∥ and a closed and convex feasible
set X ⊆ cl(dom𝜓) ⊆ B. Suppose 𝜓 : dom𝜓 → R is a DGF,

then the mirror map ∇𝜓∗ is 1/𝜇̃-Lipschitz continuous, i.e.,
∀𝑦1, 𝑦2 ∈ B∗, ∥∇𝜓∗ (𝑦1) − ∇𝜓∗ (𝑦2)∥ ≤ (1/𝜇̃)∥𝑦1 − 𝑦2∥∗.

Proof: See [21, Lemma A.1].
To solve VI(X, 𝐹), the mirror descent can be expressed as:

𝑋𝑘+1 = 𝑃𝑋𝑘 ,X (−𝛾𝑘𝑔𝑘) = ∇𝜓∗ (∇𝜓(𝑥𝑘) − 𝛾𝑘𝑔𝑘), (7)

where in the literature of stochastic VI, 𝑔𝑘 usually denotes
some noise-corrupted first-order information queried at 𝑋𝑘
and 𝛾𝑘 an appropriate updating step size. One prevalent
assumption is that there exists a first-order oracle to generate
𝑔𝑘 after observing 𝑋𝑘 , and given some proper filtration
(F𝑘)𝑘∈N+ , it holds that E [𝑔𝑘 | F𝑘] = 𝐹 (𝑋𝑘) and E [∥𝑔𝑘 ∥2∗ | F𝑘]
is a.s. bounded. The convergence properties of the actual
sequences and the ergodic sequences have been extensively
studied in [29], [30], [31].

III. BANDIT MIRROR DESCENT WITH FEEDBACK
DELAYS

A. Residual Pseudo-Gradient Estimate
Our blanket assumption throughout is that the first-order

oracle that returns 𝑔𝑘 is unavailable, and each player can only
observe its realized objective value associated with the action
taken. To address the absence of first-order information,
we leverage a pseudo-gradient estimate called the residual
pseudo-gradient estimate (RPG) [21] to approximate the
missing information from the observed objective values. At
each iteration 𝑘, initially, it is necessary to undertake the
following perturbation step:

𝑋̂ 𝑖𝑘 = (1 −
𝛿𝑘

𝑟 𝑖
)𝑋 𝑖𝑘 +

𝛿𝑘

𝑟 𝑖
(𝑝𝑖 + 𝑟 𝑖𝑢𝑖𝑘) = 𝑋̄ 𝑖𝑘 + 𝛿𝑘𝑢𝑖𝑘 , (8)

where 𝑢𝑖
𝑘

is randomly sampled from the unit sphere in
the 𝑛𝑖−dimensional Euclidean space and we define 𝑢𝑘 B

[𝑢𝑖
𝑘
]𝑖∈N; 𝛿𝑘 represents the random query radius at iteration

𝑘; B(𝑝𝑖 , 𝑟 𝑖) ⊆ X𝑖 is an arbitrary fixed ball within the feasible
set X𝑖 that centers at 𝑝𝑖 with radius 𝑟 𝑖; 𝑋̄ 𝑖

𝑘
B (1 − 𝛿𝑘/𝑟 𝑖)𝑋 𝑖𝑘 +

(𝛿𝑘/𝑟 𝑖)𝑝𝑖. The RPG associated with the states 𝑋𝑘 at 𝑘-th
iteration leverages the realized objective values from the
current iteration 𝐽𝑖

𝑘
B 𝐽𝑖 ( 𝑋̂ 𝑖

𝑘
; 𝑋̂−𝑖

𝑘
) and the previous iteration

𝐽𝑖
𝑘−1 B 𝐽𝑖 ( 𝑋̂ 𝑖

𝑘−1; 𝑋̂−𝑖
𝑘−1), which is formally given by

𝐺𝑖𝑘 B
𝑛𝑖

𝛿𝑘
(𝐽𝑖𝑘 − 𝐽𝑖𝑘−1)𝑢𝑖𝑘 . (9)

To analyze the properties of RPG, a smoothed version for
each local objective function 𝐽𝑖 is leveraged:

𝐽𝑖𝛿 (𝑥𝑖; 𝑥−𝑖) B
1
V𝑖
𝛿

∫
𝛿S−𝑖

∫
𝛿B𝑖

𝐽𝑖 (𝑥𝑖 + 𝜏𝑖; 𝑥−𝑖 + 𝜏−𝑖)𝑑𝜏𝑖𝑑𝜏−𝑖 , (10)

where S−𝑖 B
∏
𝑗∈N−𝑖 S 𝑗 ⊆ R𝑛

−𝑖 with each S 𝑗 representing a
unit sphere centered at the origin within R𝑛 𝑗 ; B𝑖 denotes the
unit ball centered at the origin inside R𝑛𝑖 ; V𝑖

𝛿
B vol(𝛿B𝑖) ·

vol(𝛿S−𝑖) is the normalizing volume constant of the area that
we are integrating over. One widely employed decomposition
in the existing literature is that

𝐺𝑖𝑘 =∇𝑥𝑖 𝐽𝑖 (𝑋𝑘) +
(
𝐺𝑖𝑘 − E [𝐺𝑖𝑘 | F𝑘]

)
+
(
E [𝐺𝑖𝑘 | F𝑘] − ∇𝑥𝑖 𝐽𝑖 (𝑋𝑘)

)
,

where we let 𝐵𝑖
𝑘
B E [𝐺𝑖

𝑘
| F𝑘] − ∇𝑥𝑖 𝐽𝑖 (𝑋𝑘) represent the

systematic error and 𝑉 𝑖
𝑘
B 𝐺𝑖

𝑘
− E [𝐺𝑖

𝑘
| F𝑘] the stochastic



error. Denote 𝐵𝑘 B [𝐵𝑖𝑘]𝑖∈N and 𝑉𝑘 B [𝑉 𝑖𝑘]𝑖∈N . Let (F𝑘)𝑘∈N+
be the filtration concerning the random exploration factor,
i.e., F𝑘 B 𝜎{𝑋0, 𝑢1, . . . , 𝑢𝑘−1}. Then we have the following
lemma to characterize the properties of 𝐵𝑘 .

Lemma 2: Suppose that Assumption 1 holds. Then at each
iteration 𝑘, the conditional expectation satisfies E [𝐺𝑖

𝑘
| F𝑘] =

∇𝑥𝑖 𝐽𝑖𝛿𝑘 ( 𝑋̄𝑘) a.s. for every 𝑖 ∈ N . Moreover, the systematic
error 𝐵𝑘 possesses a decaying upper bound ∥𝐵𝑘 ∥ ≤ 𝛼𝐵𝛿𝑘 for
some positive constant 𝛼𝐵.

Proof: See the proof of [21, Lemma 1 & Lemma 2].

B. Feedback Utilization Strategy
The systematic error 𝐵𝑖

𝑘
and stochastic error 𝑉 𝑖

𝑘
rooted in

the estimate (9) make it inappropriate to merely leverage
the most recent first-order estimate multiple times until a
more recent one arrives as what is done in [22]; otherwise,
the error will accumulate and endanger the convergence
of the iterations. In view of this, we adopt the priority-
based feedback utilization strategy: at each update, the first-
order estimate with the earliest timestamp will be used and
then discarded, similar to the approach employed in [24].
However, the single-point estimate strategy used in [24]
mandates solely one realized function value, in which case
it suffices to maintain a priority queue exclusively for these
values. In contrast, the RPG adopted in this work requires two
consecutive realized function values to obtain one estimate,
which necessitates maintaining a cache to store observed
function values and another priority queue for the resulting
RPG estimates.

