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Abstract— The control of neuronal networks, whether bi-
ological or neuromorphic, relies on tools for estimating pa-
rameters in the presence of model uncertainty. In this work,
we explore the robustness of adaptive observers for neuronal
estimation. Inspired by biology, we show that decentralization
and redundancy help recover the performance of a centralized
recursive mean square algorithm in the presence of uncertainty
and mismatch on the internal dynamics of the model.

I. INTRODUCTION

With the recent advancements in our ability to record
and manipulate neural activity [1], there is a growing call
for control and systems tools that can make use of this
new technology [2] for applications including brain-machine
interfaces [3] and the treatment of neuronal diseases [4]. At
the same time the field of neuromorphics, that develops elec-
tronics inspired to varying degrees by neuroscience, is seeing
rapid growth, with applications in event-based cameras [5],
low-power machine learning [6], and many more [7]. Yet, the
design of control systems that could interconnect physical
neuron-like spiking sensors and actuators through spiking
computations is still in its infancy [8].

The first step in such control tasks is often to obtain
model estimates, and there is an extensive literature on fitting
neuron models by batch estimation [9]–[12]. A downside of
such methods is the fact that they are not able to track time-
varying model parameters, which is often necessary to char-
acterize neural behavior. Our starting point for the present
paper is the recent work [13], which proposed an adaptive
observer for conductance-based neuron models capable of
estimating and tracking model parameters in real time.
This method was applied in [14] to solve classical control
problems by adaptively controlling the maximal conductance
parameters of these models, an approach aligned with the
biological concept of neuromodulation [15].

A critical property for practical application of such adap-
tive methods is to ensure robustness to model uncertainty.
Conductance-based models are built from the parallel in-
terconnection of distinct current sources whose specific
kinematics and activation range are only approximately
known and variable across implementations. The objective
of the present paper is to assess the robustness of adaptive
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estimation against uncertainty in the internal dynamics of
conductance-based models. We investigate the effect of un-
certainty in a typical neuronal behavior, namely the neuro-
modulation of a neuron from spiking to bursting by varying
slow calcium conductances.

When the internal dynamics of a neuronal model (also
called the channel kinetics) is assumed to be known, [13]
showed that a simple adaptive observer equivalent to the Re-
cursive Least Squares (RLS) method can be used to estimate
the remaining parameters (maximal conductances). Although
[13] also presents a more elaborate scheme for estimating
internal dynamics parameters with local guarantees, here we
focus on the basic RLS scheme. In agreement with classical
RLS analysis [16], we show empirically that the RLS scheme
is sensitive to uncertainty. Our main result is to show that
a good estimation performance can be recovered by the
combination of two factors that avoid the need for an internal
dynamics estimation: first, by decentralizing the RLS scheme
as investigated in [17] with the objective of reducing compu-
tational complexity; and second, by introducing redundancy
in the estimated model. The positive role of redundancy for
robustness and adaptation has been extensively demonstrated
in neurophysioloogy [18], [19]. Here, we mimic biological
redundancy by sampling redundant models of ionic currents
from a given distribution. This idea can be compared to
the method of random features, where random samples of a
particular type of basis function are used to solve a regression
problem [20]. Our redundant model structure approach can
also be related to the ensemble Kalman filter [21], as well as
the more general feedback particle filter [22]. Here, however,
the gradient of the observed variable is a function not just
of the hidden variables (the internal dynamics), but also of
the observed variable itself.

Using the rms (root mean square) observer output error as
our performance measure, we study the robustness of the dif-
ferent types of adaptive observer algorithms for conductance-
based models in the presence of model error. We show that
the distributed version of the observer is more robust than
the centralized one, and that introducing redundancy to the
model structure, according to our proposed approach, further
improves this robust behavior.

II. BIOPHYSICAL NEURON MODELS

We briefly recall the biophysical conductance-based mod-
els of neuron networks. The membrane potential vi of neuron
i in such a network obeys the dynamics

ci v̇i = −Ileak,i −
∑
ion∈I

Iion,i −
∑

syn∈S

∑
k ̸=i

Isyn,i,k + ui (1)
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where ci > 0 is a capacitance, and each current in the circuit
is ohmic in nature. The set I collects ionic currents, while
S collects synaptic currents. The leak current has a constant
conductance and is given by

Ileak,i = µleak,i(vi − Eleak,i).

