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Abstract— An efficient approach for the construction of
separable approximations of optimal value functions from
interconnected optimal control problems is presented. The
approach is based on assuming decaying sensitivities between
subsystems, enabling a curse-of-dimensionality free approxima-
tion, for instance by deep neural networks.

I. INTRODUCTION

Optimal control problems arise in a variety of applications
including robotics, aerospace, and power systems, among
others. One way to approach such problems is by means
of dynamic programming, i.e., by computing the optimal
value function by solving a Hamilton-Jacobi-Bellman (HJB)-
PDE. However, the computational complexity of grid-based
numerical methods for this problem grows exponentially with
respect to the state space dimension, a phenomenon known
as the curse of dimensionality. Over the last years, the use
of data-driven methods has emerged as a suitable alternative
to circumvent this difficulty [1], [4]. In [10] the authors
propose a deep learning method to approximate solutions of
high-dimensional HJB-PDEs. The fact that neural networks
are capable of overcoming the curse of dimensionality for
compositional functions, see [11] and [9], has also been
exploited in [6] and [5] for approximating separable (control)
Lyapunov functions.

The main contribution of this paper is the construction
of a separable approximation of the optimal value function
of interconnected optimal control problems. The new idea
presented in this paper is to use a decaying sensitivity
assumption between subsystems with an increasing distance
in a corresponding graph. We show how this decrease
of sensitivity enables a separable approximation based on
neighborhoods in the graph.

The notion of decaying sensitivity is strongly connected
to the off-diagonal decay property studied by the numerical
linear algebra community. A theoretical framework in this
setting has been provided in [2], where the author proves
decay bounds for the entries of general matrix functions
and similar results are extended in [7] in an optimal control
context, establishing decay properties for the solution of
Lyapunov equations.
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An exponential decay of sensitivity for nonlinear programs
with a graph structure has been studied in [13]. Based on
the results therein, a connection to dynamic optimization
and to the particular case of discrete-time linear quadratic
problems has been established in [15] and [14], respectively.
An exponential decay of sensitivity has also been discussed
in the context of reinforcement learning and for linear
quadratic problems in [12] and [16], respectively. Note that
the decaying sensitivity in [14] and [16] is used for the
purpose of an approximate optimal feedback matrix, while
we want to approximate the optimal value function.

Notation: For j ∈ N we denote [j] := {1, 2, . . . , j}.
We define 0n×m to be the zero matrix in Rn×m and set
0n := 0n×n. The entries of a (block)-matrix A are accessed
via A[·, ·]. The comparison space L denotes all continuous
and strictly decreasing functions γ : R≥0 → R≥0 with
limτ→∞ γ(τ) = 0.

The remainder of this paper is organized as follows: In
the next section, we introduce the problem. Afterwards, we
use a decaying sensitivity assumption to construct separable
approximations of optimal value functions. In Section IV, we
consider the particular case of discrete-time linear quadratic
problems. Numerical test cases are presented in Section V.

II. PRELIMINARIES

A. Optimal Control Problem

We consider a network of s ∈ N agents or subsystems
V = {v1, . . . , vs}. Their interaction is represented via a
directed graph G = (V, E), where (i, j) ∈ E means that
the agent vi influences agent vj . In this case, we call vi a
neighbor of vj and denote the index set of neighbors of vj
by Nj = {i | (i, j) ∈ E}. Each agent has a state xj ∈ Rnj

and a control variable uj ∈ Rmj . Moreover, we assign a cost
functional ℓj to each agent. The vector of all states and the
vector of all controls are denoted by x ∈ Rn and u ∈ Rm,
respectively, where n =

∑s
j=1 nj and m =

∑s
j=1 mj . In

total, we consider an optimal control problem (OCP) either
in continuous-time

min J(x0, u)

=

∫ ∞

0

e−δt
s∑

j=1

ℓj(xj(t), uj(t), xNj
(t), uNj

(t)) dt,

s.t. ẋj(t) = fj(xj(t), uj(t), xNj (t), uNj (t)), j ∈ [s],

x(0) = x0, (1a)

ar
X

iv
:2

30
4.

06
37

9v
2 

 [
m

at
h.