In our feedback utilization strategy, two information
caches P𝑖

𝐽
and P𝑖

𝐺
are endowed for each player 𝑖. As reflected

in (9), two subsequent objective values (𝐽𝑖
𝑘

and 𝐽𝑖
𝑘−1) are

a prerequisite to compute 𝐺𝑖
𝑘
, and it is possible that one

arrives much earlier than the other. As such, cache P𝑖
𝐽

will
store all the objective values received and pop out the ones
that have been used twice in computing (9). For another
thing, caused by the uncertainty in the feedback delay 𝑑𝑖

𝑘
,

it is possible that at some iteration, player 𝑖 has no available
first-order estimates, while for some other iterations, multiple
estimates are at player 𝑖’s disposal. This motivates us to
design P𝑖

𝐺
as a priority queue with the timestamp of each

pseudo-gradient estimate as the key value. For notational
convenience, we introduce a map 𝑠𝑖 : N+ → N+ that maps
from the current iteration to the iteration where the first-order
estimate originates from. When 𝑃𝑖

𝐺
is empty at iteration 𝑘,

𝑠𝑖 (𝑘) = 1 and the action remains unchanged. We also note
that the map 𝑠𝑖 is implicitly parameterized by the random
sample 𝜔 ∈ Ω and could vary across this group of players
under Assumption 4 (𝑖). To account for the heterogeneity in
feedback delay (𝑑𝑖

𝑘
)𝑖∈N , we introduce a group iteration index

map 𝑠 : N+ → N𝑁+ , that projects from a certain iteration index
𝑘 to the stack of originated indices [𝑠𝑖 (𝑘)]𝑖∈N .

Below, we present two lemmas that characterize the
priority-based feedback utilization strategy, which our sub-
sequent convergence analysis hinges upon. The proof is
reported in Appendix A.

Lemma 3: For each player 𝑖 and arbitrary iteration 𝑘 ∈ N+,
we have the following:
(𝑖) 𝐾 𝑖∅ (𝑘) B |{𝑠 : P𝑖

𝐺
= ∅, 1 ≤ 𝑠 ≤ 𝑘}| ≤ min{𝑘, 𝑑 (𝑘) + 1};

(𝑖𝑖) if 𝑠𝑖 (𝑘) ≠ 1, then 𝑠𝑖 (𝑘) + 𝑑 (𝑠𝑖 (𝑘)) ≥ 𝑘.

C. The MD Algorithm with Feedback Delays

Algorithm 1 Bandit Learning with Reward Delays of CPs
Based on Mirror Descent (Player 𝑖)

1: Initialize: 𝑋 𝑖1 ∈ X𝑖 ∩ dom𝜓𝑖 chosen arbitrary; take action
𝑋̂ 𝑖1 and 𝐽𝑖1 = 𝐽𝑖 (𝑋 𝑖1; 𝑋−𝑖1 ) will arrive ⌈𝑑𝑖1⌉ iterations later;
𝐺𝑖1 = 0𝑛𝑖 ; 𝑝𝑖 , 𝑟 𝑖 to be the center and radius of an arbitrary
ball within the set X𝑖

2: procedure At the 𝑘-th iteration (𝑘 ∈ N+)
3: Receive R𝑖

𝑘
B {(𝑡, 𝐽𝑖𝑡 , 𝑢𝑖𝑡 ) : 𝑘 − 1 < 𝑡 + 𝑑𝑖𝑡 ≤ 𝑘}

4: P𝑖
𝐽
← P𝑖

𝐽
∪ R𝑖

𝑘

5: for (𝑡, 𝐽𝑖𝑡 , 𝑢𝑖𝑡 ) ∈ R𝑖𝑘 do
6: if (𝑡 + 1, 𝐽𝑖

𝑡+1, 𝑢
𝑖
𝑡+1) ∈ P𝑖𝐽 then

7: 𝐺𝑖
𝑡+1 ←

𝑛𝑖

𝛿𝑡+1
(𝐽𝑖
𝑡+1 − 𝐽𝑖𝑡 )𝑢𝑖𝑡+1, P𝑖𝐺 B P𝑖𝐺 ∪ {𝐺𝑖𝑡+1}

8: end if
9: if (𝑡 − 1, 𝐽𝑖

𝑡−1, 𝑢
𝑖
𝑡−1) ∈ P𝑖𝐽 then

10: 𝐺𝑖𝑡 ← 𝑛𝑖

𝛿𝑡
(𝐽𝑖𝑡 − 𝐽𝑖𝑡−1)𝑢𝑖𝑡 , P𝑖𝐺 B P𝑖𝐺 ∪ {𝐺𝑖𝑡 }

11: end if
12: P𝑖

𝐽
clears up the received feedback that has been

utilized twice
13: end for
14: if P𝑖

𝐺
≠ ∅ then

15: 𝑠𝑖 (𝑘) ← earliest index in P𝑖
𝐺

, P𝑖
𝐺
← P𝑖

𝐺
\{𝐺𝑖

𝑠𝑖 (𝑘) }
16: else
17: 𝑠𝑖 (𝑘) ← 1 ⊲ No update at this iteration
18: end if
19: 𝑋 𝑖

𝑘+1 ← 𝑃𝑋𝑖
𝑘
,X𝑖 (−𝛾𝑘𝐺𝑖𝑠𝑖 (𝑘) )

20: Randomly sample the direction 𝑢𝑖
𝑘+1 from S𝑖

21: 𝑋̂ 𝑖
𝑘+1 ← (1 −

𝛿𝑘+1
𝑟𝑖
)𝑋 𝑖
𝑘+1 +

𝛿𝑘+1
𝑟𝑖
(𝑝𝑖 + 𝑟 𝑖𝑢𝑖

𝑘+1)
22: Take action 𝑋̂ 𝑖

𝑘+1 and the realized objective value
𝐽𝑖
𝑘+1 B 𝐽𝑖 ( 𝑋̂ 𝑖

𝑘+1; 𝑋̂−𝑖
𝑘+1) will arrive ⌈𝑑𝑖

𝑘+1⌉ iterations later
23: end procedure
24: Return: {𝑋̂ 𝑖

𝑘
}𝑖∈N

The fusion of MD, RPG, and the priority-based feedback
utilization strategy results in the proposed algorithm for
bandit learning in continuous games with feedback delays,
which is detailed in Algorithm 1. As has been discussed in
[21], one prominent benefit we can reap from RPG is that
the associated stochastic error 𝑉𝑘 enjoys bounded variance
if the decaying rate of step size is faster than that of query
radius. It is worth mentioning that, Algorithm 1 leverages
𝐺̂𝑘 = 𝐺𝑠 (𝑘) B [𝐺𝑖𝑠𝑖 (𝑘) ]𝑖∈N rather than 𝐺𝑘 to implement the
action update at the 𝑘-th iteration, which is susceptible to
the approximation errors stemming from bandit estimation
and feedback delays. The existence of feedback delays then
disrupts the recurrent relation characterizing (𝐺̂𝑘)𝑘∈N+ , as
a result of which, the analysis of the boundedness of the
stochastic error and the estimates 𝐺𝑖

𝑘
in [21] cannot be

directly carried over. To facilitate later analysis, we set 𝐺̂1 =

𝐺1 = 𝐺0 = 0𝑛 and 𝐽𝑖0 = 𝐽𝑖1. In the lemma below, we will present



the sufficient condition to guarantee that the estimates 𝐺̂𝑘

enjoy a uniform upper bound across 𝑘 ∈ N+ and 𝜔 ∈ Ω. The
proof is reported in Appendix B.

