
ar
X

iv
:2

30
5.

06
01

0v
2 

 [
ee

ss
.S

Y
] 

 5
 S

ep
 2

02
3

On receding-horizon approximation in time-varying optimal control

Jintao Sun and Michael Cantoni

Abstract— The closed-loop stability and infinite-horizon per-
formance of receding-horizon approximations are studied for
non-stationary linear-quadratic regulator (LQR) problems. The
approach is based on a lifted reformulation of the optimal
control problem, under assumed uniform controllability and
observability, leading to a strict contraction property of the
corresponding Riccati operator. Leveraging this contraction
property, a stabilizing linear time-varying state-feedback ap-
proximation of the infinite-horizon optimal control policy is
constructed to meet a performance-loss specification. Its synthe-
sis involves only finite preview of the time-varying problem data
at each time step, over a sufficiently long prediction horizon.

Index Terms— Non-stationary discrete-time systems, LQR,
model predictive control, Riccati difference equations

I. INTRODUCTION

Consider the following infinite-horizon linear-quadratic

regulator (LQR) problem:

min
u

∞

∑
k=0

x′kQkxk + u′kRkuk, (1a)

where x0 = ξ , and

xk+1 = Akxk +Bkuk, k ∈ {0,1,2, . . .}, (1b)

for given problem data (Ak,Bk,Qk,Rk) and initial state ξ .

The task is to determine the cost minimizing infinite-horizon

control input sequence u = (u0,u1, . . .) and corresponding

state sequence x = (x0,x1, . . . ).
Under stabilizability and detectability conditions, a linear

state-feedback characterization of the optimal control policy

is well-known [1], [2]. It involves the stabilizing solution

of a corresponding non-stationary infinite-horizon Riccati

recursion. As such, without ab initio knowledge of the

problem data over all time, one can only approximate the

optimal policy at each time step.

In this paper, a lifted reformulation of (1) is employed to

construct a receding-horizon approximation of the infinite-

horizon optimal control policy. The key feature of the ap-

proximation is the use of only finite preview of the problem

data over a prediction horizon at each time step. It is

established that the receding-horizon policy is exponentially

stabilizing. Further, explicit bounds are given for setting

the prediction horizon length to achieve specified tolerance
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of infinite-horizon performance degradation. This is the

main contribution. The receding-horizon approximation is

ultimately a linear time-varying state-feedback controller.

Related time-varying work appears in [3] and [4]. In [3],

the analysis of infinite-horizon performance degradation is

somewhat implicit. By contrast, the explicit bounds pro-

vided here can be used for direct synthesis of a receding-

horizon approximation that achieves a performance-loss

specification. In [4], a Smoothed Online Convex Optimiza-

tion (SOCO) sensitivity analysis is used to study the perfor-

mance of a receding-horizon approximation of the optimal

policy for a possibly long but finite horizon problem in

terms of dynamic regret. The distinguishing feature of the

developments presented below relates to the way prediction

horizon length is linked to infinite-horizon performance loss.

In particular, the link is established via a strict contraction

property of the time-varying Riccati operator in the lifted

domain, as recently established in [5], which builds upon a

foundation result from [6]. Recent Riccati contraction based

analysis of receding-horizon schemes can be found in [7], [8]

for linear time-invariant (i.e., stationary) problems. Earlier

related work for stationary nonlinear problems appears in [9].

The paper is structured as follows. Notation and prelimi-

nary results are presented next. The lifted reformulation of

problem (1) is developed in Section II. Approximation by

receding-horizon control policies is discussed in Section III.

Results pertaining to exponential stability under receding-

horizon control are given in Section IV. Infinite-horizon

performance bounds and receding-horizon controller synthe-

sis are then considered in Sections V and VI. Concluding

remarks are given in Section VII.

A. Preliminaries

Notation: N denotes the set of natural numbers, N0 :=
N∪{0}, and for i ≤ j ∈ N0, [i : j] := {k ∈ N0 | i ≤ k ≤ j}.

The field of real numbers is denoted by R, and R>0 :=
{γ ∈ R | γ > 0}. For m,n ∈ N, the Euclidean space of

real-valued n-vectors, with norm | · |, and the space of real

m× n matrices, are denoted by Rn, and Rm×n, respectively.

The space Rn is implicitly associated with Rn×1. The n× n

identity matrix is denoted by In. The m× n matrix of zeros

is denoted by 0m,n. The transpose of M ∈ Rm×n is denoted

by M′ ∈ Rn×m; note, |x|2 = x′x for x ∈ Rn. When it exists,

the inverse of square M ∈ Rn×n is denoted by M−1 ∈ Rn×n

(i.e., M−1M = MM−1 = In); when the relevant inverses

exist, the Woodbury matrix identity (M1 + M2M3M4)
−1 =

M−1
1 −M−1

1 M2(M
−1
3 +M4M−1

1 M2)
−1M4M−1

1 holds. The in-

duced norm of M ∈ Rm×n is ‖M‖2 := max|x|=1 |Mx|. The

respective subsets of symmetric, positive semi-definite, and
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positive definite matrices, are denoted by Sn := {M ∈
R

n×n | M = M′}, S
n
+ := {M ∈ S

n | (∀x ∈ R
n) x′Mx ≥ 0},

and Sn
++ := {M ∈ Sn

+ | (∃γ ∈ R>0)(∀x ∈ Rn) x′Mx ≥ γ|x|2}.

