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Online Stochastic Allocation of Reusable Resources

Xilin Zhang and Wang Chi Cheung

Abstract— We study a multi-objective model on the allocation
of reusable resources under model uncertainty. Heterogeneous
customers arrive sequentially according to a latent stochastic
process, request for certain amounts of resources, and occupy
them for random durations of time. The decision maker’s
goal is to simultaneously maximize multiple types of rewards
generated by the customers, while satisfying the resource
capacity constraints in each time step. We develop models and
algorithms for deciding on the allocation actions. We show that
when the usage duration is relatively small compared with the
length of the planning horizon, our policy achieves 1 − O(ǫ)
fraction of the optimal expected rewards, where ǫ decays to
zero at a near optimal rate as the resource capacities grow.

I. INTRODUCTION

In the online optimization framework, information is re-

vealed sequentially in time. The decisions are made without

knowledge of the future information, but they can depend on

past observations. In this work, we study online optimiza-

tion algorithms in reusable resource allocation applications,

where a resource unit is returned to the system after a period

of usage duration, and can be further assigned to another cus-

tomer. The decision-maker (DM) assigns limited inventories

of reusable resources to sequentially arriving customers. In

each time step, the DM’s decision leads to a set of allocation

outcomes, consisting of the amounts of rewards earned, the

amounts of resources consumed and the usage durations of

the assigned resources. Our model captures a diversity of

real-life applications include hotel booking, rental of cars and

fashion items and cloud computing services. Our problem

instance incorporates the following features:

1) Multiple objectives. The DM’s goal is to maximize

multiple types of rewards.

2) Customer heterogeneity. The customers are associated

with different customer types.

3) Online setting. In each time step, the arriving cus-

tomer’s type is drawn independently and identically

from an unknown probability distribution.

4) Reusability. Each type of resource is endowed with a

stochastic usage duration, whose probability distribu-

tion is known to the DM. However, the DM does not

know the the realized usage duration of an allocation

before the resource is returned.

Features 1-3 are shared by both non-reusable and reusable

resource allocation problems, while feature 4 is a distinct

feature of reusable resource allocation problems. Without

considering feature 4, our problem reduces to the non-

reusable setting as in [1]. On feature 3, we remark that in
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many applications, given a customer type, its mean allocation

outcome is accessible by machine learning (ML) approaches

in a data-efficient manner ([2], [3], [4]). In many existing

resource allocation research ([21], [5], [6], [7], [8]), the mean

allocation outcomes are assumed to be prior-knowledge ac-

quired through ML models. However, in applications where

customer types are represented as high-dimensional feature

vectors, the number of types can be exponential in the dimen-

sion of the feature vectors or even unbounded. Such a curse

of dimensionality hinders the estimation on the proportion

of each customer type. Therefore, we treat the probability

distribution of each customer type as the unknown object. We

further remark on feature 4 that our usage duration is defined

in the same manner as [6] and [9], which are recent works on

offline reusable resource allocation problems. We highlight

that the probability distribution of each usage duration can be

arbitrarily defined, which means our result does not depend

on specific structures of certain usage distributions, such as

the exponential distribution.

Traditional resource allocation problems [10], [11] con-

cern the allocation of non-reusable resources. Online al-

gorithms for allocating non-reusable resources have been

extensively studied in [12], [13], [14], [1], [15], [16], [17].

These algorithms involve adaptive weighing processes that

balance the trade-off between the rewards earned and the

resources consumed. Most of their analysis largely depend

on the monotonically-decreasing inventories. However, in

our reusable model, the effect of an allocation may be

different for each future time step, contingent on whether the

allocated resources are returned, causing fluctuating resource

consumption amount across consecutive time steps.

To our knowledge, this is the first paper to address reusable

resource allocation problems in an online stochastic set-

ting and demonstrate a near-optimal performance guarantee.

Some studies focus on assortment planning problems in

adversarial settings ([20], [18], [19]), and achieve non-trivial

competitive ratios. Offline pricing and assortment planning

problems have been studied in [6], [9], [20], where near-

optimality is achieved in the form of approximation ratios

under full model certainty. The main contribution of our

paper can be summarized as follows.

• Model generality. We propose a general reusable re-

source allocation model which allows for various de-

cision settings (such as admission control, matching,

pricing and assortment planning), multiple objectives

(such as revenue, market share and service level), and

large numbers of customer types or allocation types (the

algorithm’s performance is independent of these sizes).

• Near-optimal algorithm performance. We develop an
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adaptive weighing algorithm that trades-off among not

only the resources occupied and the rewards earned,

but also the usage durations. In the regime where each

usage duration is short compared with the length of

the planning horizon, our algorithm achieves matching

near-optimal performance as the online non-reusable

resource setting ([1]), as well as the the state-of-art

offline reusable setting ([20]).

The remainder of paper is organized as follows. In Section II,

we present our model and highlight some of its applications.

An online algorithm and the corresponding performance

analysis are proposed in Section III. In Section IV, numerical

experiments are provided.

II. MODEL

Notation. The reward types and the resource types are

respectively indexed by two finite sets Ir and Ic. A generic

reward type or resource type is denoted as i. For each i ∈ Ic,

the DM has ci ∈ R>0 units of resource i for allocation. Each

customer is associated with a customer type j ∈ J , which

reflects the customer’s features. We denote the set of possible

allocation actions as K, and each element k ∈ K as an action.

The action set can model a broad range of decisions, which

is elaborate in the end of Section II.

The DM allocates the resources in T discrete time steps.

In time step t ∈ {1, . . . , T }, at most one customer arrives.

We denote the customer type of the arrival at time t as j(t).
In particular, we designate the type jnull ∈ J to represent the

case of no arrival. We assume that j(1), . . . , j(T ) are inde-

pendently and identically distributed (i.i.d.) random variables

over J . We denote pj = Pr(j(1) = j), and p = {pj}j∈J .

When a customer (denote his type as j) arrives, the DM

chooses an action k ∈ K. The choice leads to an array of

stochastic outcomes, consisting of the amount of rewards

earned Wjk = (Wijk)i∈Ir
, the amount of resources occupied

Ajk = (Aijk)i∈Ic
, and the usage durations {Di}i∈Ic

.

For the no arrival customer type jnull, we stipulate that

Pr(Wi′,jnull,k = Ai,jnull,k = 0) = 1 for all i′ ∈ Ir, i ∈ Ic, k ∈
K, since there should be no reward earned and no resource

occupied in the case of no arrival. To ensure feasibility in

our resource constrained model, we assume that there exists a

null action knull ∈ K that satisfies Pr(Wi′,j,knull
= Ai,j,knull

=
0) = 1 for all i′ ∈ Ir, i ∈ Ic, j ∈ J . Selecting the null

action is equivalent to rejecting a customer.

For each j, k, the stochastic outcomes follow the joint

distribution Ojk , namely (Wjk , Ajk) ∼ Ojk . We allow

Wjk, Ajk to be arbitrarily correlated. For each i ∈ Ic, the

random usage duration Di is independent of Wjk, Ajk . This

assumption is also made in related works on offline reusable

resource allocation, such as [6] and [9], since the usage

duration reflects more of a customer’s intrinsic needs on

each resource. We assume that Wijk ∈ [0, wmax] for each

i ∈ Ir, j ∈ J , k ∈ K, Aijk ∈ [0, amax] almost surely for

each i ∈ Ic, j ∈ J , k ∈ K, and Di ∈ {0, 1, . . . , dmax}
almost surely for each i ∈ Ic. Additionally, we denote

wijk = E[Wijk ], aijk = E[Aijk ], and di = E[Di].

Model uncertainty and dynamics. We assume that the

DM knows the horizon length T , the values of wmax, amax,

dmax, as well as Pr(Di ≥ t) for every i ∈ Ic, t ∈
{1, . . . , T }. However, the DM does not know the probability

distribution p over customer types. At each time step t ∈
{1, . . . , T }, the DM observes the type j(t) ∼ p of the arriv-

ing customer, and the mean outcomes {(wj(t),k, aj(t),k)}k∈K

specific to the type j(t). Then, the DM chooses an action

k(t) ∈ K, and observes the stochastic outcomes of rewards

{Wi,j(t),k(t)(t)}i∈Ir
and resources {Ai,j(t),k(t)(t)}i∈Ic

at

time t. Our model uncertainty scenario included the case

when the DM knows the mean outcomes aijk, wijk in

advance. For example, the DM could have estimates on

aijk, wijk ,Pr(Di ≥ t) by constructing supervised learning

models [2], [3], [4] on a pool of customer demand data.

An integer programming formulation. We let binary

decision variables Xπ
k (t) be the DM’s decision under a non-

anticipatory algorithm π, where Xπ
k (t) = 1 if action k is

taken at time t, and Xπ
k (t) = 0 otherwise. Under a non-

anticiaptory algorithm, {Xπ
k (t)}k∈K depends on historical

observations {j(s)}ts=1 ∪ {Wi,j(s),k(s)(s)}i∈Ir,1≤s≤t−1 ∪
{Ai,j(s),k(s)(s)}i∈Ic,1≤s≤t−1. The DM aims to maximize

E[mini∈Ir

∑T
t=1

∑

k∈KWi,j(t),k(t)X
π
k (t)], which achieves

the simultaneous maximization of all the reward types by

ensuring max-min fairness. Here we maximize the rewards

to keep in line with the resource allocation literature instead

of minimize the regret as in the classical online convex op-

timization literature, but we remark that they are essentially

eqivalent. For each i ∈ Ic and t ∈ {1, . . . , T }, we require

that the resource constraint
t
∑

τ=1

∑

k∈K

1(Di(τ) ≥ t− τ + 1)Ai,j(τ),k(τ)X
π
k (τ) ≤ ci (1)

holds with certainty. The left hand side in (1) represents the

amount of type i resources occupied at time step t. Our goal

can be formulated as the following binary integer program

(IP-C) max
non-anticipatory π

E[λ̂]

s.t.