Lemma 4: Suppose that Assumptions 1 and 3 hold. More-
over, step size (𝛾𝑘)𝑘∈N+ and query radius (𝛿𝑘)𝑘∈N+ are mono-
tonically decreasing and satisfy: lim𝑘→∞ 𝛾𝑘 = 0, ∑𝑘∈N+ 𝛾𝑘 = ∞,
lim𝑘→∞ 𝛿𝑘 = 0, 𝛿𝑘/𝛿𝑘+1 is uniformly bounded for all 𝑘 ∈
N+, lim𝑘→∞ 𝛾𝑘/𝛿𝑘 = 0. Considering (𝐺̂𝑘)𝑘∈N+ generated by
Algorithm 1, we have sup𝑘∈N+ ∥𝐺̂𝑘 ∥∗ < ∞.

For the feedback-delay scenario, the randomness originates
from two sources: the random exploration factor at each
iteration 𝑢𝑖

𝑘
and the feedback delay 𝑑𝑖

𝑘
associated with the

realized objective value 𝐽𝑖
𝑘
. Let the 𝜎-field reflecting the

delay information up to iteration 𝑘 be denoted as:

F 𝑑𝑘 B 𝜎{𝑑𝑖𝑡 : ∀𝑖 ∈ N , 1 ≤ 𝑡 ≤ 𝑘} (11)

Note that 𝑠𝑖 (𝑡) ∈ F 𝑑
𝑘

for all 1 ≤ 𝑡 ≤ 𝑘 and the available infor-
mation respecting random exploration factors 𝑢𝑖𝑡 depends on
F 𝑑
𝑘

. Based on the observation, we are prompted to consider
a more suitable 𝜎-field F̃𝑠 (𝑘) for this specific problem, rather
than the 𝜎-field F𝑘 previously discussed in Sec. III-A, which
is defined as:

F̃𝑘 B 𝜎
(
F 𝑑𝑘 ∪ {𝑢𝑖𝑠𝑖 (𝑡 ) : ∀𝑖 ∈ N , 1 ≤ 𝑡 ≤ 𝑘 − 1}

)
. (12)

With this definition in hand, we can then proceed to discuss
the asymptotic convergence results for the actual sequence
of play generated by Algorithm 1. The proof can be found
in Appendix C.

Theorem 1: Suppose the game G under consideration sat-
isfies Assumptions 1 to 5 and all the players of G follow
Algorithm 1 throughout the process. Moreover, the step
size (𝛾𝑘)𝑘∈N+ and the query radius (𝛿𝑘)𝑘∈N+ are chosen as
𝛾𝑘 = 𝛾0/(𝑘 + 𝐾𝛾)𝛼𝛾 and 𝛿𝑘 = 𝛿0/(𝑘 + 𝐾𝛿)𝛼𝛿 , respectively. The
selected parameters satisfy 0.5 < 𝛼𝛾 ≤ 1, 𝛼𝛾 > 𝛼𝛿 , 𝛼𝛾 + 𝛼𝛿 >
1, 2𝛼𝛾 − 𝛼𝑑 > 1. Then the actual sequence of play ( 𝑋̂𝑘)𝑘∈N+
converges to one of the CP 𝑥∗ almost surely.

IV. Numerical Experiments
To illustrate the effectiveness of the proposed algorithm,

we provide a numerical example of the thermal load man-
agement problem in a building complex. Suppose the load
aggregator under study consisting of 𝑁 buildings, indexed by
N B {1, . . . , 𝑁}. Over a given time horizon T B {1, . . . , 𝑇},
we use 𝑥𝑖𝑡 to represent the power consumption of building
𝑖 at a certain time slot 𝑡 ∈ T . Moreover, the concatenations
𝑥𝑖 B [𝑥𝑖𝑡 ] and 𝑥 B [𝑥𝑖] denote the power profile of building
𝑖 for all time slots and the energy profile of all buildings
in this load aggregator, respectively. The internal pricing
mechanism under consideration [2] discourages peak-demand
usage by incorporating an approximate version of Shapley
value, where each building 𝑖’s share of peak demand is de-
fined as 𝑅𝑖 (𝑥) = ∑

C𝑗 :𝑖∈C𝑗
(𝑁−|C𝑗 |) !( |C𝑗 |−1) !

𝑁 !

(
𝑉 (C𝑗 , 𝑥)−𝑉 (C𝑗\{𝑖}, 𝑥)

)
,

where C B {C1, . . . C𝑛𝑐 } with each C𝑗 ⊆ N( 𝑗 = 1, . . . , 𝑛𝑐)
denotes the clique set; the function 𝑉 is defined as 𝑉 (C𝑗 , 𝑥) =
1
𝐶

log
( ∑

𝑡∈T exp
( ∑

𝑙∈C𝑗 𝐶𝑥
𝑙
𝑡

) )
, where 𝐶 ∈ R++ is a constant

sufficiently large to make the log-sum-exp function a proper
smooth approximation to the maximum function.

With knowledge of the power profile 𝑥−𝑖 of other buildings,
each building 𝑖 seeks to find an optimal power control
strategy, which can be expressed as follows:

minimize𝑥𝑖 ∈X𝑖 (𝑝𝑒)𝑇𝑥𝑖 +𝑄𝑖 (𝑥𝑖) + 𝑝𝑑 · 𝑅𝑖 (𝑥)
subject to 𝑟 𝑖𝑡 = 𝑎

𝑖𝑟 𝑖𝑡−1 + 𝑏𝑖𝑥𝑖𝑡 , 𝑦𝑖𝑡 = 𝑐𝑖𝑟 𝑖𝑡 ,
𝑦𝑖
𝑡
≤ 𝑦𝑖𝑡 ≤ 𝑦̄𝑖𝑡 , 0 ≤ 𝑥𝑖𝑡 ≤ 𝑥𝑖 ,∀𝑡 ∈ T ,

(13)

where 𝑝𝑒 ∈ R𝑇++ denotes the energy price and 𝑝𝑑 ∈ R++
penalized the peak electricity usage of the aggregator; a
strongly convex quadratic function 𝑄𝑖 is introduced for the
convergence purpose; 𝑦𝑖𝑡 denotes the temperature of building
𝑖 at the 𝑡-th time slot and its dynamics are characterized
by the first and second equality constraints; the third con-
straint enforces that the temperature 𝑦𝑖𝑡 should be within a
comfort zone [𝑦𝑖

𝑡
, 𝑦̄𝑖𝑡 ]; the last constraint reflects the system

power capacity for each building. It can be proved that
this multi-player game admits a potential function Φ(𝑥) =∑
𝑖∈N

(
(𝑝𝑒)𝑇𝑥𝑖 +𝑄𝑖 (𝑥𝑖)

)
+ 𝑝𝑑 ·

∑
C𝑗 ∈C

(𝑁−|C𝑗 |) !( |C𝑗 |−1) !
𝑁 ! 𝑉 (C𝑗 , 𝑥).