For M ∈ Sn, all eigenvalues are real; the minimum value

is denoted by λmin(M) = min|x|=1 x′Mx, and the maximum

value by λmax(M) =max|x|=1 x′Mx. Also, given M1,M2 ∈ Sn,

the notation M1 ≺ M2 (resp. � M2) means (M2 − M1) ∈
Sn
++ (resp. (M2 − M1) ∈ Sn

+.) For M ∈ Sn
+, λmin(M) ≥ 0

and the matrix square-root is denoted by M1/2 ∈ Sn
+ (i.e.,

M1/2M1/2 = M.) The vector space of Rn-valued sequences is

denoted by ℓ(Rn), and (Rn)m denotes the m-times Cartesian

product Rn × ·· · ×Rn. For w = (w0,w1, . . . ) ∈ ℓ(Rn) and

a ≤ b ∈ N0, the vector w[a:b] := (wa, . . . ,wb) ∈ (Rn)(b−a+1);

note, w[a:a] = wa.

Definition 1. Given Y,Z ∈ Sn
++, the Riemannian distance is

δ (Y,Z) :=

√

n

∑
i=1

log2 λi, (2)

where {λ1, . . . ,λn} = spec{YZ−1} ⊂ R>0 is the spectrum

(i.e., set of eigenvalues) of YZ−1 ∈Rn×n.

Definition 2. When it exists, log(M) ∈ Rn×n is the unique

matrix logarithm for which M = exp(log(M)) ∈Rn×n, where

exp(·) := ∑k∈N0

1
k!(·)k denotes the matrix exponential.

Proofs of the following are deferred to the Appendix.

Lemma 1. Given any non-singular T ∈ Rn×n,

and {λ1, . . . ,λn} ⊂ R, the matrix logarithm of

M = T−1diag(λ1, . . . ,λn)T is

log(M) = T−1diag(log(λ1), . . . , log(λn))T.

Lemma 2. If M ∈ S
n
++, then log(M) ∈ S

n.

Lemma 3. For any Y,Z ∈ Sn
++,

δ (Y,Z) = ‖ log(Z− 1
2 YZ− 1

2 )‖F . (3)

Lemma 4. If M ∈ Sn
++ with λmin(M)≥ 1, then

‖ log(M)‖2 = log(‖M‖2).

Lemma 5. For any Y,Z ∈ Sn
++ with Y � Z,

‖Y −Z‖2 ≤ ‖Z‖2(exp(δ (Y,Z))− 1),

where δ (·, ·) is the Riemannian metric in (2).

II. A LIFTED REFORMULATION

A lifting approach is used to transform (1) into an LQR

problem that is 1-step controllable and observable; see [5].

Given problem data Ak ∈ R
n×n, Bk ∈ R

n×m, Qk ∈ S
n
+, Rk ∈

Sm
++, for k ∈ N0, define the d-step state transition matrix,

d ∈ N, by

Θk,d := Ak+d−1Ak+d−2 · · ·Ak, (4)

with Θk,0 := In. The corresponding d-step controllability

matrix is defined by

Ck,d :=
[

Θk+1,d−1Bk Θk+2,d−2Bk+1 . . . Θk+d,0Bk+d−1

]

.
(5)

Further, the d-step observability matrix is defined by

Ok,d :=











CkΘk,0

Ck+1Θk,1
...

Ck+dΘk,d











, (6)

where Ck := Q
1
2
k .

Assumption 1. There exist a,b,q,r ∈ R>0 such that for all

k ∈N0, ‖Ak‖2 ≤ a, ‖Bk‖2 ≤ b, ‖Qk‖2 ≤ q, and ‖Rk‖2 ≤ r.

Assumption 2. Ak in (1b) is non-singular for all k∈N0. This

is a standard assumption, which holds when (1b) arises from

the discretization of continuous-time dynamics, for example.

Assumption 3. There exists d ∈ N such that for all k ∈N0,

Ck,d has full row rank, and Ok,d has full column rank.

With d ∈ N as per Assumption 3, define

Ât := In(d+1)−
[

0n,nd 0n,n

diag(Adt , . . . ,Ad(t+1)−1) 0nd,n

]

, (7a)

B̂t :=

[

0n,md

diag(Bdt , . . . ,Bd(t+1)−1)

]

, (7b)

Ĉt :=
[

diag(Cdt , . . . ,Cd(t+1)−1) 0nd,n

]

, (7c)

for t ∈ N0, where Ct := Q
1
2
t . With

Φt :=
[

0n,nd In

]

Â−1
t

[

In

0nd,n

]

, (8a)

Γt :=
[

0n,nd In

]

Â−1
t B̂t , (8b)

Ξt := Ĉt Â
−1
t

[

In

0nd,n

]

, (8c)

∆t := Ĉt Â
−1
t B̂t , (8d)

the lifted problem data comprises

Q̃t := Ξ′
tΞt −Ξ′

t∆t R̃
−1
t ∆′

tΞt , (9a)

R̃t := diag(Rdt , . . . ,Rdt+d−1)+∆′
t∆t , (9b)

Ãt := Φt −ΓtR̃
−1
t ∆′

tΞt , (9c)

B̃t := Γt . (9d)

Remark 1. Under Assumption 2, and with d ∈ N as per

Assumption 3, Ãt is non-singular [5, Lem. 6], B̃t is full row

rank [5, Rem. 1], and Q̃t ∈ Sn
++ [5, Lem. 5], for all t ∈N0.

Assumption 4. The observability and controllability prop-

erty in Assumption 3 holds uniformly in the sense that

inft∈N0
λmin(Q̃t) > 0, and inft∈N0

λmin(B̃t B̃
′
t) > 0. It is also

assumed that inft∈N0
λmin(Ãt Ã

′
t)> 0.