The ionic and synaptic currents have conductances that are
nonlinear and voltage-dependent. The intrinsic ionic currents
are modelled by

Iion = µion m
pion

ion hqion
ion (v − Eion) (2a)

τm,ion(v)ṁion = −mion + σm,ion(v) (2b)

τh,ion(v)ḣion = −hion + σh,ion(v). (2c)

The constants µion > 0 and Eion ∈ R are called (intrinsic)
maximal conductances and reversal potentials, respectively.
Note we have dropped the index i to simplify the notation.

The static activation functions σm,ion(v) and σh,ion(v),
and time-constant functions τm,ion(v) and τh,ion(v), model
the nonlinear gating of the ionic conductance. Because
σm,ion : R → (0, 1) and σh,ion : R → (0, 1) are
monotonically increasing and decreasing, respectively, the
states mion and hion are called activation and inactivation
gating variables, respectively. The time-constant functions
vary in shape, but always respect the bounds

0 < τ ion ≤ τm,ion(v), τh,ion(v) ≤ τ ion

for all v ∈ R and some τ ion, τ ion > 0. The exponents
pion and qion in (2a) are natural numbers (including zero).
Each gating variable can be thought of as “opening” or
“closing” a particular ionic channel; exponents greater than
one represent multiple identical “gates” in series [23]. In this
paper the exponents always take value unity, which simplifies
the notation without losing any behaviours of interest.

We demonstrate our results on a neuronal model that
includes five typical ionic currents of a bursting neuron:
a transient sodium current INa, a potassium current IK,
a T-type calcium current ICaT, an L-type calcium current
ICaL and a calcium-activated potassium current IKCa. We
therefore have I = {Na,K,CaT,CaL,KCa}. The voltage
dynamics of a single, isolated neuron (no synaptic currents)
are given by

c v̇ =− µNamNahNa(v − ENa)

− µKmK(v − EK)

− µCaTmCaThCaT(v − ECa)

− µCaLmCaL(v − ECa)

− µKCaσKCa([Ca])(v − EK)− µleak(v − Eleak) + u,

where [Ca] is the calcium concentration, governed by

τCa
˙[Ca] =− 0.03mCaThCaT(v − ECa)

− 0.3mCaL(v − ECa)− [Ca],

with τCa a constant. For a full list of parameters used, we
refer the reader to the Julia code attached to this paper.1

1https://github.com/RJZS/robust-neuron-estimation

Fig. 1: Fixed scenario for the illustrations of this paper. Top:
membrane potential. Middle: input current. Bottom: maxi-
mum conductance of L-type calcium and calcium-activated
potassium (the other parameters remain constant). Note that
the input’s fluctuations change during the simulation to
reflect the difference between spike and burst excitability.

We consider a fixed scenario illustrated in Fig. 1: the
neuron is driven by a known fluctuating input calibrated
to expose its excitable behavior. The maximal conductance
of L-type calcium, µCaL, and calcium-activated potassium,
µKCa, are ramped up during the simulation, which results
in a modulation from spike excitability to burst excitabil-
ity. Such neuromodulation is a key cellular mechanism in
neurophysiology [24], [25].

III. ADAPTIVE RECURSIVE LEAST SQUARES
ESTIMATION

We briefly summarize the simple centralized RLS-
based observer of [13]. The starting observation is that
conductance-based neuron networks obey the following non-
linear state-space form:

v̇ = ΦT (v, w, u)θ + a(v, w, u) (3)
ẇ = g(v, w) (4)

where v ∈ Rnv is a state vector and the system output, rep-
resenting the neuronal membrane voltages; w is an internal
dynamics state vector, collecting the dynamics of all gating
variables and of calcium concentration; and u ∈ Rnv is a
control input vector. We also have a vector θ collecting all
the maximal conductances µion of the system. For simplicity
we will study the single-neuron case nv = 1, but the
results generalize easily to networks of arbitrary size. For
the example neuron in Section II, we have

θ = col
(
µNa, µK, . . . , µleak

)
and

w = col
(
mNa, hNa,mK, . . . , [Ca]

)
.