In the experiments, twenty buildings (𝑁 = 20) are in-
volved in this game, and each building needs to determine
its energy profile for four different time slots (𝑇 = 4).
Suppose there are six cliques and the number of buildings
within each clique ranges from three to eight. For 𝑄𝑖 (𝑥𝑖) =
(𝑥𝑖)𝑇diag(𝜆𝑖1, . . . , 𝜆𝑖𝑛𝑖 )𝑥𝑖, each diagonal entry 𝜆𝑖 𝑗 is randomly
sampled from [0.04, 0.06]. The query radius 𝛿𝑘 and the step
size 𝛾𝑘 are set to be 𝛿𝑘 = 1/(𝑘 + 10)0.6 and 𝛾𝑘 = 1/(𝑘 + 103)0.9,
respectively. Regarding the feedback delay 𝑑𝑖

𝑘
, we consider

the case when 𝑑𝑖
𝑘

is upper bounded by 𝑑𝑘 = 103 while
the realized values of 𝑑𝑖

𝑘
vary across different buildings.

In addition, several experiments are conducted under the
setup that 𝑑𝑖

𝑘
is homogeneous in this group of buildings and

grows sublinearly. To compare with the existing work, we
implement the method in [24] with 𝛿𝑘 = 1/(𝑘 + 10)0.35 and
𝛾𝑘 = 1/(𝑘 + 103)0.9 as required by the associated convergence
theorem. Two metrics are employed to measure the perfor-
mance of Algorithm 1, which include the relative distance
between the NE and the perturbed actions, ∥ 𝑋̂𝑘 − 𝑥∗∥2/∥𝑥∗∥2,
and the difference between the potential function’s optimal
value and the values at the perturbed actions, Φ( 𝑋̂𝑘) −Φ∗.

The numerical results are illustrated in Fig 1. It can be
observed that when the feedback delay 𝑑𝑖

𝑘
grows no faster

than 𝑂 (
√
𝑘), the convergence rates of the generated sequences

are dominated by the first-order estimation error and no
significant difference is noted among 𝑑𝑘 = 103, 𝑑𝑘 = 𝑘0.1,
𝑑𝑘 = 5𝑘0.5, and 𝑑𝑘 = 10𝑘0.5. When the delay time 𝑑𝑖

𝑘
grows

faster and even approaches the rate of 𝑂 (𝑘), the errors
induced by the feedback delay outweigh those induced by
the estimation error, as reflected in the curves associated
with 𝑑𝑘 = 5𝑘0.75 and 𝑑𝑘 = 5𝑘0.99. Furthermore, the results in
Fig. 1 indicate that Algorithm 1 exhibits reduced variance,
more consistent sequences of play, and faster convergence
compared to the existing method in [24].

V. Conclusion
This paper studies the problem of bandit learning in

multi-player continuous games, which is further complicated



Fig. 1: Performance of the Proposed Algorithm Confronted
with Homogeneous and Heterogeneous Feedback Delays

by information delays. Compared with the existing method
introduced in [24], the algorithm proposed in this paper
incorporates the residual pseudo-gradient estimation strategy
and the mirror descent iteration, which loosens the conditions
imposed upon the query radius and the step sizes. The a.s.
convergence of the actual sequences of play generated by the
proposed algorithm is established for pseudo-monotone plus
games. One important direction for future research concerns
the case where the feedback delays grow as the iteration
proceeds and at the same time, they are heterogeneous across
the participants. Another potential future direction resides
in designing an algorithm that could tackle a more general
class of multi-player games, such as merely monotone games,
which are prevalent in the modeling of practical problems.
Nevertheless, when applied to merely monotone games,
mirror descent and most of its variants fail to converge and
are prone to be trapped in spurious solutions.

Appendix
A. Properties of the Feedback Utilization Strategy

Proof: (Proof of Lemma 3) For claim (𝑖), our focus will
be proving that 𝐾 𝑖∅ (𝑘) ≤ 𝑑 (𝑘) + 1 when 𝑑 (𝑘) + 1 < 𝑘, since it
is evident that 𝐾 𝑖∅ (𝑘) ≤ 𝑘. For a fixed 𝑘 ∈ N+, we denote the
constant 𝐷𝑘 B 𝑑 (𝑘), and the delay times up to the iteration 𝑘

satisfy 𝑑𝑖𝑡 ≤ 𝐷𝑘 for 𝑡 = 1, . . . , 𝑘. If each realized 𝐽𝑖𝑡 arrives 𝐷𝑘
iterations later, then throughout the iterate, (𝐽𝑖𝑡 )𝑡=1, · · · ,𝑘−𝐷𝑘 will
be received in sequence. At the 𝑡-th iteration with 𝐷𝑘+2 ≤ 𝑡 ≤
𝑘, player 𝑖 will have access to the estimate 𝐺𝑖

𝑡−𝐷𝑘 and employ
it in the action update. The total count of iterations without
action update equals 𝐷𝑘+1. Now we return to the case that the
delay time is characterized by the random variable 𝑑𝑖𝑡 . Since
𝑑𝑖𝑡 ≤ 𝐷𝑘 , the estimates (𝐺𝑖𝑡 )𝑡=2,...,𝑘−𝐷𝑘 will be available no
later than the constant case above and hence will be used in
the action update, which further implies that 𝐾 𝑖∅ (𝑘) ≤ 𝑑 (𝑘)+1.

For claim (𝑖𝑖), we will prove it by induction. Before pro-
ceeding to the analysis, we make some notational conventions
regarding the iteration indices and the sequence (𝑠𝑖 (𝑘))𝑘∈N+ .
Recall that when the estimate cache P𝑖

𝐺
is empty at iteration

𝑘, 𝑠𝑖 (𝑘) is manually set to 1. We let (ℓ𝑚)𝑚∈N+ B (𝑘 : 𝑠𝑖 (𝑘) ≠
1)𝑘∈N+ to denote the iteration indicies with action update. In
addition, we will use P𝑖

𝐺
(𝑘) to represent the temporary state

of the cache P𝑖
𝐺

at line 14 of the 𝑘-th iteration and 𝑡 ∈ P𝑖
𝐺
(𝑘)

to indicate 𝐺𝑖𝑡 ∈ P𝑖𝐺 (𝑘).
Initial condition: For ℓ1 and 𝐺𝑖

𝑠𝑖 (ℓ1 )
, we have either 𝑠𝑖 (ℓ1)+

𝑑 (𝑠𝑖 (ℓ1)) ≥ ℓ1 or 𝑠𝑖 (ℓ1) −1+𝑑 (𝑠𝑖 (ℓ1) −1) ≥ ℓ1; otherwise, 𝐺𝑖
𝑠𝑖 (ℓ1 )

can be evaluated and consumed at an earlier iteration, since
it is the first estimate and there is no queuing issue in P𝑖

𝐺
.