Given T ∈ N, for t ∈ N0, χ ∈ Rn, and w =
(wt , . . . ,wt+T−1) ∈ ((Rm)d)T , let

JT (t,χ ,w) :=
t+T−1

∑
j=t

z′jQ̃ jz j +w′
jR̃ jw j (10a)

where

z j+1 = Ã jz j + B̃ jw j, j ∈ [t : t +T − 1], (10b)



with zt = χ , and Q̃t , R̃t , Ãt , B̃t , as given in (9). For ũ ∈
ℓ((Rm)d) define the infinite-horizon cost at time t ∈N0 as

J(t,χ , ũ) := lim
T→∞

JT (t,χ , ũ[t:t+T−1]), (11)

and the optimal cost-to-go as

V∞(t,χ) := min
ũ∈ℓ((Rm)d)

J(t,χ , ũ). (12)

It is well-known (e.g., see [1, Section 3.3] and [2]) that

V∞(t,χ) = χ ′Pt χ , (13)

where (Pt)t∈N0
⊂ S+ is the bounded positive semi-definite

solution of the (backward) recursion

Pt =Rt(Pt+1), (14)

where the Riccati operator is defined by

Rt (P) := Q̃t + Ã′
t(P−PB̃t(R̃t + B̃′

tPB̃t)
−1B̃′

tP)Ãt (15)

for P∈ Sn; n.b., the recursion does not have a boundary con-

dition. Existence and uniqueness of a bounded positive semi-

definite solution (Pt)t∈N0
is guaranteed under Assumption 3,

which implies uniform stabilizability and detectability [10].

The optimal control input ũ∗ = argminũ∈ℓ((Rm)d) J(0,ξ , ũ)
corresponds to the linear state-feedback control policy

ũt = µ∗(t, x̃t) :=−(R̃t + B̃′
tPt+1B̃t)

−1B̃′
tPt+1Ãt x̃t (16)

for the dynamics of the lifted system state given by

x̃t+1 = Ãt x̃t + B̃t ũt , t ∈ N0, (17)

with initial condition x̃0 = ξ . In particular, ũ∗t = µ∗(t, x̃t) [1],

[2]. The following result is taken from [5, Lemma 4].

Lemma 6. The optimal cost associated with the original

infinite-horizon problem (1) is equal to V∞(0,ξ ) = ξ ′P0ξ .

Remark 2. As shown in the proof of [5, Lemma 4], the

solution u∗ ∈ ℓ(Rm) of the original problem (1) can be

recovered from (16) as follows:

u∗[dt:d(t+1)−1] = µ∗(t, x̃t)− R̃−1
t ∆′

tΞt x̃t .

Remark 3. Since R̃t , R̃
−1
t ∈ Smd

++,

D(P) := (P−PB̃t(R̃t + B̃′PB̃t)
−1B̃′

tP)

= P1/2(I+P1/2B̃t R̃
−1
t B̃′

tP
1/2)−1P1/2 ∈ S

n
+

for all P ∈ S+; the equality holds by the Woodbury matrix

identity. So Rt(P) = Q̃t + Ã′
tD(P)Ãt ∈ Sn

++, because Q̃t ∈
Sn
++ as noted in Remark 1. Therefore, the unique positive

semi-definite solution (Pt)t∈N of (14) is positive definite, with

λmin(Pt)≥ λmin(Q̃t)> 0.

Within the time-varying context of this work, it is impor-

tant to note that implementation of (16) requires knowledge

of the lifted problem data (Ã j, B̃ j, Q̃ j, R̃ j) for all j ≥ t, as

needed to determine Pt+1 according to (14), and thus, u∗t
at time t ∈ N0. To overcome this impediment, a so-called

receding-horizon approximation can be employed. The im-

pact of such an approximation on stability and performance

is investigated in the subsequent developments.

III. RECEDING-HORIZON APPROXIMATION

A receding-horizon scheme is presented here to approxi-

mate the optimal policy (16) for the lifted reformulation of

the original infinite-horizon LQR problem (1); i.e., for (12)

with t = 0. With T ∈ N, and d ∈ N as per Assumption 3,

define LT : N0 ×Rn × ((Rm)d)T ×Sn
++ → R≥0 by

LT (t,χ ,w,X) := JT (t,χ ,w)+ z′t+T Xzt+T (18)

with JT and zt+T as per (10) for the given w =
(wt , . . . ,wt+T−1). Given bounded terminal penalty matrix

sequence (Xt+T )t∈N0
⊂ Sn

++, the T -step receding-horizon

scheme is defined by the state-feedback control policy

ũt = µRH
0 (t, x̃t), (19a)

where

(µRH
0 (t, x̃t), . . . ,µ

RH
T−1(t, x̃t)) = argmin

w∈((Rm)d)T

LT (t, x̃t ,w,Xt+T ).

(19b)

Remark 4. The receding-horizon policy (19) corresponds to

a sampled-data policy in the domain of the original problem:

u[td:(t+1)d−1] = µRH
0 (t,xtd)− R̃−1

t ∆′
tΞtxtd , (20)

where xk evolves according to (1b) from x0 = ξ .

The quality of this receding-horizon policy, as an approx-

imation of the optimal policy (16), is investigated subse-

quently in terms of both closed-loop stability and infinite-

horizon performance degradation. First, it is noted that

the receding-horizon policy (19) recovers the least infinite-

horizon cost with particular terminal penalty matrices; how-

ever, this requires ab initio knowledge of the problem data

over the infinite horiozon. Given T ∈ N, define WT : N0 ×
Rn ×Sn

++ →R≥0 by

WT (t,χ ,X) := min
w∈((Rm)d)T

LT (t,χ ,w,X), (21)

where LT is defined in (18).