We use an adaptive observer to estimate the linear pa-
rameters θ, in our case the vector of maximal conductances
µion. We choose maximal conductances for the unknown



parameters because the modulation of conductance properties
is a key control mechanism of neurophysiology, where it is
performed by neuromodulators such as dopamine and sero-
tonin [26]. Neuromodulation is a well-studied phenomenon;
it is essential to the function of all nervous systems [27].

The adaptive observer estimates the system’s state and
parameters, given measurements of the input (current) u(t)
and output (voltage) v(t). It relies on the assumptions that the
system trajectories evolve in a compact positively invariant
set, and that the internal dynamics (4) are exponentially
contracting, uniformly in v.

The simple RLS-based centralized observer [13] takes the
following form:

˙̂v = ΦT (v, ŵ, u)θ̂ + a(v, ŵ, u) + γ(I +ΨTPΨ)(v − v̂)
(5)

˙̂w = g(v, ŵ) (6)
˙̂
θ = γPΨ(v − v̂) (7)

where γ > 0 is a constant gain, and the matrices P and Ψ
evolve according to

Ψ̇ = −γΨ+Φ(v, ŵ, u)

Ṗ = αP − γPΨTΨP P (0) ≻ 0

with γ > α > 0. Notice that Ψ is a low-pass filtered version
of Φ, while P can be interpreted as a running estimate (with
a forgetting factor) of the parameter covariance matrix [28,
Chapter 2]. Note also the use of output injection, that is
the injection of true v into the v̂ and ŵ dynamics. With the
assumptions listed above, and a standard persistent excitation
condition, it can be shown that the adaptive observer state
vector col(v̂(t), ŵ(t), θ̂(t)) converges to col(v(t), w(t), θ(t))
exponentially fast as t → ∞. See [13] for a contraction-based
proof of convergence.

Fig. 2 shows that the observer is able to learn the task of
Fig. 1, in the absence of model error. Errors in the voltage
and parameter estimates are only present transiently, while
the maximal conductances vary. For brevity, the figure shows
only the two parameters that are modulated, but recall all the
maximal conductances are estimated.

IV. ROBUSTNESS OF THE OBSERVER

To investigate the robustness of the centralized observer
against variability in the internal dynamics, we introduce
the random variables p ∼ U(1 − r,1 + r) and q ∼
U(−s, s), where U(a, b) represents the uniform distribution
with support [a, b]. We define stochastic versions of the
gating variable dynamics (2b)-(2c) as follows:

pm,ion τm,ion(v)ṁion = −mion + σm,ion(v − qm,ion) (8a)

ph,ion τh,ion(v)ḣion = −hion + σh,ion(v − qh,ion). (8b)

The effect of the random variables is to respectively scale and
shift the time-constant and activation functions. We collect
the samples into vectors p, q ∈ Rnw and the randomized

Fig. 2: RLS estimation in the absence of model error.
Parameter and output estimates converge to their true values,
and remain there barring transient errors while µCaL and
µKCa are modulated. Top: true voltage v and its estimate
v̂. Middle: absolute observer error |v − v̂|. Bottom: L-
type maximal conductance µCaL, its estimate θ̂CaL, calcium-
activated potassium maximal conductance µKCa, and its
estimate θ̂KCa.

dynamics into a function g(v, ŵ; p, q). We replace the ob-
server’s internal dynamics (6) with

˙̂w = g(v, ŵ; p, q). (9)

This introduces mismatch between the true dynamics (4),
which remain deterministic, and the observer’s model of
these dynamics. In this paper, we take r = 0.04 and s =
4mV .

Fig. 3 illustrates the observer’s performance with one set
of samples for model error. We chose γ = 8 and α = 0.005.
Higher γ reduce observer error but are sensitive to noise
measurement, hence we use the same value throughout the
paper for a fair comparison. The value for α was tuned
manually to optimize performance.

We take our performance measure to be ev,rms, the rms
value of the observer error over the duration of the simulation
in Fig. 1. This is computed as (

∑T
t=1(v(t) − v̂(t))2/N)

1
2

where N is the number of simulation time steps; the step
size is ∆t = 0.1. Although output injection ensures that the
spike and burst estimates align, there is significant error in
the output and parameter estimates. The parameter estimates
fail to track the modulation of calcium currents, limiting any
practical use of the online observer.