Induction step: For an arbitrary 𝑘 ∈ N+, we assume that
𝑠𝑖 (ℓ𝑘) + 𝑑 (𝑠𝑖 (ℓ𝑘)) ≥ ℓ𝑘 and need to show that the statement
hold for 𝑘 + 1, i.e., 𝑠𝑖 (ℓ𝑘+1) + 𝑑 (𝑠𝑖 (ℓ𝑘+1)) ≥ ℓ𝑘+1.
Case I (𝑠𝑖 (ℓ𝑘+1) ∈ P𝑖𝐺 (ℓ𝑘)): In this case, the first observation
is that 𝑠𝑖 (ℓ𝑘+1) ≥ 𝑠𝑖 (ℓ𝑘) + 1 since P𝑖

𝐺
pops out the estimate

with the earliest timestamp and 𝑠𝑖 (ℓ𝑘) is used first. Moreover,
given that 𝐺𝑖

ℓ𝑘+1
is already available at the ℓ𝑘-th iteration,

we have ℓ𝑘+1 = ℓ𝑘 + 1. Altogether, 𝑠𝑖 (ℓ𝑘+1) + 𝑑 (𝑠𝑖 (ℓ𝑘+1)) ≥
𝑠𝑖 (ℓ𝑘) + 1 + 𝑑 (𝑠𝑖 (ℓ𝑘)) ≥ ℓ𝑘 + 1 = ℓ𝑘+1.
Case II (𝑠𝑖 (ℓ𝑘+1) ∉ P𝑖𝐺 (ℓ𝑘)): In the case where 𝑠𝑖 (ℓ𝑘+1) ∉
P𝑖
𝐺
(ℓ𝑘), it can be possible that |P𝑖

𝐺
(ℓ𝑘) | = 1 or |P𝑖

𝐺
(ℓ𝑘) | ≥ 2

but 𝐺𝑖
𝑠𝑖 (ℓ𝑘+1 )

becomes available at ℓ𝑘 + 1 and has the earliest
timestamp among all available estimates in P𝑖

𝐺
(ℓ𝑘+1). In either

case, we must have either 𝑠𝑖 (ℓ𝑘+1) + 𝑑 (𝑠𝑖 (ℓ𝑘+1)) ≥ ℓ𝑘+1 or
𝑠𝑖 (ℓ𝑘+1) − 1 + 𝑑 (𝑠𝑖 (ℓ𝑘+1) − 1) ≥ ℓ𝑘+1 in the similar vein of the
initial condition; otherwise, 𝐺𝑖

𝑠𝑖 (ℓ𝑘+1 )
can be evaluated and

consumed at an earlier stage or 𝑠𝑖 (ℓ𝑘+1) ∈ P𝑖𝐺 (ℓ𝑘).

B. Proof of Lemma 4
Proof: We start by deriving a recurrent inequality

for the sequence (𝐺̂𝑘)𝑘∈N+ = (𝐺𝑠 (𝑘) )𝑘∈N+ . For the segment
corresponding to player 𝑖, we notice that

∥𝐺̂𝑖𝑘 ∥∗ = ∥𝐺𝑖𝑠𝑖 (𝑘) ∥∗ ≤



 𝑛𝑖

𝛿𝑠𝑖 (𝑘)
(𝐽𝑖
𝑠𝑖 (𝑘) − 𝐽

𝑖

𝑠𝑖 (𝑘)−1)𝑢
𝑖

𝑠𝑖 (𝑘)





∗

(𝑎)
≤ 𝑛𝑖

𝛿𝑠𝑖 (𝑘)
|⟨∇𝑥𝐽𝑖 ( 𝑋̃), 𝑋̂𝑠𝑖 (𝑘) − 𝑋̂𝑠𝑖 (𝑘)−1⟩|∥𝑢𝑖𝑠𝑖 (𝑘) ∥∗

(𝑏)
≤ 𝑛𝑖

𝛿𝑠𝑖 (𝑘)
∇̄𝑖 · ∥ 𝑋̂𝑠𝑖 (𝑘) − 𝑋̂𝑠𝑖 (𝑘)−1∥ · 𝑢̄𝑖∗,

where (𝑎) follows from the mean value theorem, and 𝑋̃

denotes some convex combination of 𝑋̂𝑠𝑖 (𝑘) and 𝑋̂𝑠𝑖 (𝑘)−1;
in (𝑏), we take the maximum ∇̄𝑖 B max𝑥∈X ∥∇𝑥𝐽𝑖 (𝑥)∥∗ and
denote the constant 𝑢̄𝑖∗ B ∥𝑢∥∗ where ∥𝑢∥2 = 1. Based on this,
we next derive a bound for ∥ 𝑋̂𝑠𝑖 (𝑘) − 𝑋̂𝑠𝑖 (𝑘)−1∥ as follows

∥ 𝑋̂𝑠𝑖 (𝑘) − 𝑋̂𝑠𝑖 (𝑘)−1∥
(𝑎)
= ∥𝑋𝑠𝑖 (𝑘) − 𝑋𝑠𝑖 (𝑘)−1 + 𝛿𝑠𝑖 (𝑘)𝜑𝑠𝑖 (𝑘)

− 𝛿𝑠𝑖 (𝑘)−1𝜑𝑠𝑖 (𝑘)−1∥
(𝑏)
≤ ∥𝑋𝑠𝑖 (𝑘) − 𝑋𝑠𝑖 (𝑘)−1∥ + 𝛿𝑠𝑖 (𝑘) 𝜑̄,

where we let 𝜑𝑠𝑖 (𝑘) B 𝑅−1 (𝑝 − 𝑋𝑠𝑖 (𝑘) + 𝑅𝑢𝑠𝑖 (𝑘) ) in (𝑎); for
(𝑏), we can find a constant 𝜑̄ such that 𝜑̄ ≥ ∥𝜑𝑠𝑖 (𝑘) −
(𝛿𝑠𝑖 (𝑘)−1/𝛿𝑠𝑖 (𝑘) )𝜑𝑠𝑖 (𝑘)−1∥ given that 𝜑𝑠𝑖 (𝑘) resides inside a
bounded set and the ratio 𝛿𝑠𝑖 (𝑘)−1/𝛿𝑠𝑖 (𝑘) is uniformly upper
bounded by some constant. By applying the MD iterate
and the 1/𝜇̃-Lipschitz continuity of the mirror map from
Lemma 1, we have

∥𝑋𝑠𝑖 (𝑘) − 𝑋𝑠𝑖 (𝑘)−1∥ = ∥∇𝜓∗ (∇𝜓(𝑋𝑠𝑖 (𝑘)−1) − 𝛾𝑠𝑖 (𝑘)−1𝐺̂𝑠𝑖 (𝑘)−1)

− ∇𝜓∗ (∇𝜓(𝑋𝑠𝑖 (𝑘)−1))∥ ≤
𝛾𝑠𝑖 (𝑘)−1

𝜇̃
∥𝐺̂𝑠𝑖 (𝑘)−1∥∗.