Lemma 7. For all t ∈N0, and χ ∈R
n,

WT (t,χ ,X) = χ ′(Rt ◦ · · · ◦Rt+T−1(X))χ , (22)

with R•(·) as per (15). In particular,

WT (t,χ ,Pt+T ) = χ ′Pt χ =V∞(t,χ), (23)

where (Pt)t∈N0
is the bounded positive definite solution

of (14).

Proof. It is well known, e.g., see [1, Section 2.4] and [2], that

the value function of the finite horizon LQ optimal control

problem (21) takes the quadratic form given in (22). As such,

in view of (13) and (14), V∞(t,χ) = χ ′Pt χ = χ ′(R̃t ◦ · · · ◦
R̃t+T−1(Pt+T ))χ

′ =WT (t,χ ,Pt+T ).

For given initial state ξ ∈ Rn, and control input ũ ∈
ℓ((Rm)d), the performance loss with respect to the optimal

control input ũ∗ ∈ ℓ((Rm)d) as per (16), is defined by

β (ξ ) := J(0,ξ , ũ)− J(0,ξ , ũ∗), (24)



where the performance index J is given in (11). Note that

β (ξ ) = J(0,ξ , ũ)− ξ ′P0ξ . It quantifies the infinite-horizon

performance degradation. The aim here is to obtain an upper

bound on (24) for the control input generated by (19), and

a method for selecting the prediction horizon T ∈ N and

penalty matrix sequence to achieve specified performance-

loss tolerance.

IV. CLOSED-LOOP STABILITY

For suitable sequences of terminal penalty matrices, the

receding-horizon policy (19) is exponentially stabilizing.

Theorem 1. Given T ∈ N, let (Xt+T )t∈N0
⊂ Sn

++ be any

bounded terminal penalty matrix sequence such that

Xt+T �Rt+T (Xt+T+1) (25)

for all t ∈ N0, with Rt+T (·) as per (15). Then, the origin

is exponentially stable for (17) under the corresponding

receding-horizon state-feedback control policy (19).

Proof. With reference to (21), note that WT (t, x̃t ,Xt+T ) =
x̃′t(Rt ◦ · · · ◦Rt+T−1(Xt+T ))x̃t by Lemma 7. Thus, in view

of Remark 3, and the hypothesis Xt+T ∈ S++, WT is positive

and radially unbounded as a function of x̃t . Further, it can

be shown that t 7→ WT (t, x̃t ,Xt+T ) is strictly decreasing for

the evolution of x̃t according to (17) with ũt as per (19). For

v ∈ (Rm)d , define

wt+1(v) := (ũt+1, . . . , ũt+T−1,v) ∈ ((Rm)d)T .

Then,

LT (t + 1, x̃t+1,wt+1(v),Xt+T+1)

=WT (t, x̃t ,Xt+T )− x̃′tQ̃t x̃t − ũ′tR̃t ũt +Gt+T (v), (26)

where

Gt+T (v)

:=−x̃′t+T Xt+T x̃t+T + x̃′t+T Q̃t+T x̃t+T + v′R̃t+T v

+(Ãt+T x̃t+T + B̃t+T v)′Xt+T+1(Ãt+T x̃t+T + B̃t+T v).

By ‘completing-the-square’,

Gt+T (v) = (Kt+T x̃t+T + v)′Mt+T (Kt+T x̃t+T + v)

+ x̃′t+T (R̃t+T (Xt+T+1)−Xt+T )x̃t+T ,

where

Kt+T := M−1
t+T B̃′

t+T Xt+T+1Ãt+T ,

Mt+T := R̃t+T + B̃′
t+T Xt+T+1B̃t+T .

Now, by definition,

WT (t + 1, x̃t+1,Xt+T+1)≤ LT (t + 1, x̃t+1,wt+1(v),Xt+T+1),

and so it follows from (26) that for all v ∈ (Rm)d ,

WT (t + 1, x̃t+1,Xt+T+1)−WT (t, x̃t ,Xt+T )

≤ LT (t + 1, x̃t+1,wt+1(v),Xt+T+1)−WT (t, x̃t ,Xt+T )

=−x̃′tQ̃t x̃t − ũ′tR̃t ũt +Gt+T (v).

Further, since minv Gt+T (v) = x̃′t+T (R̃t+T (Xt+T+1) −
Xt+T )x̃t+T ≤ 0 by (25),

WT (t + 1, x̃t+1,Xt+T+1)−WT (t, x̃t ,Xt+T )

≤−x̃′tQ̃t x̃t − ũ′tR̃t ũt . (27)

This bound is strictly negative for non-zero x̃t since

inft∈N0
λmin(Q̃t)> 0 by Assumption 4, and R̃t ≻ 0. Therefore,

WT is a Lyapunov function for the closed-loop dynamics, and

the claimed exponential stability property follows from [11,

Theorem 5.7].