V. DISTRIBUTED OBSERVER

The centralized observer introduced above is based on
the recursive least squares algorithm [13]. In the presence
of zero-mean, independent, identically distributed additive
noise, the matrix P is therefore proportional to the covariance
matrix of the empirical estimate of θ [28, Chapter 2]. When
we introduce model mismatch, this second-order information



Fig. 3: The centralized observer is fragile to model uncer-
tainty. Top: true voltage and its estimate. Middle: absolute
observer error. Bottom: time-varying maximal conductances
and their estimates.

becomes unreliable. A first remedy to increase robustness
is to decentralize the parameter estimation. The core idea
is to approximate the matrix ΨΨT , which appears in the
update equation for P , by its (potentially block) diagonal
elements to yield a decentralized learning rule. We thus
replace the nθ × nθ matrix P with nθ scalars Pi. This
idea was already explored in [17] with the goal of reducing
the algorithmic complexity of the estimator from O(n2

θ) to
O(nθ), a significant benefit for more complex neurons and
networks with many synapses.

The distributed observer with model mismatch has the
form:

˙̂v =

nθ∑
j=1

ΦT
j (v, ŵ

j , u)θ̂j + a(v, ŵ, u) (10)

+ (γ0I +

nθ∑
j=1

γjΨ
T
j PjΨj)(v − v̂)

˙̂wj = gj(v, ŵ
j ; pj , qj) (11)

˙̂
θj = γjPjΨj(v − v̂) (12)

where γ0, γ1, . . . , γnθ
> 0 are constant gains. The matrices

Pj and Ψj evolve according to

Ψ̇j = −γjΨj +Φj(v, ŵ
j , u)

Ṗj = αjPj − αjPjΨ
T
j ΨjPj Pj(0) ≻ 0

with αj > 0 ∀j.
For the example neuron in Section II, for instance, we

have
θ1 = µNa, θ2 = µK, . . . , θnθ

= µleak

and

w1 = col(mNa, hNa), w
2 = mK , . . . , wnθ = ∅

Fig. 4: Distributed parameter estimation in the scenario of
Fig. 1. Top: true voltage and its estimate. Middle: absolute
observer error. Bottom: µCaL and µKCa and their estimates.
Although there is some observer error, it is significantly
smaller as reflected in the v and v̂ spikes being almost
indistinguishable.

Fig. 4 shows a representative example of the distributed
observer’s performance in the presence of randomly-sampled
model error. We set γj = 8 for all j, the same as with
the centralized observer for a fair comparison. We set by
hand tuning αj = 2 × 10−4 for all j. To compare the
performance of the two observers, we compute the mean
value of ev,rms across twenty trials. The results are shown in
the first two columns of Table I. The observer error is indeed
reduced by the use of the distributed observer. The parameter
estimates have also improved, as they oscillate less and are
therefore more meaningful. We do not necessarily expect
the parameter estimates to settle near the true values, as the
observer error can be reduced by exploiting the biological
redundancy between currents. In the next section, we exploit
the theme of redundancy to further improve robustness.

VI. REDUNDANCY

In biology, redundancy between ionic currents allows them
to compensate for each other to achieve desired behavioral
properties [18]. Redundancy is known to play a crucial role
in the homeostasis of neuronal function in spite of the highly
variable ion channel density, both across time and from
animal to animal [19].

Redundancy can also be exploited to increase the robust-
ness of estimation to model uncertainty. To test that idea,
we consider an augmented observer model that includes for
each gating variable N equations of the form (8a) or (8b),
each with its own samples for p and q. That is to say, each
element of (11) is replaced with N elements

˙̂wj,i = gj(v, ŵ
j,i; pji , q

j
i ) (13)

for i = {1, . . . , N}. We can consider this step as replacing
a single estimate of the gating variable mion or hion with N



particles of the same, and the resulting algorithm analogous
to an ensemble observer. Note that we do not change the
model of the neuron being observed.