T
∑

t=1

∑

k∈K

Wi,j(t),k(t)X
π
k (t) ≥ T λ̂ ∀i ∈ Ir

t
∑

τ=1

∑

k∈K

1(Di(τ) ≥ t− τ + 1)Ai,j(τ),k(τ)X
π
k (τ) ≤ ci

∀i ∈ Ic, t ∈ {1, . . . T }
∑

k∈K

Xπ
k (t) = 1 ∀ t ∈ [T ]

Xπ
k (t) ∈ {0, 1} ∀k ∈ K, t ∈ [T ].

We remark that the term 1(Di(τ) ≥ t − τ + 1) in-

duces non-stationarity in resource consumption, since even

when a DM selects the same action k at τ1 < τ2, their

amounts of resource consumption 1(Di(τ1) ≥ t − τ1 +
1)Ai,j(τ1),k(τ1),1(Di(τ2) ≥ t−τ2+1)Ai,j(τ2),k(τ2) at time

t are differently distributed. Existing works on non-reusable

resources crucially hinges on model stationarity, which does

not hold true in our setting.



A tractable benchmark. The goal of constructing a

non-anticipatory algorithm that achieves the optimal value

of (IP-C) is analytically intractable due to the curse of

dimensionality. The intractability motivates us to consider

an alternative linear program (LP), dubbed (LP-E), where

the realization of the customer arrivals, their usage duration

and outcomes exactly follow the expectation:

(LP-E) max λ

s.t.

T
∑

t=1

∑

j∈J

∑

k∈K

pjwijkyjk(t) ≥ Tλ ∀i ∈ Ir

t
∑

τ=1

∑

j∈J

∑

k∈K

pj Pr(Di ≥ t− τ + 1)aijkyjk(τ) ≤ ci

∀i ∈ Ic, t ∈ {1, . . . T }
∑

k∈K

yjk(t) ≤ 1 ∀j ∈ J , t ∈ {1, . . . , T }

yjk(t) ≥ 0 ∀j ∈ J , k ∈ K, t ∈ [T ].

Define the optimal objective value of (LP-E) to be λ∗, and let

the optimal objective of (IP-C) be λ̂∗. The following lemma

shows that λ∗ is a tractable upper bound for the expected

reward of any online algorithms.

Lemma 1. λ∗ ≥ E[λ̂∗].

For the algorithm design, we further introduce a “steady

state” benchmark, assuming the decision variables are invari-

ant across time:

(LP-SS): max
xjk

λ̃

s.t.
∑

j∈J

∑

k∈K

pjwijkxjk ≥ λ̃ ∀i ∈ Ir
∑

j∈J

∑

k∈K

pjaijkdixjk ≤ ci ∀i ∈ Ic
∑

k∈K

xjk ≤ 1 ∀j ∈ J

xjk ≥ 0 ∀j ∈ J , k ∈ K.

We denote an optimal solution of (LP-SS) as x∗jk , and the

optimal value of (LP-SS) as λ̃∗. We further define

γ = min

{

min
i∈Ic

{

ci
amax

}

,
T λ̃∗

wmax

}

.

Assumption 1. There exists δ ∈ (0, 1) and d̄(δ) ≤ T such

that
∑∞

t=d̄(δ)+1 Pr(Di ≥ t) ≤ δ, ∀i, j, k.

This assumption indicates that our algorithm does not

apply to large Di, say for non-reusable resources where

Di = T with certainty. In the next lemma, we show that

λ̃∗ is close to λ∗.

Lemma 2.
(

1− δ
γ

)

(

Tλ∗ − d̄(δ)wmax

)

≤ T λ̃∗ ≤ Tλ∗.

We remark that under a wide range of usage durations, we

can use (LP-SS) as a benchmark to gauge the performance of

our algorithm. For instance, for light tailed Di (for example,

there exists u > 0 such that limt→∞ Pr(Di ≥ t)tu = 0), we

can take δ = ǫ/T , d̄(δ) = dmax log(dmaxT/ǫ). If Di has

bounded support, i.e. Di ∈ [0, dUB] almost surely, we can

take δ = 0 and let d̄(δ) = dUB.

Applications. Before proceeding to our algorithm de-

velopment, we highlight the generality of our model by

discussing some of its applications, where the reward type

set Ir, the customer type set J and the action set K can be

chosen to model a variety of decisions.

• Admission control. In this setting, the DM is to either

admit or reject each arriving customer [21]. Real life

examples include patient inflow control in an emer-

gency department or an ICU. The admission control

setting can be modeled by letting action set K =
{accept, reject}. The reward of a resource is fixed at

ri for i ∈ Ic. Upon taking an action k for a type j
customer, an array of stochastic demands {Aijk}i∈Ic

is generated. Our model captures different reward set-

tings. We list some of the examples: for simultaneously

maximizing the revenue/social welfare for each type

of resource, define Ir = Ic and Wijk = riAijk .

For maximizing the total revenue/social welfare of all

resources, let Ir = {1} be a singleton, and define

W1jk =
∑

i∈Ic
riAijk . For maximizing the service

level of each resource, we define Ir = Ic and Wijk =
Aijk . We remark that multiple kinds of rewards can be

modeled simultaneously.

• Assortment Planning. In assortment planning prob-

lems, one unit of resource i is associated with a fixed

price ri. The DM influences the customers’ demands

through offering different assortments of resources.

Real life assortment planning examples with reusable

resources include renting of fashion items and vehicles.

Contingent upon the arrival of a customer, say of type j,
the DM decides the assortment k ∈ K to display, where

K is a collection of subsets of Ic ([9], [22]). Let qijk
denote the probability for customer type j to choose

product i in assortment k. In the revenue management

literature, the probability qijk is modeled by a random

utility choice model. The assortment planning problem

(simultaneously maximizing revenue of each resource)

can be incorporated in our model by setting Ir = Ic,

setting Aijk to be the Bernoulli random variable with

mean qijk , and setting Wijk = riAijk .

III. ONLINE ALGORITHM AND PERFORMANCE ANALYSIS

Main results. In this section, we propose a multi-stage

adaptive weighing algorithm (dubbed Algorithm A as in

“Adaptive”, and displayed in Algorithm 1). We first provide

our main results. We assume there exists ǫ satisfying γ =
Ω(log(|I|T/ǫ)/ǫ2), where I = Ic ∪ Ir. Let

Wi(t) =
∑

k∈K

Wi,j(t),k(t)X
A
k (t)

denote the type i ∈ Ir reward achieved by Algorithm A, our

main result is shown in the following theorem.



Theorem 1. Let ǫ > 0 be an arbitrary constant satisfying

γ = Ω(log(|I|T/ǫ)/ǫ2). Without knowing p,

T
∑

t=1

Wi(t) ≥
(

1− δ

γ

)

Tλ∗(1−O(ǫ)) − d̄(δ)Õ(ǫ)

for every i ∈ Ir with probability at least 1− ǫ(1 + ǫ)δ.

We remark that if Di has bounded support, i.e. Di ∈
[0, dUB] almost surely for all i ∈ Ic, then the above reward

can be simplified as
∑T

t=1Wi(t) ≥ Tλ∗(1−O(ǫ))−dUBÕ(ǫ)
for every i ∈ Ir with probability at least 1 − ǫ. In the case

when δ ≤ log(|I|T )/ǫ and d̄(δ) = o(T ), our algorithm

achieves a reward at least Tλ∗(1−O(ǫ)). This result nearly

matches the [1] in studying an online non-reusable resource

allocation problem, as well as [20] in the state-of-art work

on the offline assortment planning with reusable resources.

The assumption γ = Ω(log(|I|T/ǫ)/ǫ2) means that the

amount of resource ci for each i is sufficiently large, and

the planning horizon T is sufficiently long. Crucially, the

performance guarantee in Theorem 1 does not deteriorate

even when |J | or |K| grows. Consequently, our Algorithm

A is applicable to complex scenarios when |J | > T .

High-level description and comparison against [1]. Our

Algorithm A extends [1]’s idea of adaptive weighing from

the non-reusable setting to the reusable setting. [1] proposes a

multi-stage adaptive weighing algorithm to trade-off between

the rewards and the resources. For each reward and resource

constraint of a fluid LP (corresponding to our (LP-E)), a

penalty weight is defined. The weight on each constraint

progressively gets larger as the reward generated or the

resource consumed gets closer to their total capacity (the

capacity of each reward is approximated). [1] does not apply

to the reusable setting, as their penalty weights and algorithm

design depend on the monotonic-decreasing resources.

Somewhat surprisingly, we can still utilize their adaptive

weighing idea. we approximate (LP-E) with a knapsack-

constrained (LP-SS), and define penalty weights that incor-

porates the usage duration as well as the resource consump-

tion. In a series of Lemmas that eventually leads to Theorem

1, we show that our algorithm effectively capitalizes the

reusability of the resources to maximize the total rewards.