Next, Theorem 1 is specialized to a one-step policy,

which facilitates the presentation of an explicit exponential

bound on the closed-loop state trajectory. By the dynamic

programming principle [2], for given T ∈ N, and bounded

terminal penalty matrix sequence (Xt+T )t∈N0
⊂ Sn

++, the T -

step policy (19) is equivalent to the 1-step policy

ũt = argminwt∈(Rm)d L1(t, x̃t ,wt , X̂t+1)

=−(R̃t + B̃′
t X̂t+1B̃t)

−1B̃′
t X̂t+1Ãt x̃t , (28)

where X̂t+1 := Rt+1 ◦ · · · ◦ Rt+T−1(Xt+T ) is the terminal

penalty matrix for each t ∈ N0. Note, in particular, that

L1(t, x̃t ,wt , X̂t+1) = (Kt x̃t +wt)
′Mt(Kt x̃+wt)+ x̃′tRt (X̂t+1)x̃t ,

where Kt :=M−1
t B̃′

t X̂t+1Ãt and Mt = R̃t + B̃′
t X̂t+1B̃t . Also note

that, with Assumptions 1 and 4,

sup
t∈N0

‖Q̃t + Ã′
t(B̃t B̃

′
t)
−1B̃′

t R̃t B̃
′
t(B̃t B̃

′
t)
−1Ãt‖2 <+∞,

which implies supt∈N0
‖Rt(X)‖2 <+∞ for any X ∈ Sn

+, since

L1(t,χ ,−Kt χ ,X) ≤ L1(t,χ ,−B̃′
t(B̃t B̃

′
t)
−1Ãt χ ,X) for all χ ∈

Rn, and thus,

Rt(X)� Q̃t + Ã′
t(B̃t B̃

′
t)
−1B̃t R̃t B̃

′
t(B̃t B̃

′
t)
−1Ãt . (29)

Further, inft∈N0
λmin(Rt(X)) > 0 in view of Remark 3 and

Assumption 4.

Theorem 2. Consider the state-feedback control policy (28)

for given bounded sequence (X̂t+1)t∈N0
⊂ Sn

++. Suppose X̂t �
Rt(X̂t+1) for all t ∈ N, with Rt(·) as per (15). Then, the

evolution of (17) with ũt as per (28) satisfies

|x̃t |2 ≤
ω

ω

(

1−λ
/

ω
)t

|x̃0|2 (30)

for all t ∈ N0, with

ω := sup
t∈N0

‖Rt(X̂t+1)‖2<+∞, (31)

ω := inf
t∈N0

λmin(Rt(X̂t+1))>0, (32)

λ := inf
t∈N0

λmin

(

Q̃t +K′
t R̃tKt

)

≤ ω , (33)

and Kt := (R̃t + B̃′
tX̂t+1B̃t)

−1B̃′
t X̂t+1Ãt . Further, λ > 0.

Proof. In view of the hypothesis X̂t � Rt(X̂t+1), (27),

and (28),

W1(t + 1, x̃t+1, X̂t+2)−W1(t, x̃t , X̂t+1)

≤−x̃′tQ̃t x̃t − ũ′tR̃t ũt ≤−λ |x̃t |2, (34)



with λ as per (33). Note that λ ≥ inft∈N0
λmin(Q̃t) > 0 by

Assumption 4, and that λ ≤ ω , because

x̃′tQ̃t x̃t + ũ′tR̃t ũt = x̃′tRt(X̂t+1)x̃t − x̃′t+1X̂t+1x̃t+1

≤ x̃′tRt(X̂t+1)x̃t

for t ∈N0. Now, W1(t, x̃t , X̂t+1) = x̃′tRt(X̂t+1)x̃t by Lemma 7,

and as such,

ω |x̃t |2 ≤W1(t, x̃t , X̂t+1)≤ ω |x̃t |2. (35)

Combining (34) and (35) yields

W1(t + 1, x̃t+1, X̂t+2)≤ (1−λ
/

ω)W1(t, x̃t , X̂t+1),

for all t ∈ N0. Therefore,

W1(t, x̃t , X̂t+1)≤ (1−λ
/

ω)tW1(0, x̃0, X̂1). (36)

Finally, using (35) in (36), it follows that

|x̃t |2 ≤
1

ω
W1(t, x̃t , X̂t+1)≤

1

ω
(1−λ

/

ω)tW1(0, x̃0, X̂1)

≤ ω

ω
(1−λ

/

ω)t |x̃0|2,

as claimed.

V. BOUNDED PERFORMANCE LOSS WITH T = 1

As elaborated below, given any bounded 1-step terminal

penalty matrix sequence (X̂t+1)t∈N0
that (i) bounds the posi-

tive definite solution of (14), and (ii) satisfies X̂t �Rt(X̂t+1),
it is possible to bound the infinite-horizon performance

loss associated with the corresponding state-feedback control

policy (28), relative to the optimal policy (16). The synthesis

of such a sequence is considered in Section VI.

Lemma 8. Given X ,P∈ Sn
++, if X � P, then Rt(X)�Rt(P)

for all t ∈ N0, with Rt(·) as per (15).

Proof. This result is taken from [12, Lemma 10.1].

Lemma 9. Given X ,P ∈ Sn
++, if X � P, then

W1(t,χ ,X)−W1(t,χ ,P)≤ ‖P‖2|χ |2(exp(δ (X ,P))− 1)

for all t ∈ N0, and χ ∈ Rn, with δ (·, ·) as per (2), and

W1(·, ·, ·) as per (21).