Thus, the pseudo-gradient of the game can be characterized
by the following relation:

∥𝐺̂𝑘 ∥∗ ≤
∑︁
𝑖∈N
∥𝐺̂𝑖𝑘 ∥∗ ≤

∑︁
𝑖∈N

( 𝛾𝑠𝑖 (𝑘)−1

𝛿𝑠𝑖 (𝑘)

𝑛𝑖∇̄𝑖 𝑢̄𝑖∗
𝜇̃
∥𝐺̂𝑠𝑖 (𝑘)−1∥∗

)
+ 𝛽1𝜑̄

≤ 𝛽1

𝜇̃

∑︁
𝑖∈N

( 𝛾𝑠𝑖 (𝑘)−1

𝛿𝑠𝑖 (𝑘)
∥𝐺̂𝑠𝑖 (𝑘)−1∥∗

)
+ 𝛽1𝜑̄,

where 𝛽1 B
∑
𝑖∈N 𝑛

𝑖∇̄𝑖 𝑢̄𝑖∗. For an arbitrary random sample
𝜔 ∈ Ω, we can obtain the following deterministic inequality:

∥𝐺̂𝑘 ∥∗ (𝜔) ≤
𝛽1

𝜇̃

∑︁
𝑖∈N

( 𝛾𝑠𝑖 (𝑘)−1

𝛿𝑠𝑖 (𝑘)
∥𝐺̂𝑠𝑖 (𝑘)−1∥∗ (𝜔)

)
+ 𝛽1𝜑̄.

Lemma 3 suggests that 𝑠𝑖 (𝑘) ≥ 𝑘 − 𝑑 (𝑠𝑖 (𝑘)) ≥ 𝑘 − 𝑑 (𝑘), and
we define the map 𝜋𝜔 : N+ → N+ parameterized by 𝜔 ∈ Ω as:

𝜋𝜔 (𝑘) = argmax1∨(𝑘−𝑑̄ (𝑘) ) ≤𝑡≤𝑘−1,𝑡∈N+
𝛾𝑡

𝛿𝑡+1
∥𝐺̂𝑡 ∥∗ (𝜔).

By definition, 𝜋𝜔 (𝑘) < 𝑘, ∀𝜔 and 𝑘. With the introduction of
𝜋𝜔, we can tackle the heterogeneity in 𝑠𝑖 (𝑘) and obtain:

∥𝐺̂𝑘 ∥∗ (𝜔) ≤
𝛽1

𝜇̃

∑︁
𝑖∈N

( 𝛾𝜋𝜔 (𝑘)
𝛿𝜋𝜔 (𝑘)+1

∥𝐺̂ 𝜋𝜔 (𝑘) ∥∗ (𝜔)
)
+ 𝛽1𝜑̄

= 𝛽2 (𝜋𝜔 (𝑘))∥𝐺̂ 𝜋𝜔 (𝑘) ∥∗ (𝜔) + 𝛽1𝜑̄,

where we let 𝛽2 (𝑡) B 𝛽1𝑁
𝜇̃
· 𝛾𝑡
𝛿𝑡+1

. Observe that as 𝑘 → ∞,
it follows that 𝑘 − 𝑑𝑘 → ∞, which further implies that
𝛽2 (𝜋𝜔 (𝑘)) → 0. Let 𝛽2 (𝑘) B 𝛽2 (𝑘) ∨1, and we can recursively
construct a constant 𝑔★ that could serve as a worst-case upper
bound regardless of 𝜔 as

𝑔★ = 𝛽1𝜑̄(1 +
𝐾★−1∑︁
𝑇=1

𝐾★−1∏
𝑡=𝑇

𝛽2 (𝑡)),

where we can find a constant index 𝐾★ independent of
𝜔, such that 𝛽2 (𝑘) < 𝜀 for some 𝜀 < 1 and all 𝑘 ≥
𝐾★. For another thing, for an arbitrary 𝑘 ∈ N+, ∥𝐺̂𝑘 ∥∗ (𝜔)
can be recurrently upper bounded regarding the sequence
(∥𝐺̂𝑘 ∥∗, ∥𝐺̂ 𝜋𝜔 (𝑘) ∥∗, ∥𝐺̂ (𝜋𝜔 )2 (𝑘) ∥∗, . . . , ∥𝐺̂1∥∗), where 𝜔 is omit-
ted for brevity. If 𝜋𝜔 (𝑘) < 𝐾★, there will be less than 𝑘 − 1
recurrent inequalities to link ∥𝐺̂𝑘 ∥∗ back to ∥𝐺̂1∥∗ = 0. As
such, the constant 𝑔★ serves as a uniform upper bound
for all the ∥𝐺̂𝑘 ∥∗ with 𝜋𝜔 (𝑘) < 𝐾★. In the case where
𝜋𝜔 (𝑘) ≥ 𝐾★, we focus on the latter portion of the estimate se-
quence, i.e., (∥𝐺̂𝑘 ∥∗, ∥𝐺̂ 𝜋𝜔 (𝑘) ∥∗, . . . , ∥𝐺̂𝐾Δ

∥∗, ∥𝐺̂ 𝜋𝜔 (𝐾Δ ) ∥∗) with
𝜋𝜔 (𝐾Δ) < 𝐾★ ≤ 𝐾Δ and ∥𝐺̂ 𝜋𝜔 (𝐾Δ ) ∥∗ (𝜔) ≤ 𝑔★. For this
subsequence, we have ∥𝐺̂𝑡 ∥∗ (𝜔) ≤ 𝜀∥𝐺̂ 𝜋𝜔 (𝑡 ) ∥∗ (𝜔) + 𝛽1𝜑̄, which
gives us a stable linear discrete-time system with 𝜀 < 1. Thus,
there exists a constant 𝑔̄★ such that sup𝑘∈N+ ,𝜔∈Ω∥𝐺̂𝑘 ∥∗ (𝜔) ≤ 𝑔̄★.

C. Almost-Sure Convergence of the Proposed Algorithm
To facilitate our later discussion, denote the event 𝐸 𝑖

𝑘
B

{P𝑖
𝐺

≠ ∅ at iteration 𝑘} and notice that 𝐸 𝑖
𝑘
∈ F̃𝑘 . In addition,

let 𝐸𝑘 B ∩𝑖∈N𝐸 𝑖𝑘 .
Lemma C.1: Suppose that step size 𝛾𝑘 = 𝛾0/(𝑘+𝐾𝛾)𝛼𝛾 with

𝛼𝛾 ≤ 1, and Assumption 3 holds. Then, ∑𝑘∈N 𝛾𝑘1𝐸𝑘 (𝜔) = ∞
for all 𝜔 ∈ Ω.

Proof: For arbitrary 𝜔 ∈ Ω, we have∑︁
𝑘∈N+

𝛾𝑘1𝐸𝑘 (𝜔) = lim
𝐾→∞

𝐾∑︁
𝑘=1

𝛾𝑘1𝐸𝑘 (𝜔)
(𝑎)
≥ lim

𝐾→∞

𝐾∑︁
𝐾∧⌈𝑑̄ (𝐾 )+2⌉𝑁

𝛾𝑘

= lim
𝐾→∞

𝐾∑︁
⌈𝑑̄ (𝐾 )+2⌉𝑁

𝛾𝑘 · · · · · · (★),

where (𝑎) is a result of Lemma 3, i.e., from the perspective
of each player, for the first 𝐾 iterations, there are at most
𝑑 (𝐾) + 1 iterations without action update. On account of
the monotonically decreasing property of 𝛾𝑘 , the worst-case
scenario is that these 𝑑 (𝐾) + 1 iterations sit at the very
beginning of the process and are different across this group
of players, contributing to a factor of 𝑁. When 𝛼𝛾 < 1,
(★) ≥ lim𝐾→∞

∫ 𝐾
⌈𝑑̄ (𝐾 )+2⌉𝑁 𝛾0 (𝑠 + 𝐾𝛾)−𝛼𝛾 𝑑𝑠 = lim𝐾→∞

𝛾0
1−𝛼𝛾 [(𝑠 +

𝐾𝛾)1−𝛼𝛾 ]𝐾⌈𝑑̄ (𝐾 )+2⌉𝑁 = ∞ since 1 − 𝛼𝛾 > 0 and 𝑑 (𝐾) ∝ 𝐾𝛼𝑑 with
𝛼𝑑 < 1. Likewise, when 𝛼𝛾 = 1, (★) ≥ lim𝐾→∞

∫ 𝐾
⌈𝑑̄ (𝐾 )+2⌉𝑁 𝛾0 (𝑠 +

𝐾𝛾)−1𝑑𝑠 = lim𝐾→∞ 𝛾0 [log(𝑠 + 𝐾𝛾)]𝐾⌈𝑑̄ (𝐾 )+2⌉𝑁 = ∞ given 𝛼𝑑 < 1.