We overcome the technical difficulty in non-monotonic and

time-correlated resource levels, by achieving near-optimal

performance. Nevertheless, we remark that the closeness of

(LP-E) and (LP-SS) builds upon Assumption 1, and hence

our algorithm is not applicable to the non-reusable setting.

A multistage online algorithm. In Algorithm 1, we divide

the time horizon into l stages {−1, 0, 1, . . . , l − 1} where

l satisfies ǫ2l = 1 for some ǫ ∈ [d̄(δ)/T, 1/2]. Stage −1
consists of t(−1) = ǫT time periods. This stage is solely for

exploration on the latent {pj}j∈J , and the first ǫT customers

are served with random actions. Stage r ∈ {0, . . . , l − 1}
consists of t(r) = ǫT 2r time periods. The assumption ǫ ∈
[d̄(δ)/T, 1/2] ensures that l ≥ 1 (there is at least 1 stage) and

ǫT ≥ d̄(δ) (each stage consists of at least d̄(δ) time periods).

We denote j(r)(s) as the type of the customer who arrives

at the s-th time step in stage r (where s ∈ {1, . . . , t(r)}),

meaning that j(r)(s) = j(t(r) + s).
In each stage r ≥ 0, Algorithm A consists of two steps.

In Step 1, we estimate the optimum of (LP-SS). In Step 2,

we define “penalty weights” on constraints of (LP-SS), and

choose the action that balances between each constraint.

Step 1: Estimate the value of λ̃∗ (Line 3 of Algorithm 1).

We first derive µ(r)∗, which is the optimal objective value

of the linear program (LP-RSS)(r) :

max
x
(r)
jk

µ(r)

s.t.
∑

j∈J

∑

k∈K

p̂
(r)
j wijkx

(r)
jk ≥ µr ∀i ∈ Ir

∑

j∈J

∑

k∈K

p̂
(r)
j aijkdix

(r)
jk ≤ ci ∀i ∈ Ic

∑

k∈K

x
(r)
jk ≤ 1 ∀j ∈ J

x
(r)
jk ≥ 0 ∀j ∈ J , k ∈ K,

where p̂
(r)
j = 1

t(r−1)

∑t(r−1)

t=1 1(j(r−1)(t) = j), denoting the

empirical customer distribution based on customer arrivals in

stage r− 1. (LP-RSS)(r) is a sample average approximation

(SAA) of (LP-SS). It is worth mentioning that both (LP-

SS) and (LP-RSS)(r) are highly tractable, even in assortment

planning application when |K| is exponential in |Ic| ([23]).

In addition, the knapsack-type constraints in (LP-RSS)(r)

allows us to apply the adaptive weighing in Step 2 in a

similar manner to the non-reusable setting. Given that µ(r)∗

is easily obtained in Step 1, we define λ(r) in the following

lemma, and show it is a progressively more accurate estimate

of λ̃∗ as r grows.

Lemma 3. Define ǫ
(r)
x =

√

4T log 2|I|
η

t(r)γ
for r ∈

{−1, 0, 1, . . . , l − 1}. For any η ∈ (0, 1), with probability

at least 1− 2η,

λ̃∗(1− 3ǫ(r−1)
x ) ≤ λ(r) ≤ λ̃∗

where λ(r) = µ(r)∗

1+ǫ
(r−1)
x

.

Step 2: Run an online algorithm given λ(r) (Line 4 - Line

10 of Algorithm 1). With slight abuse of notation, we write

Ai,j(t(r)+s),k(t
(r)+s) as A

(r)

i,j(r)(s),k
(s), Wi,j(t(r)+s),k(t

(r)+

s) as W
(r)

i,j(r)(s),k
(s), and Di,j(t(r)+s),k(t

(r) + s) as

D
(r)
i (s). In addition, we denote X

(r)

j(t(r)+s),k
(t(r) + s)

as X
(r)

j(r)(s),k
(s). Define, at time t in stage r, Y

(r)
iτt =

∑

k∈K 1(D
(r)
i (τ) ≥ t − τ + 1)A

(r)

i,j(r)(τ),k
(τ)X

(r)

j(r)(τ),k
(τ)

and Z
(r)
it =

∑

k∈KW
(r)

i,j(r)(t),k
(t)X

(r)

j(r)(t),k
(t) respectively as

resource i consumed by customer τ , and reward i earned.

At the s-th time step of stage r, after observing the

customer type j(r)(s) we take action k(r)(s) according to

Line 7. The parameter φ
(r)
i,s,t represents a “penalty weight”

for the resource constraint i ∈ Ic in (LP-SS). If the allocation

decisions during 1, . . . , s−1 in stage r leads to a high amount



of resource i occupation at time t, the penalty φ
(r)
i,s,t would

also be high. Similarly, a lower amount of accrued reward

type i ∈ Ir during 1, . . . , s− 1 in stage r leads to a higher

value of the weight ψ
(r)
i,s . Both weights quantify the DM’s

emphasis on resources and rewards.

Performance guarantee of Algorithm A. Our analysis

involves bounding the total probability of violating each

constraint in (LP-C) in all time steps. Each violation leads

to unserved customers and lost rewards. We show that under

Algorithm A, all constraints of (LP-C) are satisfied with high

probability. To understand the choice of k(r)(s+ 1) in Line

7 of Algorithm 1, we introduce an auxiliary offline static

algorithm (dubbed Algorithm S as in “Static”). Algorithm

S requires knowing x∗ = {x∗jk}jk , an optimal solution to

(LP-SS), and a tuning parameter ǫ ∈ (0, 1) for preserving ca-

pacities in anticipation of any constraint violation. At a time

t, if a customer of type j arrives, the DM selects action k ∈
K\knull with probability

x∗
jk

1+ǫ , and selects the null action knull

with probability ǫ
1+ǫ +

x∗
j,knull

1+ǫ . We denote XS
j(t(r)+s),k

(t(r)+

s) as X̃
(r)

j(r)(s),k
(s). Define Ỹ

(r)
iτt =

∑

k∈K 1(D
(r)
i (τ) ≥

t − τ + 1)A
(r)

i,j(r)(τ),k
(τ)X̃

(r)

j(r)(τ)k,r
(τ) and Z̃

(r)
it =

∑

k∈KW
(r)

i,j(r)(t),k
(t)X̃

(r)

j(r)(t),k
(t) where Pr(X̃

(r)

j(r)(τ),k
(τ) =

1) =
x∗
jk

1+ǫ for each τ in stage r. A performance guarantee of

Algorithm S is provided in the following lemma.

Lemma 4. Let η = ǫ/(5l), Algorithm S achieves a total

reward of at least

l−1
∑

r=0

t(r)
∑

t=1

∑

k∈K

W
(r)

i,j(r)(t),k
(t)X̃

(r)

j(r)(t),k
(t)

≥T λ̃∗(1 −O(ǫ))− d̄(δ)wmaxO

(

ǫ+ log
1

ǫ

)

for every i ∈ Ir with probability at least 1− ǫ(1 + ǫ)δ.

For analysis sake, we consider a hybrid Algorithm

AsSt(r)−s in each stage r. For Algorithm AsSt(r)−s, the

DM makes allocation decisions based on Algorithm A in

time step {1, . . . , s}, and based on Algorithm S in time step

{s+1, . . . , t(r)}. We show that As+1St(r)−s−1 outperforms

AsSt(r)−s, which inductively leads to the conclusion that the

performance of the online adaptive Algorithm A is no worse

than the offline static Algorithm S (see Lemma 4). This

induction technique is introduced in [1] on the non-reusable

setting. We need more refined techniques to disentangle the

time-correlation between the resources constraints at each

time step, and finally prove the following lemma.

Lemma 5. Algorithm A achieves a total reward of at least

l−1
∑

r=0

t(r)
∑

t=1

∑

k∈K

Wij(t)k,r(t)X̃
(r)
j(t)k,r(t)

≥T λ̃∗(1 −O(ǫ))− d̄(δ)wmaxO

(

ǫ+ log
1

ǫ

)

for every i ∈ Ir with probability at least 1− ǫ(1 + ǫ)δ.

Algorithm 1 Online Algorithm A

Input: the number of time periods T , the capacities for each

resource ci, the values of γ and ǫ ∈ [di/T, 1/2].
Output: actions to take k(r)(t), for r = 0, . . . , l − 1, t =
1, . . . , t(r).

1: Set l = log (1/ǫ). Initialize t(−1) = ǫT .

2: for r = 0, . . . , l− 1 do

3: Compute λ(r) by solving (LP-RSS)(r).

4: Set

ǫ(r−1)
x =

√

4T log 2|I|
η

t(r−1)γ
, ǫ(r)z =

√

2wmax(1 + ǫ) log 2|I|l
η

t(r)λ(r)
.

5: Set

φ
(r)
i,1,t =















ǫγ
ci(1+ǫ)γ−δ , t = 1

ǫγ
ci(1+ǫ)γ−δ

∏t
τ=2

(

1 + ǫγ Pr(Di≥t−τ+1)
di(1+ǫ)

)

,

t = 2, . . . , t(r)

for each i ∈ Ic, and

ψ
(r)
i,1 =−

ǫ
(r)
z
∏t(r)

τ=2

(

1− ǫ
(r)
z

λ(r)

wmax(1+ǫ)

)

wmax

(

1− ǫ
(r)
z

)

(1−ǫ
(r)
z )t(r)λ(r)

wmax

.

for each i ∈ Ir.