O
C

] 
 8

 S
ep

 2
02

3



or in discrete-time

min J(x0, u)

=

∞∑
k=0

(
1

1 + δ

)k+1 s∑
j=1

ℓj(xj(k), uj(k), xNj
(k), uNj

(k)),

s.t. xj(k + 1) = fj(xj(k), uj(k), xNj (k), uNj (k)), j ∈ [s],

x(0) = x0, (1b)

where δ ∈ [0,∞) is the discount factor, xNj
and uNj

com-
prise all states and controls belonging to Nj , and x0 ∈ Rn

is the initial value. If we do not want to distinguish between
the continuous-time formulation (1a) and the discrete-time
formulation (1b), we just refer to the system of interest
as system (1). Let V : Rn → R denote the optimal value
function of the system (1) given by V (x) = infu J(x, u). Our
goal is to compute an approximation of V on a hypercube
Ω = [−a, a]n for some a ∈ R>0, where we assume that V
is well-defined and finite on Ω. More precisely, we want to
compute an approximation that is a separable function.

Definition 1: Let Ψ: D ⊂ Rn → R and d ∈ [n]. We call
Ψ a d-separable function if there exist s ∈ [n] functions
Ψj : Rdj → R with dj ≤ d for j ∈ [s] such that

Ψ(x) =
∑s

j=1
Ψj(zj), x ∈ D,

where zj = (xj1 , xj2 , . . . , xjdj
) for some ji ∈ [n].

Note that in Definition 1 we allow the same xi to appear in
different vectors zj and zl with j, l ∈ [s], j ̸= l. That is, we
allow for overlapping domains of the functions Ψj .
The reason for our interest in separable functions is that
under sufficient regularity assumptions, d-separable functions
can be approximated by deep neural networks with a num-
ber of neurons that grows only polynomially in the state
dimension n. This has been shown in [6, Proposition 1] for
separable Lyapunov functions, but an extension to general
separable functions is straightforward. For details regarding
a curse-of-dimensionality-free approximation of separable
functions with deep neural networks, we refer to [11], [9],
and [6]. As a consequence, separable approximations of
optimal value functions are of interest for the purpose of a
curse-of-dimensionality-free computation of an approximate
optimal value function.

B. Problem Formulation

We construct such a separable approximation Ψ of an
optimal value function V under a decaying sensitivity as-
sumption. The main idea is to define functions Ψj , j ∈ [s],
that model the influence of the substate xj on the optimal
value function V . To this end, we rely on a decay of
sensitivity between the subsystems. One way to formulate
this assumption is to require that for x ∈ Ω and i, j ∈ [s],
i ̸= j, the sensitivity

δij(x) =
∂(V (x)− V (x1, . . . , xj−1, 0, xj+1, . . . , xs))

∂xi
(2)

decreases as the distance between nodes vi and vj in-
creases. This decreasing property then allows us to define

functions Ψj on certain neighborhoods of xj in the graph
and to neglect the influence of all subsystems outside these
neighborhoods. Thus, the domain of each Ψj is a lower-
dimensional subspace of Rn. This yields the separable form
of our approximation.
In the following section, we construct the functions Ψj for-
mally and show that they indeed can be used to approximate
the optimal value function under a suitable decay assumption.

III. SEPARABLE APPROXIMATION OF THE OPTIMAL
VALUE FUNCTION

Suppose we are given an OCP of the form (1) with a
corresponding graph G. For i, j ∈ [s] we define distG(i, j)
to be the length of the shortest path in G from node vi to
vj . Further, for j, l ∈ [s] we define

Bl(j) := {i ∈ [s] | distG(i, j) ≤ l} (3)

to be the neighborhood of node vj with distance l, that is,
Bl(j) comprises the indices of all nodes from which vj can
be reached within l steps. Let bjl :=

∑
i∈Bl(j)

ni, i.e., the
dimension of the subspace corresponding to Bl(j). In the
following, we may want to project a vector x ∈ Rn onto
such a subspace. To this end, for Bl(j) = {β1, . . . , βr} we
define the matrix Hj

l ∈ Rbjl×n blockwise by setting

Hj
l [k, i] :=

{
Ini , if βk = i,

0nβk
×ni , otherwise,

for k ∈ [r], i ∈ [s]. Note that the matrix Hj⊤

l embeds a
vector xBl(j) ∈ Rbjl into Rn. Moreover, for j ∈ {0, . . . , s}
we define the block-diagonal matrices

Πj := diag(0n1
, . . . , 0nj

, Inj+1
, . . . , Ins

) ∈ Rn×n.