Every ionic current now has N corresponding terms in the
v̂ dynamics. Hence, we replace (10) with

˙̂v =

m∑
j=1

Φ̄T
j (v, ŵ

j , u)θ̂j + a(v, ŵ, u)

+ (γ0I +

m∑
j=1

γjΨ̄
T
j P̄jΨ̄j)(v − v̂), (14)

where j ∈ I is the set of membrane currents. We now have

Φ̄j = col
(
Φj(v, ŵ

j,1, u), . . . ,Φj(v, ŵ
j,N , u)

)
∈ RN

for j = 1, . . . , nθ − 1, and

Φ̄nθ
(v, ŵnθ , u) = Φ̄nθ

(v) = −(v − Eleak)

with the latter corresponding to the leak current regressor.
P̄j is now an N ×N diagonal matrix with leading diagonal
col

(
P̄ 1
j , . . . , P̄

N
j

)
.

We also have
θ̂j = [θ̂1j , . . . , θ̂

N
j ],

the set of parameter estimates corresponding to a particular
maximal conductance of the reference neuron. We define the
empirical mean over this set,

¯̂
θj =

1

N

N∑
i=1

θ̂ij ,

which provides an estimate of the scaled maximal conduc-
tance µj/N .

We will apply redundancy only to the distributed observer.
The diagonal nature of the distributed observer makes it
scalable with respect to the increased number of states and
parameters.

Redundancy is of course antagonist to persistency of
excitation, and indeed a naive implementation of the observer
leads to situations where some estimated maximal conduc-
tances become negative, causing instability.

To prevent the divergence of a redundant estimator, we
modify the θ̂j update law (12) to include a consensus term,
that regularizes the variance of the redundant parameters.
The update law for the ith redundant element of θ̂j is now

˙̂
θij = γjP̄

i
j Ψ̄

i
j(v − v̂)− β(θ̂ij −

¯̂
θj). (15)

Fig. 5 illustrates the performance of the redundant estima-
tor in the presence of model error. We set γj and αj as in
section V. We chose by hand tuning β = 5× 10−5, a value
low enough that the redundant parameters take on distinct
values.

The mean rms error across twenty trials is provided in
Table I. The third and forth columns refer to the final
algorithm, respectively with 3 and 9 redundant elements per
gating variable. As expected, we see significant improvement
of the observer error when redundancy is introduced, and a
greater improvement with more redundancy.

Fig. 5: Distributed and redundant online estimation in the
scenario of Fig. 1, in the presence of model error and with
N = 3. Top: true voltage and its estimate. Upper middle:
absolute observer error. Lower middle: the empirical mean
estimate ¯̂

θCaL; for comparison, the scaled true parameter
µCaL/N is also shown. We plot the scaled parameter to
emphasise that we have replaced each conductance with N
separate conductances. Bottom: the same for µKCa. Labels
for the parameter estimates are omitted.

TABLE I: Comparison of all three observers, showing the
mean and standard deviation of the rms voltage error ev,rms

(in mV ) across twenty trials.

Centralized Distributed N = 3 N = 9

Mean 1.15 0.0788 0.0280 0.0241

Standard Deviation 0.14 0.017 0.0056 0.0030

We see however in Fig. 5 that the redundant terms do not
necessarily directly track modulation. This is as the observer
is exploiting redundancy across all terms to minimise voltage
error, not just those corresponding to a single ionic current.

VII. DISCUSSION

Our results suggest that an adaptive observer can be used
to estimate neuronal parameters, even in the presence of
modelling error. The chosen model of uncertainty is plausible
in a neuromorphic context where a key cause of error is tran-
sistor mismatch introduced during manufacturing [29]. This
component imprecision is one of the main challenges facing
designers of neuromorphic hardware [30]. In a biological
context, the cell is of course part of a living system and
is therefore time-varying. The online nature of the observer
ensures that our results extend to this time-varying case.

In future work, the results above should also be tested
against measurement error. Noisy voltage measurements in-



troduce trade-offs in the design parameters. For a rigorous
examination of the impact of noise on the system identifi-
cation of conductance-based models, we refer the reader to
[31].

The performance metric of our study was the rms observer.
This is a reasonable first step to make a quantitative compar-
ison of different observers. However, it is only a proxy of the
practical objective to estimate parameters in order to track
neuromodulation in an experimental setup or to use learning
experiments for hardware implementations of neuromorphic
neurons. This will be the topic of future research.
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