6: for s = 1, . . . , t(r) do

7: Observe customer type j(r)(s), take action:

k(r)(s) ∈ argmin
k∈K







t(r)
∑

t=s

∑

i∈Ic

ai,j(r)(s),k Pr (Di ≥ t− s+ 1)φ
(r)
i,s,t

+
∑

i∈Ir

wi,j(r)(s),kψ
(r)
i,s

}

.

8: Set Y
(r)
ist = ai,j(r)(s),k(r)(s) Pr (Di ≥ t− s+ 1)

for each i ∈ Is and t ∈ {s, . . . , t(r)}, and Z
(r)
is =

wi,j(r)(s),k(r)(s) for each i ∈ Ir.

9: Set for each i ∈ Ic

φ
(r)
i,s+1,t =

φ
(r)
i,s,t(1 + ǫ)

γ
ci

Y
(r)
ist

(

1 + ǫγ Pr(Di≥t−s)
di(1+ǫ)

) , t = s+ 1, . . . , t(r),

and for each i ∈ Ir,

ψ
(r)
i,s+1 =

ψ
(r)
i,s

(

1− ǫ
(r)
z

)
1

wmax
Z

(r)
is

(

1− ǫ
(r)
z

λ(r)

wmax(1+ǫ)

) .

10: end for

11: end for



Putting Lemmas 2 and 5 together, we have Theorem 1.

IV. NUMERICAL EXPERIMENTS

We consider an assortment planning problem. One unit

of resource i is associated with a fixed price ri. Contingent

upon the arrival of a customer, say of type j, the DM decides

the assortment k ∈ K to display, where K is a collection of

subsets of Ic. Let qijk denote the probability for customer

type j to choose product i in assortment k. Therefore, the as-

sortment planning problem (simultaneously maximizing the

revenue of each resource) can be incorporated in our model

by setting Ir = Ic, setting Aijk to be the Bernoulli random

variable with mean qijk , and setting Wijk = riAijk . In our

test, the probability qijk is modeled by the multinomial logit

(MNL) choice model. Each resource i ∈ Ic is associated with

a feature vector f i ∈ R
m, and each customer type j ∈ J

is associated with a set of feature vectors {bij}i∈Ic
, where

bij ∈ R
m for each i ∈ Ic. The feature vector f i could

involve the fixed price ri, and qijk =
exp(b⊤

ijfi)

1+
∑

ℓ∈k exp(b⊤
ℓj
fℓ)

if i ∈ k, and qijk = 0 if i 6∈ k. In complement, the

probability of no purchase is 1
1+

∑

ℓ∈k exp(b⊤
ℓj
fℓ)
. Notice that

the size of the action set K scales exponentially with the

number of products. Nevertheless, for the MNL models,

k(r)(t) can be computed efficiently by solving a simple LP

whose computational time is polynomial in |Ic| [24].

We consider a synthetic data-set with 14 types of resources

indexed by Ic = {1, 2, . . . , 14}, and 1000 types of customers

indexed by J = {1, 2, . . . , 1000}. We allow offering any as-

sortment of fewer than 5 products, and hence the assortment

set is of size
∑5

i=1 C
14
i = 3472. We let p follow a discrete

distribution with a support of |J |. For any n ≥ 1, we set

T = 1000n, ci = 20n and Di follow a randomly generated

probability distribution with a bounded support of [1, 200n].
Theoretically, the regret of both Algorithms A and S should

grow sublinearly against the scale n, roughly at the rate of

Õ(
√
n). For each T value, we run 10 simulations using a

column generation approach and take the average as well as

the standard deviation.

T ǫ UB
Total Revenue % Gap from UB

Algo S Algo A
Algo S Algo A

Mean Std Mean Std

1000 0.3 644.90 507.06 42.1689 331.03 2.531798 21.37% 48.67%
2000 0.22 1289.80 1097.47 50.88593 887.28 7.681146 14.91% 31.21%
3000 0.185 1934.70 1702.97 75.61902 1419.54 8.537564 11.98% 26.63%
4000 0.162 2579.60 2327.51 86.79659 1966.83 6.663332 9.77% 23.75%
5000 0.148 3224.50 2936.00 98.77243 2522.00 10.44462 8.95% 21.79%
6000 0.136 3869.40 3557.05 74.11313 3086.28 20.91315 8.07% 20.24%
7000 0.127 4514.30 4200.24 67.91298 3647.95 9.508417 6.96% 19.19%
8000 0.12 5159.20 4804.85 68.66264 4217.17 14.06983 6.87% 18.26%

TABLE I

RESULTS WITH 14 RESOURCE TYPES AND 1000 CUSTOMER TYPES.

In Table I, the third column of upper bounds are the

optimal values of (LP-SS). The offline Algorithm S performs

better than the online Algorithm A. Algorithm A achieves

rewards within 1− 2ǫ fraction of the upper bounds.
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APPENDIX

A. Proof of Lemma 1

Proof. Take the expectation of the resource constraints of the (LP-C)
∑t

τ=1

∑

k∈K 1(Di(τ) ≥ t− τ +1)Ai,j(τ),k(τ)X
π
k (τ)

over Xπ
k (τ), Di(τ), Ai,j(τ),k(τ) and j(τ) for τ = 1, . . . , t:

E

[

t
∑

τ=1

∑

k∈K

1 (Di (τ) ≥ t− τ + 1)Ai,j(τ),k (τ)X
π
k (τ)

]

=

t
∑

τ=1

∑

k∈K

∑

j(1),...,j(t)

E
[

1 (Di (τ) ≥ t− τ + 1)Ai,j(τ),k (τ)X
π
k (τ) |j (1) , . . . , j (t)

]

Pr (j (1) , . . . , j (t))

=

t
∑

τ=1

∑

k∈K

∑

j(1),...,j(t)

E [1 (Di (τ) ≥ t− τ + 1) |j (1) , . . . , j (t)] · E
[

Ai,j(τ),k (τ) |j (1) , . . . , j (t)
]

· E [Xπ
k (τ) |j (1) , . . . , j (t)] · Pr (j (1) , . . . , j (t))

=

t
∑

τ=1

∑

k∈K

∑

j(1),...,j(t)

E [1 (Di (τ) ≥ t− τ + 1) |j (τ)] · E
[

Ai,j(τ),k (τ) |j (τ)
]

· E [Xπ
k (τ) |j (1) , . . . , j (t)] · Pr (j (1) , . . . , j (t))

=

t
∑

τ=1

∑

k∈K

∑

j(τ)

pj(τ)ai,j(τ),k Pr (Di ≥ t− τ + 1)

·
∑

j(1),...,j(τ−1),j(τ+1),...,j(t)

E [Xπ
k (τ) |j (1) , . . . , j (t)] Pr (j (1) , . . . , j (τ − 1) , j (τ + 1) , . . . , j (t))

=

t
∑

τ=1

∑

k∈K

∑

j∈J

pjaijk Pr (Di ≥ t− τ + 1)

·
∑

j(1),...,j(τ−1),j(τ+1),...,j(t)

E [Xπ
k (τ) |j (1) , . . . , j (t)] Pr (j (1) , . . . , j (τ − 1) , j (τ + 1) , . . . , j (t))

≤ci
The first equation follows from the summation of probabilities. The second equation holds because Di(τ) is independent

of Ai,j(τ),k(τ), and the decision is made before the realization of Ai,j(τ),k(τ) and Di(τ). The third inequality is valid

since Di(τ) and Ai,j(τ),k(τ) only depend on j(τ). The forth inequality follows by separately consider j(τ) and customers

at other time periods. The fifth inequality stands since j(1), . . . , j(T ) are i.i.d. across time, and we can simply denote

j(τ) as j. The last inequality holds since the clairvoyant’s LP is feasible for all j(1), . . . , j(T ) paths. Letting xjk(τ) =
∑

j(1),...,j(τ−1),j(τ+1),...,j(t) E[X
π
k (τ)|j(1), . . . , j(t)] Pr(j(1), . . . , j(τ − 1), j(τ + 1), . . . , j(t)), we have a feasible solution

for the online DM’s expected LP. For the reward constraints, E[
∑T

t=1

∑

k∈KWij(t)k(t)X
π
k (t)] = E[T λ̂∗]. Since the solution

xjk(τ) achieves an objective of E[T λ̂∗] and it is a feasible solution of the DM’s expected LP, we have λ∗ ≥ E[λ̂∗].

B. Proof of Lemma 2

Proof. For each i we have di =
∑∞

t=1 Pr(Di ≥ t). Hence, the capacity constraints of (LP-SS) can be expressed as:

ci ≥
∑

j∈J

∑

k∈K

pjaijkdix
∗
jk

=
∑

j∈J

∑

k∈K

pjaijk

∞
∑

t=1

Pr(Di ≥ t)x∗jk

≥
∑

j∈J

∑

k∈K

pjaijk

t
∑

τ=1

Pr(Di ≥ t− τ + 1)x∗jk ∀i ∈ Ic, t ∈ {1, . . . , T }.

From the above, it is evident that the optimal solution x∗jk of (LP-SS) is feasible for the (LP-E) by letting yjk(t) = x∗jk
for all t ∈ {1, . . . , T }, and therefore λ̃∗ ≤ λ∗. In contrast, the optimal solution y∗jk(t) of (LP-E) may not be feasible for

(LP-SS).