The matrix Πj maps the values of the first j substates of
some vector x ∈ Rn to 0. Note that Π0 = In and Πs = 0n.
Now we are in a position to define the mappings Ψj

l : Rbjl →
R via

xBl(j) 7→ V
(
Πj−1Hj⊤

l xBl(j)

)
− V

(
ΠjHj⊤

l xBl(j)

)
. (4)

Such a function Ψj
l takes the substates of the neighborhood

of distance l of the node vj as an input, lifts the correspond-
ing vector into the whole state space and then considers the
difference (under V ) of setting the first j − 1 and the first j
substates to 0, respectively. We illustrate the construction in
(4) with the example of the semi-discrete heat equation:

Example 2: Consider the one-dimensional heat equation
with diffusion coefficient σ, where the state space is dis-
cretized via centered finite differences with discretization pa-
rameter ∆x. We add a distributed control and quadratic costs
to the resulting semi-discrete equation. The cost functional
is given as

J(x0, u) =

∫ ∞

0

x⊤(t)x(t) + u⊤(t)u(t) dt



and the linear dynamics are

ẋ(t) =
σ

(∆x)2


−2 1 0 · · ·
1 −2 1 · · ·
0 1 −2 · · ·
...

. . . . . . . . .

x(t) + Inu(t), (5)

for constants σ,∆x > 0. Then the corresponding graph G
for n = s = 5 has the form displayed in Figure 1. The
sets B1(1), B1(2), and B1(3) are circled in red, orange, and
green, respectively. In this scenario, we have

Ψ1
1(x1, x2) = V (x1, x2, 0, 0, 0)− V (0, x2, 0, 0, 0),

Ψ2
1(x1, x2, x3) = V (0, x2, x3, 0, 0)− V (0, 0, x3, 0, 0),

Ψ1
2(x1, x2, x3) = V (x1, x2, x3, 0, 0)− V (0, x2, x3, 0, 0).

x1 x2 x3 x4 x5

Fig. 1. Neighborhoods in the graph of the semi-discrete heat equation.

On the one hand, the use of Πj in (4) originates from the
way we want to approximate the optimal value function V .
The function Ψ1

l models the influence of the first substate
on the optimal value function V . Hence, by using Ψ1

l , we
can reduce the computation of V (x) to the computation of
V (0, x2, . . . , xn). We thus reduce the considered state space
to {0}n1 × Rn−n1 . Repeating this for j = 2, . . . , s − 1, we
finally arrive at the subspace {0}n−ns ×Rns , where we can
use Ψs

l to reduce the evaluation of V (x) to the evaluation of
V at the origin. This procedure is illustrated geometrically
for the case of n = s = 3 in Figure 2. On the other hand, the

x3

x1

x2

Ψ1
lΨ2

l
Ψ3

l
x

Fig. 2. Stepwise approximation of a point x ∈ R3 with the functions Ψj
l .

reason for using Hj⊤

l , i.e., for defining Ψj
l on the subspace

induced by Bl(j), is that we want the component functions
of our approximation to be defined on lower-dimensional
spaces, see Definition 1. To ensure that this local restriction
approximates the global behavior, we rely on the following
sensitivity assumption:

Assumption 1: There exists a function γ ∈ L such that

|Ψj
l (H

j
l x)− V (Πj−1x) + V (Πjx)| ≤ γ(l + 1) (A1)

holds for all l ∈ [s], j ∈ [s], and x ∈ Rn.

The term V (Πjx)− V (Πj−1x) determines the influence of
xj on V in a global manner, i.e., with respect to all other
subsystems. In (A1), we compare this global difference with
the local one obtained by Ψj

l . Note that in the case l = s, the
left-hand side in (A1) is 0. Now the statement of Assumption
1 is that with an increasing distance l of the neighborhoods
Bl(j), the error decreases as given by the L-function γ. This
means that the influence of nodes vi on the node vj decreases
according to γ with an increasing distance distG(i, j). In
the case of a smooth optimal value function, Assumption 1
follows from the sensitivity inequality displayed in (2).