In light of this lemma, we can now proceed to prove our
main result, which establishes the a.s. convergence of the
proposed algorithm.

Proof: (Proof of Theorem 1) By applying the standing
inequality of mirror descent ([21, Lemma A.2]), for an
arbitrary CP 𝑥∗ ∈ X, we have:

𝐷 (𝑥∗, 𝑋𝑘+1) ≤ 𝐷 (𝑥∗, 𝑋𝑘) − 𝛾𝑘 ⟨𝐺̂𝑘 , 𝑋𝑘 − 𝑥∗⟩ +
𝛾2
𝑘

2𝜇̃
∥𝐺̂𝑘 ∥2∗ . (C.1)

By the fact that ∑
𝑘∈N+ 𝛾

2
𝑘
< ∞ from the assumption and

sup𝑘∈N+ ,𝜔∈Ω∥𝐺̂𝑘 ∥∗ ≤ 𝑔̄★ from Lemma 4, we can claim that∑
𝑘∈N+ 𝛾

2
𝑘
/2𝜇̃∥𝐺̂𝑘 ∥2∗ < ∞, i.e., this part will play a compar-

atively negligible role in the convergence analysis. If 𝐸 𝑖
𝑘

happens, ⟨𝐺̂𝑖
𝑘
, 𝑋 𝑖
𝑘
− 𝑥𝑖∗⟩ can be decomposed as

⟨𝐺̂𝑖𝑘 , 𝑋 𝑖𝑘 − 𝑥𝑖∗⟩ = ⟨∇𝑥𝑖 𝐽𝑖 (𝑋𝑘), 𝑋 𝑖𝑘 − 𝑥𝑖∗⟩ +
𝑘∑︁

𝑡=𝑠𝑖 (𝑘)+1

⟨∇𝑥𝑖 𝐽𝑖 (𝑋𝑡−1)

− ∇𝑥𝑖 𝐽𝑖 (𝑋𝑡 ), 𝑋 𝑖𝑘 − 𝑥𝑖∗⟩ + ⟨𝐵𝑖𝑠𝑖 (𝑘) +𝑉
𝑖

𝑠𝑖 (𝑘) , 𝑋
𝑖
𝑘 − 𝑥∗⟩

The stacked inner product in (C.1) can then be examined
individually and be decomposed as follows:

− ⟨𝐺̂𝑘 , 𝑋𝑘 − 𝑥∗⟩ = −⟨𝐹 (𝑋𝑘), 𝑋𝑘 − 𝑥∗⟩1𝐸𝑘 −
∑︁
𝑖∈N

1(𝐸𝑘 )𝑐∩𝐸𝑖𝑘
·

⟨∇𝑥𝑖 𝐽𝑖 (𝑋𝑘), 𝑋 𝑖𝑘 − 𝑥𝑖∗⟩ −
∑︁
𝑖∈N

( 𝑘∑︁
𝑡=𝑠𝑖 (𝑘)+1

⟨∇𝑥𝑖 𝐽𝑖 (𝑋𝑡−1) − ∇𝑥𝑖 𝐽𝑖 (𝑋𝑡 ),

𝑋 𝑖𝑘 − 𝑥𝑖∗⟩ + ⟨𝐵𝑖𝑠𝑖 (𝑘) +𝑉
𝑖

𝑠𝑖 (𝑘) , 𝑋
𝑖
𝑘 − 𝑥∗⟩

)
1𝐸𝑖

𝑘

(𝑎)
≤ −⟨𝐹 (𝑋𝑘), 𝑋𝑘 − 𝑥∗⟩1𝐸𝑘 −

∑︁
𝑖∈N

1(𝐸𝑘 )𝑐∩𝐸𝑖𝑘
⟨∇𝑥𝑖 𝐽𝑖 (𝑋𝑘), 𝑋 𝑖𝑘 − 𝑥𝑖∗⟩

+
∑︁
𝑖∈N

( 𝑘∑︁
𝑡=𝑠𝑖 (𝑘)+1

𝐿𝑖𝐷X𝑖 ∥𝑋𝑡−1 − 𝑋𝑡 ∥ + ⟨𝐵𝑖𝑠𝑖 (𝑘) +𝑉
𝑖

𝑠𝑖 (𝑘) , 𝑋
𝑖
𝑘 − 𝑥𝑖∗⟩

)
1𝐸𝑖

𝑘

(𝑏)
≤ −⟨𝐹 (𝑋𝑘), 𝑋𝑘 − 𝑥∗⟩1𝐸𝑘 −

∑︁
𝑖∈N

1(𝐸𝑘 )𝑐∩𝐸𝑖𝑘
⟨∇𝑥𝑖 𝐽𝑖 (𝑋𝑘), 𝑋 𝑖𝑘 − 𝑥𝑖∗⟩

+
∑︁
𝑖∈N

( 𝑘∑︁
𝑡=𝑠𝑖 (𝑘)+1

𝐿𝑖𝐷X𝑖 ∥𝑋𝑡−1 − 𝑋𝑡 ∥ + 𝛼𝐵𝐷X𝑖 𝛿𝑠𝑖 (𝑘)



+ ⟨𝑉 𝑖
𝑠𝑖 (𝑘) , 𝑋

𝑖
𝑘 − 𝑥𝑖∗⟩1𝐸𝑖

𝑘

)
,

where the relation (a) follows from the 𝐿𝑖-Lipschitz con-
tinuity of ∇𝑥𝐽𝑖; the relation (b) can be derived by let-
ting 𝐷X𝑖 B max𝑥,𝑦∈X𝑖 ∥𝑥 − 𝑦∥ and applying Lemma 2. For
each ∥𝑋𝑡−1 − 𝑋𝑡 ∥, it entails Lemma 1 that ∥𝑋𝑡−1 − 𝑋𝑡 ∥ =

∥∇𝜓∗ (∇𝜓(𝑋𝑡−1))−∇𝜓∗ (∇𝜓(𝑋𝑡−1)−𝛾𝑡−1𝐺̂𝑡−1)∥ ≤ 𝛾𝑡−1∥𝐺̂𝑡−1∥∗/𝜇̃ ≤
𝛾𝑡−1𝑔̄★/𝜇̃. Lemma 3 indicates that 𝑠𝑖 (𝑘) ≥ 𝑘 − 𝑑 (𝑘) for all 𝑖.
Furthermore, since 𝑋 𝑖