We consider a truncated version (LP-TE) of the DM’s expected LP (LP-E). For each resource constraint:

(LP-TE) : max λ



s.t.

T
∑

t=1

∑

j∈J

∑

k∈K

pjwijkyjk(t) ≥ Tλ ∀i ∈ Ir

t
∑

τ=max(t−d̄(δ),1)

∑

j∈J

∑

k∈K

pj Pr(Di ≥ t− τ + 1)aijkyjk(τ) ≤ ci ∀i ∈ Ic, t ∈ {1, . . . T }

∑

k∈K

yjk(t) ≤ 1 ∀j ∈ J , t ∈ {1, . . . , T }

yjk(t) ≥ 0 ∀j ∈ J , k ∈ K, t ∈ [T ].

Denote for (LP-TE), the optimal objective value as λ′ and the optimal solution as y′jk(t) for t ∈ {1, . . . , T }. Since the

feasible region (LP-TE) contains the feasible region of (LP-E) and both LPs have the same objective, we have λ′ ≥ λ∗.

Note that {y′jk(t)}j,k,t may not be feasible for (LP-E). Despite that, we can show that yjk(t) =
(

1− δ
γ

)

y′jk(t) is feasible

for (LP-E):

t
∑

τ=1

∑

j∈J

∑

k∈K

pj Pr (Di ≥ t− τ + 1) aijk

(

1− δ

γ

)

y′jk (τ)

≤
t
∑

τ=max(t−d̄(δ),1)

∑

j∈J

∑

k∈K

pj Pr (Di ≥ t− τ + 1)aijk

(

1− δ

γ

)

y′jk (τ)

+

max(0,t−d̄(δ)−1)
∑

τ=1

∑

j∈J

∑

k∈K

pj Pr (Di ≥ t− τ + 1) aijk

(

1− δ

γ

)

y′jk (τ)

≤
(

1− δ

γ

)

ci + amaxδ

=

(

1− δ

γ
+
δamax

ci

)

ci

≤ci.

By letting yjk (t) =
(

1− δ
γ

)

y′jk (t), the objective value is at least
∑T

t=1

∑

j∈J

∑

k∈K pjwijk

(

1− δ
γ

)

y′jk (t) ≥
(

1− δ
γ

)

Tλ′. Hence λ∗ ≥
(

1− δ
γ

)

λ′. We formulate a truncated version of the steady-state LP (LP-SS) in a similar

fashion:

(LP-TSS) : max
xjk

λ̃

s.t.
∑

j∈J

∑

k∈K

pjwijkxjk ≥ λ̃ ∀i ∈ Ir

∑

j∈J

∑

k∈K

d̄(δ)
∑

τ=1

pjaijk Pr(Di ≥ τ)xjk ≤ ci ∀i ∈ Ic
∑

k∈K

xjk ≤ 1 ∀j ∈ J

xjk ≥ 0 ∀j ∈ J , k ∈ K.

Denote for the (LP-TSS), the optimal objective value as λ̃′ and the optimal solution as x′jk . Similar to (LP-TE), we have

λ̃′ ≥ λ̃∗ and λ̃∗ ≥
(

1− δ
γ

)

λ̃′. It’s also obvious that λ′ ≥ λ̃′ since we can let x′jk(τ) = x′jk and get a feasible solution for

the (LP-TE). Next we show that λ′ is not so far away from λ̃′.
The dual of the truncated DM’s expected LP is:

(LP-TE-D) : min
α(1),β(1),ρ(1)

T
∑

t=1





∑

j∈J

pjβ
(1)
jt +

∑

i∈Ic

ciα
(1)
it





s.t. β
(1)
jt +

∑

i∈Ic

aijk

min(t+d̄(δ),T )
∑

τ=t

Pr(Di ≥ τ − t+ 1)α
(1)
iτ −

∑

i∈Ir

wijkρ
(1)
i ≥ 0 ∀j ∈ J , k ∈ K,



t ∈ {1, . . . , T }
∑

i∈Ir

ρ
(1)
i ≥ 1

ρ
(1)
i ≥ 0 ∀i ∈ Ir
α
(1)
it ≥ 0 ∀i ∈ Ic, t ∈ {1, . . . , T }
β
(1)
jt ≥ 0 ∀j ∈ J , t ∈ {1, . . . , T }.

The dual of truncated steady-state LP is:

(LP-TSS-D) : min
α(2),β(2),ρ(2)

∑

j∈J

pjβ
(2)
j +

∑

i∈Ic

ciα
(2)
i

s.t. β
(2)
j +

∑

i∈Ic

aijk

d̄(δ)
∑

τ=1

Pr(Di ≥ τ)α
(2)
i −

∑

i∈Ir

wijkρ
(2)
i ≥ 0 ∀j ∈ J , k ∈ K

∑

i∈Ir

ρ
(2)
i ≥ 1

ρ
(2)
i ≥ 0 ∀i ∈ Ir
α
(2)
i ≥ 0 ∀i ∈ Ic
β
(2)
j ≥ 0 ∀j ∈ J .

Obviously, the optimal objective value of (LP-TE-D) Tλ′ is larger than or equal to T times the optimal objective value of

(LP-TSS-D) T λ̃′. Let α(2)∗,β(2)∗,ρ(2)∗ denote the optimal solution of (LP-TSS-D). Since these are minimization problems,

if for (LP-TE-D) we can let α
(1)
it = α

(2)∗
i , β

(1)
jt = β

(2)∗
j for all t, and ρ

(1)
i = ρ

(2)∗
i and still have a feasible LP, then λ′ = λ̃′.

Consider the first set of constraints in (LP-TE-D). For t ∈ {1, . . . , T − d̄(δ)}, by letting α
(1)
it = α

(2)∗
i , β

(1)
jt = β

(2)∗
j and

ρ
(1)
i = ρ

(2)∗
i , we have:

β
(1)
jt +

∑

i∈I

aijk

min(t+d̄(δ),T )
∑

τ=t

Pr(Di ≥ τ − t+ 1)α
(1)
iτ −

∑

i∈I

wijkρ
(1)
i

=β
(2)∗
j +

∑

i∈I

aijk

t+d̄(δ)
∑

τ=t

Pr(Di ≥ τ − t+ 1)α
(2)∗
i −

∑

i∈I

wijkρ
(2)∗
i

=β
(2)∗
j +

∑

i∈I

aijk

d̄(δ)
∑

τ=1

Pr(Di ≥ τ)α
(2)∗
i −

∑

i∈I

wijkρ
(2)∗
i

≥0.

However, for t ∈ {T − d̄(δ) + 1, . . . , T }, the constraints may be violated:

β
(1)
jt +

∑

i∈I

aijk

min(t+d̄(δ),T )
∑

τ=t

Pr(Di ≥ τ − t+ 1)α
(1)
iτ −

∑

i∈I

wijkρ
(1)
i

=β
(2)∗
j +

∑

i∈I

aijk

T
∑

τ=t

Pr(Di ≥ τ − t+ 1)α
(2)∗
i −

∑

i∈I

wijkρ
(2)∗
i

=β
(2)∗
j +

∑

i∈I

aijk

T−t
∑

τ=1

Pr(Di ≥ τ)α
(2)∗
i −

∑

i∈I

wijkρ
(2)∗
i

where T − t ≤ d̄(δ). Notice that since (LP-TE-D) is a minimization problem,
∑

i∈I ρ
(1)∗
i is never strictly larger than 1.

Hence to make the above expression larger than or equal to 0, it’s enough to let β
(1)
jt = wmax. In all, by letting α

(1)
it = α

(2)∗
i

for t ∈ {1, . . . , T }, β
(1)
jt = β

(2)∗
j for t ∈ {1, . . . , T − d̄(δ)}, β

(1)
jt = wmax for t ∈ {T − d̄(δ) + 1, . . . , T } and ρ

(1)
i = ρ

(2)∗
i ,

we have a feasible solution for the (LP-TE-D). Then Tλ′ − T λ̃′ ≤
∑T

t=T−d̄(δ)+1

∑

j∈J pjβ
(1)
jt ≤ d̄(δ)wmax. Concluding

the above analysis, we have:

Tλ′ ≥ Tλ∗ ≥ T

(

1− δ

γ

)

λ′



T λ̃′ ≥ T λ̃∗ ≥ T

(

1− δ

γ

)

λ̃′

Tλ′ ≤ T λ̃′ + d̄(δ)wmax.

Putting these together, we have:

T λ̃∗ ≥
(

1− δ

γ

)

(Tλ∗ − d̄(δ)wmax).

C. Proof of Lemma 3

Before proceeding to the proof, we introduce the multiplicative Chernoff bounds.

Lemma 6 (Multiplicative Chernoff bounds). Let X =
∑

iXi, where Xi ∈ [0, B] are independent random variables, and

let E[X ] = µ.

(a) For all ǫ > 0,

Pr(X < µ(1− ǫ)) < exp

(−ǫ2µ
2B

)

.

Therefore, for all δ > 0, with probability at least 1− δ,

X − µ ≥ −
√

2µB ln(1/δ).

(b) For ǫ ∈ [0, 2e− 1],

Pr(X > µ(1 + ǫ)) < exp

(−ǫ2µ
4B

)

.

Hence, for all δ > exp
(

−(2e−1)2µ
4B

)

, with probability at least 1− δ,

X − µ ≤
√

4µB ln(1/δ).