Lemma 3: Consider an OCP of the form (1) with a C1-
optimal value function V . Define δij as in (2) and assume
that there exists γ̃ ∈ L such that for all i, j ∈ [s], i ̸= j, and
x ∈ Ω it holds that

|δij(x)| ≤ γ̃(distG(i, j)). (6)

Then Assumption 1 holds with γ(·) = smaxx∈Ω∥x∥ γ̃(·).
Proof: For j ∈ [s] define Vj : Rn → R via

x 7→ V (x)− V (x1, . . . , xj−1, 0, xj+1, . . . , xs).

By assumption, we have∥∥∥∥∂Vj

∂xi

∥∥∥∥
∞,Ω

≤ γ̃(distG(i, j)), i, j ∈ [s], i ̸= j.

Now fix some j, l ∈ [s]. Let y := Hj⊤

l Hj
l x ∈ Rn. Using (4)

and the convexity of Ω, we obtain

|Ψj
l (H

j
l x)− V (Πj−1x) + V (Πjx)|

= |Vj(Π
j−1y)− Vj(Π

j−1x)|

≤ ∥Πj−1(x− y)∥
∫ 1

0

∥∇Vj(Π
j−1((1− τ)x+ τy))∥ dτ

≤∥x− y∥
∑

i/∈Bl(j)

∥∥∥∥∂Vj

∂xi

∥∥∥∥
∞,Ω

≤ smax
x∈Ω

∥x∥ γ̃(l + 1),

where we used that x− y ∈ Ω and Πj−1Ω ⊂ Ω.
Note that Lemma 3 is independent of the structure of the
graph corresponding to the OCP. In particular, the last
estimate in the proof considers the case where for all nodes
i /∈ Bl(j) we have distG(i, j) = l + 1. Depending on the
graph-structure and the function γ̃, we may be able to avoid
the dependence on the number of subsystems s in the last
estimate of the proof of Lemma 3. For instance, consider a
sequential graph as in Example 2, where distG(i, j) = |i−j|,
and assume an exponential decay given through ỹ(l) = ρl

for some ρ ∈ (0, 1). Then we can modify the last estimate
in the proof of Lemma 3 by

∥x− y∥
∑

i/∈Bl(j)

∥∥∥∥∂Vj

∂xi

∥∥∥∥
∞,Ω

≤∥x− y∥

j−l−1∑
i=1

ρj−i +

s∑
i=j+l+1

ρi−j

 ≤ 2∥x− y∥
1− ρ

.

The following theorem shows that the functions Ψj
l de-

fined in this section together with Assumption 1 indeed allow
to construct an approximation of the optimal value function.



Theorem 4: Consider an OCP of the form (1) and let
Assumption 1 hold. Then for all l ∈ [s] and x ∈ Ω it holds

|V (x)−
s∑

j=1

Ψj
l (H

j
l x)− V (0)| ≤ (s− 1)γ(l + 1). (7)

Proof: We prove the claim by induction over s. If s = 1,
we have Bl(1) = {1}. Thus, from (4) we get

Ψ1
1(x1) = V (x1)− V (0),

whence (7) follows. Now assume the assertion holds for s−1.
First, observe that

|V (x)−
s∑

j=1

Ψj
l (H

j
l x)− V (0)|

≤|V (x)−Ψ1
l (H

1
l x)− V (Π1x)|

+ |V (Π1x)−
s∑

j=2

Ψj
l (H

j
l x)− V (0)|

≤ γ(l + 1) + |V (Π1x)−
s∑

j=2

Ψj
l (H

j
l x)− V (0)|,

by using (A1) for j = 1. Note that in the evaluation of
V (Π1x) as well as in all evaluations Ψj

l (H
j
l x) for j ≥ 2, the

value of x1 is set to 0, i.e., the respective functions operate
on the subspace Π1Rn. Thus, we can use the isomorphism
Π1Rn ∼= Rn−n1 to interpret the expression

|V (Π1x)−
s∑

j=2

Ψj
l (H

j
l x)− V (0)|

as an equation of the form (7) on Rn−n1 with s−1 substates.
Since (A1) holds for all j = 2, . . . , s, we can use the
induction hypothesis to obtain

|V (Π1x)−
s∑

j=2

Ψj
l (H

j
l x)− V (0)| ≤ (s− 2)γ(l + 1).

This completes the proof.
Theorem 4 states that we can approximate the optimal value
function V with the function Ψ :=

∑s
j=1 Ψ

j
l + V (0). This

is a d-separable function for d := maxj∈[s] b
j
l .