Proof. By Lemma 7, W1(t,χ ,X) = χ ′R̃t(X)χ , and

W1(t,χ ,P) = χ ′R̃t(P)χ , whereby

W1(t,χ ,X)−W1(t,χ ,P) = χ ′R̃t(X)χ − χ ′R̃t(P)χ

≤ |χ |2‖R̃t(X)−R̃t(P)‖2. (37)

Given X � P by hypothesis, X̂ := R̃t (X) � R̃t(P) =: P̂ by

Lemma 8, and thus,

‖X̂ − P̂‖2 ≤ ‖P‖2(exp(δ (X̂ , P̂))− 1) (38)

by Lemma 5. Since R̃t(·) is a contraction [5, Theorem 1],

in the sense that

δ (X̂ , P̂) = δ (R̃t (X),R̃t(P))≤ δ (X ,P),

it follows from (38) that ‖X̂ − P̂‖2 = ‖R̃t(X)−R̃t(X)‖2 ≤
‖P‖2(exp(δ (X ,P))− 1), which in combination with (37)

yields the result.

Theorem 3. Consider the state-feedback control policy (28)

for given bounded sequence (X̂t+1)t∈N0
⊂ Sn

++. Suppose

X̂t �Rt(X̂t+1), X̂t � Pt , and δ (X̂t ,Pt)≤ η ,

for all t ∈N, with η ∈R>0, δ (·, ·) as per (2), (Pt)t∈N0
as the

bounded positive definite solution of (14), and Rt(·) as per

(15). Then, for initial state ξ ∈ Rn, the performance loss as

defined in (24) satisfies

β (ξ )≤ λ

λ

ω

ω
ω(exp(η)− 1)|ξ |2,

with

λ := sup
t∈N0

‖Pt‖2 <+∞, (39)

and ω,ω ,λ ∈ R>0 as per (31), (32), and (33).

Proof. Let x̃t evolve from x̃0 = ξ according to (17) with the

input ũt as per (28). Further, let l(t, x̃t) := x̃′tQ̃t x̃t + ũ′t R̃t ũt ,

noting that

l(t, x̃t) =W1(t, x̃t , X̂t+1)− x̃′t+1X̂t+1x̃t+1, (40)

where W1 is given in (21). Since W1(t, x̃t ,Pt+1) = x̃′tPt x̃t by

Lemma 7, and since X̂t+1 � Pt+1 by hypothesis,

l(t, x̃t)≤W1(t, x̃t , X̂t+1)−W1(t, x̃t ,Pt+1)

+ x̃′tPt x̃t − x̃′t+1Pt+1x̃t+1

≤ ‖Pt+1‖2|x̃t |2(exp(δ (X̂t+1,Pt+1))− 1)

+ x̃′tPt x̃t − x̃′t+1Pt+1x̃t+1

≤ λ |x̃t |2(exp(η)− 1)+ x̃′tPt x̃t − x̃′t+1Pt+1x̃t+1,

where λ <+∞ as (Pt)t∈N0
is bounded, the second inequality

holds by Lemma 9, and the last follows from (39) and the

hypothesis δ (X̂t+T ,Pt+T )≤ η . As such,

N

∑
t=0

l(t, x̃t )≤λ(exp(η)− 1)
N

∑
t=0

|x̃t |2 + ξ ′P0ξ − x̃′N+1PN+1x̃N+1,

for all N ∈ N. Since x̃N+1 → 0 as N → ∞ by Theorem 2, it

follows from (30) that

J(0,ξ , ũ) = lim
N→∞

N

∑
t=0

lt(x̃t)

≤ λ (exp(η)− 1) lim
N→∞

N

∑
t=0

|x̃t |2 + ξ ′P0ξ

≤ λ (exp(η)− 1)
ω

ω

ω

λ
|ξ |2 + ξ ′P0ξ .

Therefore,

β (ξ ) = J(0,ξ , ũ)− ξ ′P0ξ ≤ (exp(η)− 1)
λ

λ

ω

ω
ω |ξ |2,

as claimed.



VI. RECEDING-HORIZON POLICY SYNTHESIS

In this section, it is shown how to set the prediction

horizon T ∈N, and construct a sequence of terminal penalty

matrices, to achieve a performance loss specification for the

receding-horizon policy (19). The approach is based on a

result, taken from [5], that establishes a strict contraction

property of the Riccati operator given in (15).

Given T ∈ N, the proposed terminal penalty matrix se-

quence (Xt+T )t∈N0
is given by

Xt+T = Q̃t+T + Ã′
t+T (B̃t+T B̃′

t+T )
−1B̃t+T R̃t+T

× B̃′
t+T (B̃t+T B̃′

t+T )
−1Ãt+T ∈ S

n
++. (41)

Remark 5. In view of Assumptions 1 and 4, with Xt+T as

per (41), supt∈N0
‖Xt+T‖2 <+∞.

Lemma 10. Given T ∈ N, and (Xt+T )t∈N0
as per (41), let

X̂t+1 :=Rt+1 ◦ · · · ◦Rt+T−1(Xt+T ), (42)

for t ∈N0. Then, X̂t �Rt (X̂t+1), and X̂t � Pt , where (Pt)t∈N0

is the bounded positive definite solution of (14). Further,

supt∈N0
‖X̂t+1‖2 <+∞.

Proof. Given (41), it follows from (29) that Rt+T−1(Xt+T )�
Xt+T−1 for all t ∈N, and thus, X̂t �Rt(X̂t+1) by Lemma 8.

Similarly, Xt+T−1 � Rt+T−1(Pt+T ) = Pt+T−1 for all t ∈
N, and thus, X̂t = Rt ◦ · · · ◦ Rt+T−2(Xt+T−1) � Rt ◦ · · · ◦
Rt+T−2(Pt+T−1) = Pt . Boundedness of (X̂t+1)t∈N0

also fol-

lows from (29) and Assumptions 1 and 4.

The following is taken from [5, Thm. 1]. It characterizes

a strict contraction property of the Riccati operator (15) with

respect to the Reimannian metric in Definition 1.