For ǫ > 2e− 1,

Pr(X > µ(1 + ǫ)) < 2−(1+ǫ)µ/B.

Lemma 3. Since λ(r) = µ(r)∗

1+ǫ
(r−1)
x

, showing λ̃∗(1−3ǫ
(r−1)
x ) ≤ λ(r) ≤ λ̃∗ is equivalent to showing λ̃∗(1−2ǫ

(r−1)
x ) ≤ µ(r)∗ ≤

λ̃∗(1+ǫ
(r−1)
x ). We first show that the lower bound λ̃∗(1−2ǫ

(r−1)
x ) ≤ µ(r)∗ holds with probability 1−η. It’s obvious that the

expected instance of (LP-RSS)(r) has the same optimal solution and objective function as (LP-SS). In (LP-RSS)(r), letting

x
(r)
jk =

x∗
jk

1+ǫ
(r−1)
x

, the probability of violating each resource constraint is:

Pr





∑

j∈J

∑

k∈K

p̂
(r)
j aijkdi

x∗jk

1 + ǫ
(r−1)
x

≥ ci

1 + ǫ
(r−1)
x

(

1 + ǫ(r−1)
x

)





≤Pr





∑

j∈J

∑

k∈K

p̂
(r)
j di

x∗jk

1 + ǫ
(r−1)
x

≥ γ

1 + ǫ
(r−1)
x

(

1 + ǫ(r−1)
x

)





≤Pr





t(r)
∑

t=t(r−1)+1

∑

j∈J

∑

k∈K

1 (j (t) = j)

t(r−1)

x∗jk

1 + ǫ
(r−1)
x

≥ γ

di

(

1 + ǫ
(r−1)
x

)

(

1 + ǫ(r−1)
x

)





≤ exp







−
(

ǫ
(r−1)
x

)2

t(r−1)γ

4di

(

1 + ǫ
(r−1)
x

)







≤ η

2|I| .



The first and second inequalities stand by the definition of γ and p̂
(r)
j respectively. For the third inequality, since j(t)’s are

independent,
∑

j∈J

∑

k∈K
1(j(t)=j)
t(r−1)

x∗
jk

1+ǫ
(r−1)
x

≤ 1
t(r−1) and

E





t(r)
∑

t=t(r−1)+1

∑

j∈J

∑

k∈K

1 (j (t) = j)

t(r−1)

x∗jk

1 + ǫ
(r−1)
x



 ≤ γ

di

(

1 + ǫ
(r−1)
x

) ,

we apply the multiplicative Chernoff bounds to derive the result. The fourth inequality follows if

γ ≥
di(1 + ǫ

(r−1)
x ) log 2|I|

η

t(r−1)
(

ǫ
(r−1)
x

)2 =
di(1 + ǫ

(r−1)
x )

4T
γ.

This is indeed the case since we assume the usage duration di ∀i ∈ Ic is small compared with T . Taking a union bound

over all i ∈ Ic, the probability of violating any resource constraints is at most
∑

i∈Ic

η
2|I| ≤

η
2 .

A similar process holds for bounding the probability of violating each reward constraint:

Pr





∑

j∈J

∑

k∈K

p̂
(r)
j wijk

x∗jk

1 + ǫ
(r−1)
x

≤ λ̃∗

1 + ǫ
(r−1)
x

(

1− ǫ(r−1)
x

)





≤Pr





t(r)
∑

t=t(r−1)+1

∑

j∈J

∑

k∈K

1 (j (t) = j)

t(r−1)

wijkγ

λ̃∗

x∗jk

1 + ǫ
(r−1)
x

≤ γ

1 + ǫ
(r−1)
x

(

1− ǫ(r−1)
x

)





≤ exp







−
(

ǫ
(r−1)
x

)2

t(r−1)γ

2T
(

1 + ǫ
(r−1)
x

)







≤ η

2|I| .

Combining the union bounds for all resource constraints and reward constraints, with with probability at least 1 − η, the

stage r LP (LP-RSS)(r) achieves an objective value of at least λ̃∗
1−ǫ(r−1)

x

1+ǫ
(r−1)
x

≥ λ̃∗(1− 2ǫ
(r−1)
x ).

Next we show that the upper bound µ(r)∗ ≤ λ̃∗(1 + ǫ
(r−1)
x ) holds with probability 1− η. Note that the dual of (LP-SS)

is:

(LP-SS-D) : min
α,β,ρ

∑

j∈J

pjβj +
∑

i∈Ic

ciαi

s.t. βj +
∑

i∈Ic

aijkdiαi −
∑

i∈Ir

wijkρi ≥ 0 ∀j ∈ J , k ∈ K
∑

i∈Ir

ρi ≥ 1

ρi ≥ 0 ∀i ∈ Ir
αi ≥ 0 ∀i ∈ Ic
βj ≥ 0 ∀j ∈ J .

The dual of (LP-RSS)(r) is:

(LP-RSS-D)(r) : min
α(r),β(r),ρ(r)

∑

j∈J

p̂
(r)
j β

(r)
j +

∑

i∈Ic

ciα
(r)
i

s.t. β
(r)
j +

∑

i∈Ic

aijkdiα
(r)
i −

∑

i∈Ir

wijkρ
(r)
i ≥ 0 ∀j ∈ J , k ∈ K

∑

i∈Ir

ρ
(r)
i ≥ 1

ρ
(r)
i ≥ 0 ∀i ∈ Ir
α
(r)
i ≥ 0 ∀i ∈ Ic
β
(r)
j ≥ 0 ∀j ∈ J .



Since the domain of the constraints are exactly the same for two dual LPs, the optimal solution of (LP-SS-D) is feasible

for (LP-RSS-D)(r). Suppose the optimal solutions to (LP-SS-D) is α∗
i , β∗

j and ρ∗i . The optimal objective value is then

λ̃∗ =
∑

j∈J pjβ
∗
j +

∑

i∈Ic
ciα

∗
i . Letting α

(r)
i = α∗

i , β
(r)
j = β∗

j and ρ
(r)
i = ρ∗i , since (LP-RSS-D)(r) is a minimization

problem, we have an upper bound for optimal objective value µ(r)∗, i.e. µ(r)∗ ≤∑j∈J p̂
(r)
j β∗

j +
∑

i∈Ic
ciα

∗
i . If

∑

i∈Ir
ρ∗i is

strictly larger than 1, we can lower the values of ρ∗i and still get a feasible solution for (LP-SS-D). In this case the objective

is not optimal. Therefore,
∑

i∈Ir
ρ∗i = 1. It can be seen that β∗

j +
∑

i∈Ic
aijkdiα

∗
i ≤ wmax, since otherwise we can lower

the value of β∗
j and still have a feasible solution. Hence if

√

4wmax log(1/η)

t(r−1)(
∑

j∈J pjβ∗
j )

∈ [0, 2e− 1], then with probability at most

1− η we have
∑

j∈J

p̂
(r)
j β∗

j −
∑

j∈J

pjβ
∗
j

=

t(r)
∑

t=t(r−1)+1

∑

j∈J

1(j(t) = j)

t(r−1)
β∗
j −

∑

j∈J

pjβ
∗
j

≤

√

4(
∑

j∈J pjβ∗
j )wmax log(1/η)

t(r−1)
.

The inequality is derived by applying the Chernoff bounds to
∑

j∈J
1(j(t)=j)
t(r−1) β∗

j . We have wmax

t(r−1) under the square root

since β∗
j ≤ wmax and therefore

∑

j∈J
1(j(t)=j)
t(r−1) β∗

j ≤ wmax

t(r−1) . By the assumption that γ = min
i∈Ic

(

ci
amax

, T λ̃∗

wmax

)

≤ T λ̃∗

wmax
and

definition of ǫ
(r−1)
x , we have:

∑

j∈J

pjβ
∗
j ≤ λ̃∗

⇒
(
∑

j∈J pjβ
∗
j )wmax

(

λ̃∗
)2 ≤ wmax

λ̃∗

⇒
(
∑

j∈J pjβ
∗
j )wmax

(

λ̃∗
)2 ≤ T

γ

⇒

√

√

√

√

√

4(
∑

j∈J pjβ∗
j )wmax log(1/η)

(

λ̃∗
)2

t(r−1)

≤
√

4T log(2|I|/η)
t(r−1)γ

= ǫ(r−1)
x .

Thus with a probability at least 1− η,
∑

j∈J

p̂
(r)
j β∗

j +
∑

i∈I

ciαi

≤
∑

j∈J

pjβ
∗
j +

∑

i∈I

ciαi +

√

4(
∑

j∈J pjβ∗
j )wmax log(1/η)

t(r−1)

≤λ̃∗(1 + ǫ(r−1)
x ).

If
√

4wmax log(1/η)
tr−1(

∑

j∈J pjβ∗
j )

≥ 2e − 1, then the above procedure doesn’t hold. Notice that all we need is
∑

j∈J p̂
(r)
j β∗

j −
∑

j∈J pjβ
∗
j ≤ λ̃∗ǫ

(r−1)
x with high probability. Hence define ǫ

(r−1)
y =

λ̃∗ǫ(r−1)
x

∑

j∈J pjβ∗
j

. Supposing ǫ
(r)
y > 2e − 1 (which will

be proved later), then using the Chernoff bound, we have:

Pr





∑

j∈J

p̂
(r)
j β∗

j −
∑

j∈J

pjβ
∗
j ≥ λ̃∗ǫ(r−1)

x





=Pr





∑

j∈J

p̂
(r)
j β∗

j ≥
∑

j∈J

pjβ
∗
j (1 + ǫ(r−1)

y )





≤2−
(1+ǫ

(r−1)
y )t(r−1) ∑

j∈J pjβ
∗
j

wmax



=2−
t(r−1) ∑

j∈J pjβ
∗
j +t(r−1)λ̃∗ǫ

(r−1)
x

wmax

≤2−
t(r−1) λ̃∗ǫ

(r−1)
x

wmax

≤2−
t(r−1)γǫ

(r−1)
x

T

≤2−ǫ2γ

≤η.