Remark 5: As depicted in Figure 2, the functions Ψj
l

allow for an approximation of V on the whole cube Ω under
the knowledge of the evaluation of V at 0. However, there
is no need to fix the origin for this evaluation, but one may
use any vector ω ∈ Ω. By defining affine-linear mappings
Π̃j : Rn → Rn, j ∈ {0, . . . , s}, via

x 7→ Πjx+
[
ω1 . . . ωj 0 . . . 0

]⊤
,

and by replacing Πj with Π̃j in the definition of Ψj
l in (4),

one obtains an approximation of the form V ≈
∑s

j=1 Ψ
j
l +

V (ω). The choice of ω may depend on the knowledge of (an
approximation of) V at ω. In many cases, e.g., for linear-
quadratic problems as discussed in Section IV, one has that
V (0) = 0. For the sake of a simple presentation, we stick to
the case ω = 0 for the rest of this paper.

Remark 6: Suppose that we want to approximate V with
Ψ satisfying a given error bound ε ∈ R>0. Theorem 4 yields
that this can be ensured by choosing l large enough, so that

γ(l + 1) ≤ ε

(s− 1)
. (8)

Since the number of neurons in the neural network grows
exponentially with d, we have to ensure that d does not grow
too fast with s in order to avoid the curse of dimensionality.
This is possible, e.g., if γ(l) decreases exponentially in
l. More precisely, if γ(l) = ρl for some ρ ∈ (0, 1),
one has to choose l ≥ logρ(

ε
s−1 ) − 1. Now consider an

increasing number of subsystems s. If the dimensions bjl
of the subspaces belonging to the neighborhoods Bl(j) are
increasing subexponentially with s and a growth of l that
ensures (8), we can avoid the curse of dimensionality in the
computation of the functions Ψj

l .
Remark 7: The definition of the mappings Ψj

l in (4) uses
overlapping domains. This is in contrast to the works [6]
and [5], where a small-gain condition was used to prove the
existence of a separable (control) Lyapunov function of the
form

V (x) =

s∑
j=1

Vj(xj). (9)

If V can be written in the form (9), then Assumption 1 is
trivially satisfied, since

Ψj
l (xBl(j)) = Vj(xj)− Vj(0) = V (Πj−1x)− V (Πjx),

whence the left-hand side in (A1) is always 0. Thus, one may
interpret the present construction with overlapping domains
as a method to allow for more general decompositions if
there is no representation of V as in (9). However, as a
trade-off we no longer have an exact representation of the
optimal value function in a separable form.

IV. DISCRETE-TIME LQR

In this section, we examine when our assumptions are
satisfied for undiscounted discrete-time systems of the form
(1b) with linear dynamics and quadratic costs. It is known
that one can compute the solution P ∈ Rn×n of the discrete-
time algebraic Riccati equation to obtain the optimal value
function V (x) = x⊤Px. Thus, there is no need to use the
proposed separable approximation technique to compute V .
However, linear quadratic discrete-time problems allow for
an explicit check whether Assumption 1 holds. Thus, we use
this class of systems to argue that our assumptions are rea-
sonable and to illustrate the computations. The corresponding
OCP takes the form

min J(x0, u) =

∞∑
k=0

x(k)⊤Qx(k) + u(k)⊤Ru(k),

s.t. x(k + 1) = Ax(k) +Bu(k),

x(0) = x0,

(10)

where A ∈ Rn×n, B ∈ Rn×m, Q ∈ Rn×n is positive
semidefinite and R ∈ Rm×m is positive definite. We assume
that (A,B) is stabilizable, (A,Q

1
2 ) is detectable, and that G



is undirected, i.e., we have (i, j) ∈ E if and only if (j, i) ∈ E .
Note that due to the definition of G for some i, j ∈ [s]
with distG(i, j) > 1 it holds that all block matrices A[i, j],
B[i, j], Q[i, j], and R[i, j] are zero. For this setting, an
exponential decay property for the optimal feedback matrix
K = (B⊤PB +R)−1(B⊤PA) has been shown in [14].