𝑘
,1𝐸𝑖

𝑘
∈ F̃𝑘 while 𝑉 𝑖

𝑠𝑖 (𝑘) is independent
of F̃𝑘 , E [⟨𝑉 𝑖𝑠𝑖 (𝑘) , 𝑋

𝑖
𝑘
− 𝑥𝑖∗⟩1𝐸𝑖

𝑘
| F̃𝑘] = ⟨E [𝑉 𝑖

𝑠𝑖 (𝑘) | F̃𝑘], 𝑋
𝑖
𝑘
−

𝑥𝑖∗⟩1𝐸𝑖
𝑘
= 0. If we further take the conditional expectation

E [· | F̃𝑘] of both sides of the above inequality, it yields that

E [−⟨𝐺̂𝑘 , 𝑋𝑘 − 𝑥∗⟩ | F̃𝑘] ≤ −⟨𝐹 (𝑋𝑘), 𝑋𝑘 − 𝑥∗⟩1𝐸𝑘

+
∑︁
𝑖∈N

1(𝐸𝑘 )𝑐∩𝐸𝑖𝑘
∇̄𝑖𝐷X𝑖 + 𝛽3

𝑘∑︁
𝑡=𝑘−𝑑̄ (𝑘)+1

𝛾𝑡−1 + 𝛽4𝛿𝑘−𝑑̄ (𝑘) ,

where we let 𝛽3 B
∑
𝑖∈N

𝐿𝑖𝐷X𝑖 𝑔̄★
𝜇̃

and 𝛽4 B
∑
𝑖∈N 𝛼𝐵𝐷X𝑖 . We

then take E [· | F̃𝑘] of both sides of (C.1) and apply the bound
derived above to procure:

E [𝐷 (𝑥∗, 𝑋𝑘+1) | F̃𝑘] ≤ 𝐷 (𝑥∗, 𝑋𝑘) − 𝛾𝑘 ⟨𝐹 (𝑋𝑘), 𝑋𝑘 − 𝑥∗⟩1𝐸𝑘 + 𝛾𝑘∑︁
𝑖∈N

1(𝐸𝑘 )𝑐∩𝐸𝑖𝑘
∇̄𝑖𝐷X𝑖 + 𝛾𝑘𝛽3

𝑘∑︁
𝑡=𝑘−𝑑̄ (𝑘)+1

𝛾𝑡−1 + 𝛽4𝛾𝑘𝛿𝑘−𝑑̄ (𝑘) +
𝑔̄2
★

2𝜇̃
𝛾2
𝑘 .

(C.2)

Note that under Assumption 4(𝑖), (𝐸 𝑖
𝑘
)𝑐 happens for only

finitely many 𝑘, i.e., 1(𝐸𝑖
𝑘
)𝑐 = 1 for at most ⌈𝑑 + 1⌉ iterations,

while under Assumption 4(𝑖𝑖), 1(𝐸𝑘 )𝑐∩𝐸𝑖𝑘 ≡ 0. In either case,∑
𝑘∈N+ 𝛾𝑘

∑
𝑖∈N 1(𝐸𝑘 )𝑐∩𝐸𝑖𝑘

∇̄𝑖𝐷X𝑖 < ∞. For the next error term
associated with delays, we have 𝛾𝑘

∑𝑘

𝑡=𝑘−𝑑̄ (𝑘)+1 𝛾𝑡−1 ≤ 𝛾𝑘 ·
𝑑 (𝑘)𝛾𝑘−𝑑̄ (𝑘) ∝ 𝑂 (𝑘𝛼𝑑−2𝛼𝛾 ) and by choosing the parameters
such that 2𝛼𝛾 −𝛼𝑑 > 1, we ensure that this term is summable.
For the last two terms, trivially, 𝛾𝑘𝛿𝑘−𝑑̄ (𝑘) ∝ 𝑂 (𝑘−𝛼𝛾−𝛼𝛿 ) and
𝛾2
𝑘
∝ 𝑂 (𝑘−2𝛼𝛾 ), the summability of which follows from the

assumptions 𝛼𝛾 + 𝛼𝛿 > 1 and 𝛼𝛾 > 0.5 imposed. By the
Robbins-Siegmund theorem [32, Thm. 1], we arrive at the
claims: (𝑖) 𝐷 (𝑥∗, 𝑋𝑘) converges a.s. to a random variable that
is finite a.s.; (𝑖𝑖) ∑𝑘∈N+ 𝛾𝑘 ⟨𝐹 (𝑋𝑘), 𝑋𝑘−𝑥∗⟩1𝐸𝑘 < ∞ a.s. For each
𝜔 ∈ Ω̃ with Ω̃ defined as a sample subset with probability
one, by utilizing Lemma C.1, i.e., ∑

𝑘∈N+ 𝛾𝑘1𝐸𝑘 (𝜔) = ∞,
we deduce that lim inf𝑘→∞⟨𝐹 (𝑋𝑘), 𝑋𝑘 − 𝑥∗⟩(𝜔) = 0. Thus,
along a subsequence (𝑘𝑚)𝑚∈N+ , we have lim𝑘→∞⟨𝐹 (𝑋𝑘𝑚 ), 𝑋𝑘𝑚−
𝑥∗⟩(𝜔) = 0. By applying the boundedness of X and 𝑋𝑘 ∈ X,
we can find a further subsequence (ℓ𝑚)𝑚∈N+ ⊆ (𝑘𝑚)𝑚∈N+ such
that 𝑋ℓ𝑚 (𝜔) → 𝑋★(𝜔). Since 𝐹 is a continuous operator,
lim𝑚→∞⟨𝐹 (𝑋ℓ𝑚 (𝜔)), 𝑋ℓ𝑚 (𝜔) − 𝑥∗⟩ = ⟨𝐹 (𝑋★(𝜔)), 𝑋★(𝜔) − 𝑥∗⟩ = 0.
Since 𝑥∗ is a CP, ⟨𝐹 (𝑥∗), 𝑋★(𝜔) − 𝑥∗⟩ ≥ 0, which, together
with the pseudo-monotone plus property of 𝐹, implies that
𝐹 (𝑥∗) = 𝐹 (𝑋★(𝜔)). It then readily follows that for any
𝑥 ∈ X, ⟨𝐹 (𝑋★(𝜔)), 𝑥 − 𝑋★(𝜔)⟩ = ⟨𝐹 (𝑋★(𝜔)), 𝑥 − 𝑥∗ + 𝑥∗ −
𝑋★(𝜔)⟩ ≥ 0, which implies that 𝑋★(𝜔) is also a CP. Then
we can replace 𝑥∗ in (C.2) with 𝑋★(𝜔) and it follows that
𝐷 (𝑋★(𝜔), 𝑋𝑘) converges a.s. In addition, along the subse-
quence (ℓ𝑚)𝑚∈N+ , 𝐷 (𝑋★(𝜔), 𝑋ℓ𝑚 (𝜔)) → 0 by Assumption 5.
Therefore, 𝐷 (𝑋★(𝜔), 𝑋𝑘 (𝜔)) → 0 and we come to the conclu-
sion that 𝑋𝑘 converges to a CP a.s. Thus, the convergence

result also holds for the actual sequence of play ( 𝑋̂𝑘)𝑘∈N+
since 𝛿𝑘

𝑘→∞→ 0.
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