Lemma 11. For all t ∈ N, and Y,Z ∈ Sn
++,

δ (Rt (Y ),Rt (Z))≤ ρt ·δ (Y,Z), (43)

where ρt = ζt/(ζt + εt)< 1,

ζt = ‖(Q̃t + Q̃t Ã
−1
t B̃t R̃

−1
t B̃′

t(Ã
′
t)
−1Q̃t)

−1‖2, (44a)

εt = λmin(Ã
−1
t B̃t(R̃t+B̃′

t(Ã
′
t)
−1Q̃t Ã

−1
t B̃t)

−1B̃′
t(Ã

′
t)
−1). (44b)

Lemma 12. Given T ∈N, with (Xt+T )t∈N0
as per (41), and

(Pt)t∈N0
as the bounded positive definite solution of (14), the

Riemannian distance δ (Xt+T ,Pt+T )≤ δ for all t ∈N0, where

δ :=
√

n log
(

sup
t∈N0

‖Xt+T‖2

λmin(Pt+T )

)

(45)

≤
√

n log
(

sup
t∈N0

‖Xt+T‖2

λmin(Q̃t+T )

)

<+∞. (46)

Proof. From (29), Pt+T = R̃t+T (Pt+T+1) � Xt+T for all t ∈
N0. So using Lemmas 3 and 4, it follows that

δ (Xt+T ,Pt+T ) = ‖ log(P
− 1

2
t+T Xt+T P

− 1
2

t+T )‖F

≤
√

n‖ log(P
− 1

2
t+T Xt+T P

− 1
2

t+T )‖2

=
√

n log(‖P
− 1

2
t+T Xt+T P

− 1
2

t+T‖2)

≤
√

n log(‖Xt+T‖2/λmin(Pt+T )),

which gives (45). Since Pt+T � Q̃t+T for all t ∈ N0 (see

Remark 3), ‖P−1
t+T‖2 ≤ 1/λmin(Q̃t+T ), which with (45)

gives (46). Finiteness of the bound follows from Remark 5

and Assumption 4.

The following result builds upon Theorem 3. For given

prediction horizon T ∈ N, and with the terminal penalty

matrix sequence set according to (41), the closed-loop is

exponentially stable under the T -step receding-horizon pol-

icy (19), with bounded performance loss.

Theorem 4. Given T ∈N, and (Xt+T )t∈N0
as per (41), con-

sider the receding-horizon state-feedback control policy (19).

For all initial states ξ ∈Rn, the performance loss as defined

in (24) satisfies

β (ξ )≤ λ

λ

ω

ω
ω
(

exp
(( ζ

ζ + ε

)T−1
δ
)

− 1
)

|ξ |2 (47)

with

ζ := sup
t∈N0

ζt <+∞, ε := inf
t∈N0

εt >0, (48)

and ω ,ω ,λ ,λ ,ζt ,εt ,δ ∈ R>0 as per (31), (32), (33), (39),

(44), and (45), using (X̂t+1)t∈N0
as per (42).

Proof. As observed in the preamble to Theorem 2, with

(X̂t+1)t∈N0
as per (42), the T -step receding-horizon control

policy (19) is equivalent to the 1-step policy (28). Now, by

Lemma 10, X̂t �Pt , and X̂t �Rt(X̂t+1), for all t ∈N. Further,

δ (X̂t ,Pt)

= δ (Rt ◦ · · · ◦Rt+T−2(Xt+T−1),Rt ◦ · · · ◦Rt+T−2(Pt+T−1))

≤
( ζ

ζ + ε

)T−1

δ (Xt+T−1,Pt+T−1)≤
( ζ

ζ + ε

)T−1

δ ,

by repeated application of Lemma 11. In particular, Theo-

rem 3 applies, which yields the bound (47).

It remains to show that ζ <+∞ and ε > 0. First, observe

that for all Z ∈ S
q
++, and Y ∈Rp×q with full row rank,

λmin(YZY ′) = min
|x|=1

x′Y ZY ′x

= min
|x|=1

(Y ′x)′Z(Y ′x)
|Y ′x|2

x′YY ′x
|x|2 ≥λmin(Z)λmin(YY ′),

and λmax(Y ZY ′) = max|x|=1 x′YZY ′x ≤ λmax(Z)λmax(YY ′).
Further, λmax(Z

−1) = 1
/

λmin(Z), and when p = q, λmin(Z)≤
λmin(Z +YY ′) and λmax(Z +YY ′) ≤ λmax(Z) + λmax(YY ′).
Using these inequalities, it follows from (48), and (44),

that ζ = supt∈N0
1
/

λmin(Q̃t + Q̃t Ã
−1
t B̃t R̃

−1
t B̃′

t(Ã
′
t)
−1Q̃t) ≤

1
/

inft∈N0
λmin(Q̃t), and

ε ≥ inf
t∈N0

λmin((R̃t+B̃′
t(Ã

′
t)
−1Q̃t Ã

−1
t B̃t)

−1)

×λmin(B̃t B̃
′
t)λmin(Ã

−1
t (Ã′

t)
−1)

= inf
t∈N0

λmin(B̃t B̃
′
t)
/

(

λmax(R̃t+B̃′
t(Ã

′
t)
−1Q̃t Ã

−1
t B̃t)λmax(Ã

′
t Ãt)

)

≥ inf
t∈N0

λmin(B̃t B̃
′
t)

λmax(Ã′
t Ãt)

1
/(

λmax(R̃t)+λmax(Q̃t)
λmax(B̃

′
t B̃t)

λmin(Ãt Ã
′
t)

)

.