Definition 8 (cf. Def. 1 in [16]): Let G be a graph with s
vertices. We say that a matrix X ∈ Rn×n given by block-
matrices X[i, j], i, j ∈ [s], is (CX , ρX)-spatially exponential
decaying (SED) with respect to G for some CX ∈ R≥0 and
ρX ∈ (0, 1) if for all i, j ∈ [s] it holds that

|X[i, j]| ≤ CXρ
distG(i,j)
X .

Since we are considering a fixed graph G corresponding to
(10), we omit the dependence on G in the following. Under
suitable assumptions it has been shown in [14] that there
exist CK ∈ R≥0 and ρK ∈ (0, 1) independently of s such
that the optimal feedback matrix K is (CK , ρK)-SED. For
details, we refer to the Chapters 3 and 5 and in particular
to Theorem 3.3 in [14]. We now discuss how this decay
property yields Assumption 1. Let l ∈ [s] and define the
matrix P l ∈ Rn×n blockwise by

P l[i, j] =

{
P [i, j], if distG(i, j) ≤ l,

0ni×nj , otherwise.
(11)

Then the quadratic form x⊤P lx equals the approximation
constructed in Section III, as the following lemma shows.

Lemma 9: Consider an OCP of the form (10) and let l ∈
[s]. Define the functions Ψj

l as in (4). Then it holds that

s∑
j=1

Ψj
l (H

j
l x) = x⊤P lx, x ∈ Ω.

Proof: Let j ∈ [s] be fixed. We have

Ψj
l (H

j
l x) = V

(
Πj−1Hj⊤

l Hj
l x

)
− V

(
ΠjHj⊤

l Hj
l x

)
=x⊤Hj⊤

l Hj
l

(
Πj−1⊤PΠj−1 −Πj⊤PΠj

)
Hj⊤

l Hj
l x.

Observe that Πj−1⊤PΠj−1 − Πj⊤PΠj yields all blocks
P [i, j] for i ≥ j and the matrix Hj⊤

l Hj
l ∈ Rn×n then

eliminates all blocks with distG(i, j) > l. Thus, we get

Ψj
l (H

j
l x) = x⊤

j P [j, j]xj +
∑
i>j,

distG(i,j)≤l

2x⊤
j P [j, i]xi.

Finally, summing up over j = 1, . . . , s and using (11)
completes the proof.
Lemma 9 shows that a decay of sensitivity in the matrix P is
a sufficient condition for Assumption 1. In the following, we
prove that for a sequential graph as in Example 2 the matrix
P is SED. To this end, we build on the SED-property of the
matrix K that has been shown in [14].

Proposition 10: Consider an OCP of the form (10) and
assume that for i, j ∈ [s] we have distG(i, j) = |i− j|. Then
the solution P of the discrete-time algebraic Riccati equation
is (CP , ρP )-SED for constants CP , ρP independent of s.

Proof: Since V (x) = xTPx, by inserting the optimal
control u(k) = Kx(k) and the corresponding trajectory
x(k) = Ak

clx(0) into the cost functional, we get

P =

∞∑
k=0

(Ak
cl)

⊤DAk
cl,

where Acl = A−BK and D = Q+K⊤RK. We know that

|Ak
cl[i, j]| ≤ Cσk

cl, (12)

where C ∈ R≥0 and σcl is the spectral radius of the
matrix Acl (cf. [8], Theorem 5.6.12 and Corollary 5.6.13). By
stability assumptions we have σcl < 1. Since distG(i, j) =
|i − j| for all i, j ∈ [s] it holds that A[i, j], B[i, j], Q[i, j],
and R[i, j] are zero if |i−j| > 1. By exploiting this property,
one can calculate that

|Acl[i, j]| ≤ (∥A∥∞ + 3CK∥B∥∞)ρ−1
K ρ

|i−j|
K =: Cclρ

|i−j|
K .

Together with the estimate (12) we obtain

|Ak
cl[i, j]| ≤ CCclρ

|i−j|
K σk−1

cl , k ≥ 1. (13)

Moreover, by straightforward computations we obtain for
α ∈ (0, 1] that D is a (CD, ραK)-SED matrix, where

CD = ∥Q∥∞ρ−α
K + ∥R∥∞C1(α, s, i, j),

C1(α, s, i, j) =

s∑
r=1

r+1∑
p=r−1

ρ
|r−i|+|p−j|−α|i−j|
K .