The third inequality follows from γ ≤ T λ̃∗

wmax
. The fourth inequality holds by the definitions of t(r−1) and the fact that

ǫ
(r)
x ≥ ǫ for all r. The last inequality holds if γ ≥ log 1

η

ǫ2 . This is indeed the case since γ = Ω

(

log |I|T
ǫ

ǫ2

)

and we let

η = O
(

ǫ
l

)

(which will be demonstrated later in the proof of Lemma 5). Hence the only thing left to prove is that given
√

4wmax log(1/η)

t(r−1)(
∑

j∈J pjβ∗
j )

≥ 2e− 1, we have ǫ
(r)
y > 2e− 1 . This would be a direct result if

∑

j∈J pjβ
∗
j <

λ̃∗ǫ
2e−1 . Next we show

that given
∑

j∈J pjβ
∗
j ≥ λ̃∗ǫ

2e−1 ,

√

4wmax log(1/η)
t(r−1)(

∑

j∈J pjβ∗
j )
< 2e− 1. This completes the whole proof.

√

4wmax log(1/η)

t(r−1)(
∑

j∈J pjβ∗
j )

≤2
√
2e− 1

√

wmax log(1/η)

t(r−1)λ̃∗ǫ

≤2
√
2e− 1

√

wmax log(1/η)

ǫ2T 2r−1λ̃∗ǫ

≤2
√
2e− 1

√

log(1/η)

ǫ2γ

≤2
√
2e− 1

<2e− 1.

The second inequality holds since t(r−1) = ǫT 2r−1. The third inequalities follow from γ ≤ T λ̃∗

wmax
. The fourth inequality

holds since γ ≥ log 1
η

ǫ2 .

D. Proof of Lemma 4

Before proving Lemma 4, we first demonstrate the validity of the following lemma.

Lemma 7. Suppose ǫ, η ∈ (0, 1). Define ǫ
(r)
z =

√

2wmax(1+ǫ) log 2|I|l
η

t(r)λ(r) for r ∈ {0, 1, . . . , l − 1}. In stage r, Algorithm S

achieves a reward of at least
t(r)
∑

t=1

∑

k∈K

W
(r)

i,j(r)(t),k
(t)X̃

(r)

j(r)(t),k
(t) ≥ t(r)λ(r)(1− ǫ(r)z )

for every i ∈ Ir with probability at least 1− (1 + ǫ)
δ
( t

(r)

2T ǫ+
η
2l ).

Lemma 7. To aid analysis, we leave d̄(δ) customers unserved in the end of each stage, so the next stage starts nearly empty.

This causes a total reward loss of d̄(δ)wmax log
1
ǫ . Suppose we run Algorithm S over the entire planning horizon. Then

at any time t of stage r, the number of resource i occupied by customers from previous stages can defined as Ŷ
(r)
it =

∑r−1
h=0

∑t(h)

τ=1

∑

k∈K 1(D
(h)
i (τ) ≥ t(r) + t − (t(h) + τ) + 1)A

(h)

i,j(h)(τ),k
(τ)X̃

(h)

j(h)(τ),k
(τ). Since

∑∞
t=d̄(δ)+1 Pr(Di ≥ t) ≤ δ,

it is evident that E[Ŷ
(r)
it ] ≤ amaxδ. Then the probability of violating the resource constraint at the t-th time of stage r is

bounded as:

Pr(Ŷ
(r)
it +

t
∑

τ=1

Ỹ
(r)
iτt ≥ ci

1 + ǫ
(1 + ǫ)) =Pr(

γ

ci
(Ŷ

(r)
it +

t
∑

τ=1

Ỹ
(r)
iτt ) ≥

γ

1 + ǫ
(1 + ǫ))

=Pr((1 + ǫ)
γ
ci

(Ŷ
(r)
it +

∑t
τ=1 Ỹ

(r)
iτt ) ≥ (1 + ǫ)γ)

≤E[(1 + ǫ)
γ
ci

(Ŷ
(r)
it +

∑t
τ=1 Ỹ

(r)
iτt )]/(1 + ǫ)γ



≤E[(1 + ǫ)
γamaxδ

ci (1 + ǫ)
γ
ci

∑t
τ=1 Ỹ

(r)
iτt ]/(1 + ǫ)γ

≤(1 + ǫ)δ−γ
E[

t
∏

τ=1

(1 + ǫ)
γ
ci

Ỹ
(r)
iτt ]

≤(1 + ǫ)δ−γ
E[

t
∏

τ=1

(1 + ǫ
γ

ci
Ỹ

(r)
iτt )]

≤(1 + ǫ)δ−γ
t
∏

τ=1

(1 + ǫ
γ

ci
E[Ỹ

(r)
iτt ])

≤(1 + ǫ)δ−γ
t
∏

τ=1

exp(ǫ
γ

ci
E[Ỹ

(r)
iτt ])

≤(1 + ǫ)δ exp(
ǫγ

1 + ǫ
)/(1 + ǫ)γ

≤(1 + ǫ)δ exp(
−ǫ2γ

4(1 + ǫ)
)

≤ ǫ(1 + ǫ)δ

2|I|T .

The first inequality follows from Markov’s inequality. The second inequality holds since E[Ŷ
(r)
it ] ≤ amaxδ. The third in

equality holds since γ ≤ amax

ci
∀i ∈ Ic. The fourth inequality stands since γ

ci
Ỹ

(r)
iτt ≤ 1 for all i ∈ Ic and 1 ≤ τ ≤ t ≤ T , and

function (1+ǫ)x ≤ 1+ǫx for x ∈ [0, 1]. The fifth inequality holds because for each time period τ , Ỹ
(r)
iτt are independent from

each other. The sixth inequality holds by the fact that function 1+x ≤ ex. The seven inequality follows from E

[

Ỹ
(r)
iτt

]

≤ ci
1+ǫ .

The eighth inequality stands for all ǫ ∈ [0, 1], and the last inequality follows by assuming γ ≥ 4(1+ǫ)
ǫ2 log 2|I|T

ǫ . Taking a

union bound over all i ∈ Ic and t = 1, . . . , t(r), the probability of satisfying all resource constraints for (LP-RSS)(r) is at

least

1−
t(r)
∑

τ=1

∑

i∈Ic

ǫ(1 + ǫ)δ

2|I|T = 1− ǫ(1 + ǫ)δ

2|I|T |Ic|t(r) ≥ 1− t(r)

2T
ǫ(1 + ǫ)δ.

For the reward constraints, notice ǫ
(r)
z =

√

2wmax(1+ǫ) log 2|I|l
η

t(r)λ(r) , we have:

Pr





t(r)
∑

t=1

∑

k∈K

W
(r)

i,j(r)(t),k
(t) X̃

(r)

j(r)(t),k
(t) ≤ t(r)λ(r)

(

1− ǫ(r)z

)





=Pr





t(r)
∑

t=1

∑

k∈K

W
(r)

i,j(r)(t),k
(t)

wmax
X̃

(r)

j(r)(t),k
(t) ≤

t(r)λ(r)
(

1− ǫ
(r)
z

)

wmax





≤ exp







−
(

ǫ
(r)
z

)2

t(r)λ(r)

2wmax (1 + ǫ)







≤ η

2|I|l .

The first inequality follows from applying the multiplicative Chernoff bounds on
∑

k∈K

W
(r)

i,j(t),k
(t)

wmax
X̃

(r)
j(t),k(t).

It is evident that these summing terms are mutually independent and within range [0, 1], and meanwhile

E

[

∑t(r)

t=1

∑

k∈K

W
(r)

i,j(t),k
(t)

wmax
X̃

(r)

j(r)(t),k
(t)

]

≥ t(r)λ̃∗

wmax(1+ǫ) ≥ t(r)λ(r)

wmax(1+ǫ) . The last inequality holds by the definition of ǫ
(r)
z .

By a union bound over resource and reward constraints, we have the result of Lemma 7.

Lemma 4. Suppose λ̃∗(1− 3ǫ
(r−1)
x ) ≤ λ(r) ≤ λ̃∗ holds. Using λ(r) as an approximation of λ, over the l stages, we achieve

a total reward of

l−1
∑

r=0

t(r)λ(r)
(

1− ǫ(r)z

)



≥
l−1
∑

r=0

T λ̃∗
t(r)

T

(

1− 3ǫ(r−1)
x

)(

1− ǫ(r)z

)

≥T λ̃∗
l−1
∑

r=0

t(r)

T

(

1− 3ǫ(r−1)
x − ǫ(r)z

)

≥T λ̃∗
(

1−O

(

l−1
∑

r=0

ǫ

√

t(r)

T

))

≥T λ̃∗
(

1−O

(

ǫ
√
ǫ

l−1
∑

r=0

√
2
r

))

≥T λ̃∗






1−O






ǫ
√
ǫ

log√
2

(

1√
ǫ

)

∑

r=0

√
2
r













≥T λ̃∗ (1−O (ǫ)) .