As such, with Assumptions 1 and 4, ζ <+∞ and ε > 0.

Remark 6. In Theorem 4, ω , λ , δ , and ζ can be replaced

by any corresponding upper bounds for these quantities.

Similarly, ω , λ , and ε can be replaced by any corresponding

lower bounds.

Theorem 4 can be used to set the prediction horizon T ∈N

to achieve specified infinite-horizon performance degradation

with the terminal penalty sequence given by (41).

Corollary 1. Given T ∈N, and (Xt+T )t∈N0
as per (41), con-

sider the receding-horizon state-feedback control policy (19).

Given β ∈ R>0, the performance loss as defined in (24)

satisfies β (ξ )≤ β |ξ |2 for all initial states ξ ∈Rn, if

T ≥
(

log

(

log
( β ·λ ·ω

ω ·λ ·ω
+ 1
)1/δ

)

/

log
( ζ

ζ + ε

)

)

+ 1

with ω ,ω ,λ ,λ ,δ ,ζ ,ε ∈ R>0 as per (31), (32), (33), (39),

(45), and (48), using (X̂t+1)t∈N0
as per (42).

Proof. With reference to (47), manipulating

λ

λ

ω

ω
ω
(

exp
(( ζ

ζ + ε

)T−1

δ
)

− 1
)

|ξ |2 ≤ β |ξ |2

yields the result.

VII. CONCLUSION

A link is established between prediction horizon length

and the infinite-horizon performance loss of a receding-

horizon approximation of the optimal policy for a lifted

reformulation of (1). This is achieved via a strict contraction

property of the corresponding Riccati operator, under an

assumed uniform controllability and uniform observability

property of the dynamics and stage cost in the original

domain. Ongoing work is focused on extending the approach

to accommodate cross-terms in the stage cost, uncertainty

in the problem data, and constraints on the input and state

variables.
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APPENDIX

Proof of lemma 1. Note that

exp(T−1diag(log(λ1), . . . , log(λn))T )

= ∑
k∈N

1

k!
(T−1diag(log(λ1), . . . , log(λn))T )

k

= T−1diag(exp(log(λ1)), . . . ,exp(log(λn)))T = M.

Proof of Lemma 2. Since M ∈ Sn
++, there exists or-

thogonal T ′ = T−1 such that M = T ′diag(λ1, . . . ,λn)T
with {λ1, . . . ,λn} ⊂ R>0. From Lemma 1, log(M) =
T ′diag(logλ1, . . . , logλn)T , which is symmetric.

Proof of Lemma 3. Note that since Y,Z−1 ∈ Sn
++, the spec-

trum of both YZ−1 ∈Rn×n, and Z− 1
2 Y Z− 1

2 ∈Sn
++, excludes 0,

whereby spec{YZ−1} = spec{Z− 1
2 Y Z− 1

2 } = {λ1, . . . ,λn} ⊂
R>0. Further, there exists orthogonal matrix T ′ = T−1 such

that Z− 1
2 YZ− 1

2 = T ′ΛT , where Λ = diag(λ1, . . . ,λn). It fol-

lows that

δ (Y,Z) =

√

n

∑
i=1

log2 λi =
√

tr((log(Λ))2)

=
√

tr(T ′ log(Λ)T T ′ log(Λ)T )

=

√

tr((log(Z− 1
2 YZ− 1

2 ))2).

From Lemma 2, log(Z− 1
2 Y Z− 1

2 ) ∈ Sn. Thus,

δ (Y,Z) =

√

tr((log(Z− 1
2 Y Z− 1

2 ))′ log(Z− 1
2 YZ− 1

2 ))

= ‖ log(Z− 1
2 YZ− 1

2 )‖F .



Proof of Lemma 4. Since M ∈ Sn, there exists orthogonal

matrix T ′ = T−1 such that M = T ′diag(λ1, . . . ,λn)T , where

{λ1, . . . ,λn} ⊂ R≥1 is the spectrum of M. It follows from

Lemma 1 that log(M) = T ′diag(log(λ1), . . . , log(λn))T , and

‖ log(M)‖2 = max
i
(log(λi)) = log(max

i
(λi)) = log(‖M‖2),

where the second equality holds because λi ≥ 1.

Proof of Lemma 5. Since Y −Z ∈ Sn
++,

‖Y −Z‖2 = ‖Z
1
2 (Z− 1

2 YZ− 1
2 − In)Z

1
2 ‖2

≤ ‖Z‖2‖Z− 1
2 Y Z− 1

2 − In‖2

= ‖Z‖2(‖Z− 1
2 Y Z− 1

2 ‖2 − 1)

= ‖Z‖2(exp(log(‖Z− 1
2 YZ− 1

2 ‖2))− 1).

Note that

λmin(Z
− 1

2 YZ− 1
2 )− 1 = λmin(Z

− 1
2 YZ− 1

2 − In)

= λmin(Z
− 1

2 (Y −Z)Z− 1
2 )

≥ 0,

which with Lemma 4 gives

log(‖Z− 1
2 Y Z− 1

2 ‖2) = ‖ log(Z− 1
2 YZ− 1

2 )‖2.

Since ‖ · ‖2 ≤ ‖ · ‖F , it follows that

‖Y −Z‖2 ≤ ‖Z‖2(exp(‖ log(Z− 1
2 Y Z− 1

2 )‖2)− 1)

≤ ‖Z‖2(exp(‖ log(Z− 1
2 Y Z− 1

2 )‖F)− 1),

which combined with (3) gives the claimed result.
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