Applying (13) and the SED-property of D yields

|P [i, j]| ≤
∞∑
k=0

s∑
r,p=1

|Ak
cl[r, i]D[r, p]Ak

cl[p, j]| ≤ CDρ
α|i−j|
K

+ C2C2
clCD

∞∑
k=1

σ
2(k−1)
cl

s∑
r,p=1

ρ
|r−i|+α|r−p|+|p−j|
K .

Since σcl < 1, we can compute the infinite time series
∞∑
k=1

σ
2(k−1)
cl =

1

1− σ2
cl

.

Finally, we obtain for β ∈ (0, 1] that P is (CP , ρ
β
K)-SED

with

CP =
C2C2

clCD

1− σ2
cl

C2(α, β, s, i, j) + CD,

C2(α, β, s, i, j) =

s∑
r,p=1

ρ
|r−i|+α|r−p|+|p−j|−β|i−j|
K . (14)

It is left to show that C1 and C2 are bounded independently
of the number of subsystems s. Since P is symmetric, we
may assume i ≥ j. Write i = j + κs for κ ∈ (0, 1). Now
consider the mappings

κ 7→ C1(1, s, j + κs, j),

κ 7→ C2(1, 1, s, j + κs, j).



The derivatives of these two mappings are strictly negative
for κ ∈ (0, 1), leading to

C1(1, s, i, j) < C1(1, s, s, 1), (i, j) ̸= (s, 1),

C2(α, 1, s, i, j) < C2(α, 1, s, s, 1), (i, j) ̸= (s, 1).

By continuity of C1, C2 there exist δ ∈ R>0 such that for
α, β ∈ (1− δ, 1] it holds that

C1(α, s, i, j) < C1(α, s, s, 1), (i, j) ̸= (s, 1),

C2(α, β, s, i, j) < C2(α, β, s, s, 1), (i, j) ̸= (s, 1).

Hence, it is sufficient to prove a bound for C1 and C2 for
i = s and j = 1 in the prescribed neighborhood of α and β.
It holds that

C1(α, s, s, 1) = ρ
(1−α)s+α−1
K

s∑
r=1

ρ−r
K

r+1∑
p=r−1

ρpK

≤ 3sρ
(1−α)s+α−2
K

is bounded for all s ∈ N if α < 1. Furthermore, we have

C2(α, β, s, s, 1) = ρ
(1−β)s+β−1
K

s∑
r=1

ρ−r
K

s∑
p=1

ρ
α|r−p|+p
K

= ρ
(1−β)s+β−1
K

s∑
r=1

ρ−r
K (

s∑
p=r

ρ
p(1+α)−αr
K +

r−1∑
p=1

ρ
p(1−α)+αr
K )

≤ ρ
(1−β)s+β−1
K

s∑
r=1

(
ρ
−r(1+α)
K

ρ
r(1+α)
K

1− ρ1+α
K

+ ρ
−r(1−α)
K

ρ
(1−α)
K − ρ

(1−α)r
K

1− ρ1−α
K

)
≤ ρ

(1−β)s+β−1
K s

(
1

1− ρ1+α
K

+
ρ
(1−α)(1−s)
K − 1

1− ρ1−α
K

)
≤ ρ

s(α−β)
K η(s),

where η is linear in s. Thus, C2 is bounded uniformly for
s ∈ N if 1 > α > β. This concludes the proof.
Note that due to the assumption distG(i, j) = |i − j| in
Proposition 10, the matrices A, B, Q, and R are block-
tridiagonal. The proof can be extended for general r-banded
matrices. This then corresponds to the assumption that
distG(i, j) > 1 for |i− j| > r, i.e., a sequential graph where
every node vj might be connected with up to 2r nodes. In the
following section, we present numerical test cases showing
this decaying sensitivity property.

V. NUMERICAL EXAMPLES

A. Random Linear Quadratic Regulator
In this example we deal with a generic LQR problem

with pseudo-random matrix A generated by random uniform
samples in (0, 1) by using the MATLAB command rand.
We fix B = Q = R = Is and s = 100. Starting from
a pseudo-random matrix A ∈ Rs×s taking values in the
interval [0, 1], we define a family of r-banded matrices
{Ar}nr=0 by

(Ar)[i, j] =

{
A[i, j], |i− j| ≤ r,

0, |i− j| > r.
(15)

Fixing the parameter r ∈ {1, . . . , n}, we denote by Pr the
solution of the corresponding DARE. The Riccati Equation is
solved by the MATLAB implicit solver idare. In Figure 3
we display a logarithmic plot of the absolute value of the first
column of the matrix Pr considering different bandwidths
for the matrices Ar. In general, we notice a decay for all the
choices of the parameter r and the lower is the band-with,
the steeper is the descent.
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Fig. 3. Decay in logarithmic scale of the first column of the absolute value
of solution of the Riccati equation varying the parameter k.