The first inequality holds since λ̃∗(1−3ǫ
(r−1)
x ) ≤ λ(r) ≤ λ̃∗. The third inequality holds by definitions of ǫ

(r)
x =

√

4T log 2|I|
η

t(r)γ

and ǫ
(r)
z =

√

2wmax(1+ǫ) log 2|I|l
η

t(r)λ(r) , and the fact that γ ≤ Tλ(r)

wmax(1−3ǫ
(r−1)
x )

. The fourth and fifth inequalities stems from

t(r) = ǫT 2r and ǫ2l = 1 respectively.

Notice that with probability of at most 2η, λ̃∗(1− 3ǫ
(r−1)
x ) ≤ λ(r) ≤ λ̃∗ fails. Therefore, Algorithm S gives us a reward

of at least T λ̃∗(1−O(ǫ)) with probability of at least

1−
l−1
∑

r=0

t(r−1)

2T
ǫ(1 + ǫ)δ −

l−1
∑

r=0

η

2l
− 2η = 1− ǫ(1 + ǫ)δ

2
− 5η

2
≤ 1− ǫ(1 + ǫ)δ.

E. Proof of Lemma 5

Proof. To aid the analysis, we leave d̄(δ) customer unserved in the end of each stage, so the next stage starts nearly empty.

This causes a total reward loss of at most d̄(δ)wmaxl = d̄(δ)wmax log(1/ǫ). Define the number of resource i occupied by

customers from previous stages as Ŷ
(r)
it in time t of stage r. It is evident that E[Ŷ

(r)
it ] ≤ amaxδ. Then at any time step

t ∈ {s+ 1, . . . , t(r)}, by the Markov inequality, the probability of violating resource i constraint is:
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. (33)

While it is desirable to upper bound the probabilities of violating any resource constraints without the term E[Ỹ
(r)
iτt ], the

values of E[Ỹ
(r)
iτt ] are not known in the online setting. Nevertheless, we use the fact that

∑

k∈K

∑

j∈J pjaijkdix
∗
jk ≤ ci for

the “steady-state” optimal solution, and upper bound E[Ỹ
(r)
iτt ] as follows:

E

[

Ỹ
(r)
iτt

]

=
∑

k∈K

∑

j∈J

pjaijk Pr(Di ≥ t− τ + 1)
x∗jk
1 + ǫ

≤ ci
di(1 + ǫ)

Pr(Di ≥ t− τ + 1). (34)



Plugging (34) in (33), in time step s, we aim to minimize the following term which, by the union over t ∈ {s+1, . . . , t(r)}
and i ∈ Ic, upper bounds the probability of violating at least one future resource constraint in stage r:
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Similarly, since E[Z̃it] =
∑

k∈K

∑

j∈J pjwijk
x∗
jk

1+ǫ ≥ λ̃∗

1+ǫ ≥ λ(r)

1+ǫ , by the Markov inequality, we upper bound the reward

constraint violation probabilities in stage r as:
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i∈Ir

Pr





s+1
∑

τ=1

Z
(r)
iτ +

t(r)
∑

τ=s+2

Z̃
(r)
iτ ≤ t(r)λ(r)

(

1− ǫ(r)z

)





≤
∑

i∈Ir

E





(

1− ǫ(r)z

)
1

wmax

∑s
τ=1 Z

(r)
iτ

(

1− ǫ(r)z

1

wmax
Z

(r)
i,s+1

) t(r)
∏

τ=s+2

(

1− ǫ(r)z

λ(r)

wmax (1 + ǫ)

)



 /
(

1− ǫ(r)z

)

(1−ǫ
(r)
z )t(r)λ(r)

wmax
.

(36)

Define the sum of terms (35) and (36) as F (r)(As+1St(r)−s−1). In time step s + 1 ∈ {1, . . . , t(r)} of stage r, the DM

aims to take the action k(r)(s + 1) that minimizes F (r)(As+1St(r)−s−1), which has exactly the form of (7). We further

show that k(r)(s + 1) in fact implies that F (r)(As+1St(r)−s−1) ≤ F (r)(AsSt(r)−s) as follows, and inductively we have

F (r)(AT ) ≤ F (r)(ST ).
Suppose we run Algorithm S in the first s time periods of stage r, then at time period s + 1, Algorithm A obviously

minimizes Fr

(

As+1St(r)−s−1
)

. Hence, if we replace the action Algorithm A at time s+ 1 by the choice of Algorithm S,

the probability of constraint violation is no smaller:

Fr

(

As+1St(r)−s−1
)

≤

∑t(r)

t=s+1

∑

i∈Ic
E

[

(1 + ǫ)
γ
ci

∑s
τ=1 Y

(r)
iτt

(

1 + ǫ γ
ci
Y

(r)
i,s+1,t

)

∏t
τ=s+2

(

1 + ǫγ Pr(Di≥t−τ+1)
di(1+ǫ)

)

]

(1 + ǫ)
γ−δ

+

∑

i∈Ir
E

[

(

1− ǫ
(r)
z

)
1

wmax

∑s
τ=1 Z

(r)
iτ
(

1− ǫ
(r)
z

1
wmax

Z
(r)
i,s+1

)

∏t(r)

τ=s+2

(

1− ǫ
(r)
z

λ(r)

wmax(1+ǫ)

)

]

(

1− ǫ
(r)
z

)

(1−ǫ
(r)
z )t(r)λ(r)

wmax

≤

∑t(r)

t=s+1

∑

i∈Ic
E

[

(1 + ǫ)
γ
ci

∑s
τ=1 Y

(r)
iτt

(

1 + ǫ γ
ci
Ỹ
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By induction, we have Fr

(

At(r)
)

≤ Fr

(

St(r)
)

. Since Algorithm A has no worse performance than Algorithm S in each



stage, following Lemma 4, the total probability of constraint violation over the entire planning horizon

l−1
∑

r=0

Fr

(

At(r)
)

≤
l−1
∑

r=0

Fr

(

St(r)
)

≤ ǫ(1 + ǫ)δ.

Therefore, AlgorithmA achieves a reward of at least T λ̃∗(1−O(ǫ)) for every i ∈ Ir with probability at least 1−ǫ(1+ǫ)δ.

F. More on the numerical experiments

It is worth mentioning that for the assortment planning applications, the size of the action set K scales exponentially with

the number of products, and therefore equation (1) is computationally intractable under a general choice model. However, we

don’t need to enumerate all possible assortments in certain cases, say under MNL models. For simultaneously maximizing

the revenue of each resource, we set Ir = Ic, Aijk ∼ Bernoulli(qijk) and Wijk = riAijk . In this case, equation (1) can be

written as:

k(r)(s+ 1) = argmin
k∈K
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i∈Ic





t(r)
∑

t=s+1

Pr(Di ≥ t− s)φ
(r)
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(r)
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 qi,j(r)(s+1),k



 . (4)

Under a MNL model, qijk =
exp(b⊤

ijf i)

1+
∑

ℓ∈k exp(b⊤
ℓj
fℓ)

if i ∈ k, and qijk = 0 if i 6∈ k. It can be shown that for a type j customer,

(4) can be solved efficiently by solving the following LP ([24]):

min
∑

i∈Ic

(

T
∑

t=s+1

Pr(Di ≥ t− s)φ
(r)
i,s+1,t + riψ

(r)
i,s+1
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s.t.
∑

i∈Ic

zi + z0 = 1

∑

i∈Ic

zi

b⊤ijf i

≤ nz0

0 ≤ zi

b
⊤
ijf i

≤ z0 ∀i ∈ Ic

where the decision variables are {zi : i ∈ Ic ∪ {0}}.

In our numerical tests, when the number of customer types is large, the computation time is large despite the usage of

column generation method. We can use the sample average approximation (SAA) to reduce the number of customer types.

Specifically, we can sample 100 times from the 1000 customer types and approximate the value of λ̃∗ on the 100 samples.

This technique is adopted in Algorithm 3, where we have shown that with large enough sample sizes, the SAA works well.

Hence essentially we are performing SAA on SAA when the size of J is large. Table 1 shows the results and computational

time comparisons between the original algorithm A and algorithm A with SAA.

T (γ, ǫ) UB
Total Revenue % Gap from UB Computational Time
A SAA A SAA A SAA

1000 (300, 0.3) 644.90 331.03 305.90 48.67% 52.57% 134.18 55.19
2000 (600, 0.22) 1289.80 887.28 838.60 31.21% 34.98% 260.01 103.77
3000 (900, 0.185) 1934.70 1419.54 1357.70 26.63% 29.82% 390.10 143.35
4000 (1200, 0.162) 2579.60 1966.83 1861.60 23.75% 27.83% 489.99 188.43
5000 (1500, 0.148) 3224.50 2522.00 2398.70 21.79% 25.61% 576.65 246.04
6000 (1800, 0.136) 3869.40 3086.28 2934.40 20.24% 24.16% 641.84 297.80
7000 (2100, 0.127) 4514.30 3647.95 3477.90 19.19% 22.96% 732.04 352.72
8000 (2400, 0.12) 5159.20 4217.17 4014.40 18.26% 22.19% 1114.00 687.89

TABLE II

USING SAA TO REDUCE COMPUTATIONAL TIME.
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