B. Nonlinear example: Allen-Cahn equation

In the second example we consider the following Allen-
Cahn PDE with polynomial nonlinearity and homogeneous
Neumann boundary conditions:{

∂ty(t, x) = σ∂xxy(t, x) + y(t, x)(1− y(t, x)2) + u(t, x),
y(0, x) = y0(x),

(16)
with x ∈ [0, 1] and t ∈ (0,+∞). Our aim is to steer the
solution to the unstable equilibrium ỹ(x) = 0 minimizing
the following cost functional

J(u, y0) =

∫ ∞

0

∫ 1

0

(|y(t, x)|2 + |u(t, x)|2)dx dt .

Discretizing the PDE (16) by finite difference using s = 100
grid points, we compute the feedback control by means of
the State Dependent Riccati Equation (SDRE). This approach
is an extension of the LQR which takes into account the
nonlinear terms present in the cost functional and in the
dynamical system. More precisely, writing the nonlinear
dynamics in semilinear form

ẏ(t) = A(y(t))y(t) +Bu(t),

and given the discrete cost functional

J = γ

∫ ∞

0

y⊤(t)y(t) + u⊤(t)u(t)dt,

with γ = 1/s, the feedback control will be given by

u(y) = −γ−1B⊤P (y), (17)

where P (y) solves the SDRE

A⊤(y)P (y)+P (y)A(y)−P (y)Bγ−1B(y)⊤P (y)+γI = 0.
(18)



The SDRE feedback generates a stationary Hamiltonian
with respect to u and, as the state is driven to zero, neces-
sary optimality conditions are asymptotically satisfied at a
quadratic rate. We refer to [3] for an extensive discussion
of the topic. Given the solution P (y0) of the SDRE (18)
computed for the initial condition y0 = [sin(πxi)]

n
i=1, in

Fig. 4 we show the decay of the absolute values of the first
column of SDRE solution varying the viscosity parameter
σ ∈ {10−k, k = 1, . . . , 4}. We note that a lower value of
the viscosity corresponds to a steeper decay in the sensitivity.
This is a reasonable behaviour since increasing the viscosity,
the transmission speed is increasing as well and particles will
influence each other faster. Compared to our first numerical
test, we observe a different decay behaviour: in the first
example it was related to the bandwidth of the matrix A,
while in this test it is connected to the propagation speed
of the diffusion. In order to investigate numerically the error
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Fig. 4. Decay in logarithmic scale of the first column of |P (y0)| varying
the parameter r.

of a separable approximation, we consider a family of r-
banded matrices {Pr(y)}r for every y ∈ Rn as considered
in (15) for the matrix A. In Table I we consider the error in
the computation of the total cost obtained using the banded
matrix {Pr(y)}r instead of P (y) for the computation of
the feedback map (17) varying the bandwidth r. Fixing the
viscosity σ = 10−4, the fast decay displayed in Fig. 4 is
reflected in the fast convergence for the total cost. Indeed, it
is enough to consider r = n/10 to obtain an error of order
10−4. On the other hand, for the higher viscosity σ = 10−3

the initial error and the decay are worse, leading to the
necessity to consider larger bandwidths, i.e., to increase r and
consider larger neighborhoods Br(j) in the corresponding
graph.

r σ = 10−4 σ = 10−3

2 1.05e-1 99.86
5 1.20e-3 3.16
10 4.72e-4 9.27e-2
20 2.50e-8 5.60e-3

TABLE I
ERROR IN THE COMPUTATION OF THE TOTAL COST.

VI. CONCLUSION

In this paper we presented a separable approximation of
optimal value functions under a decaying sensitivity assump-
tion. Beyond the computation of curse-of-dimensionality-free

approximations with neural networks, as future research we
aim at investigating conditions for a decaying sensitivity in a
continuous-time setting as well as the influence of the graph-
structure on the sensitivity decay.
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