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Abstract— We introduce a type of safe extremum seeking
(ES) controller, which minimizes an unknown objective function
while also maintaining practical positivity of an unknown
barrier function. We show semi-global practical asymptotic
stability of our algorithm and present an analogous notion of
practical safety. The dynamics of the controller are inspired
by the quadratic program (QP) based safety filter designs
which, in the literature, are more commonly used in cases
where the barrier function is known. Conditions on the barrier
and objective function are explored showing that non convex
problems can be solved. A Lyapunov argument is proposed to
achieve the main results of the paper. Finally, an example is
given of the algorithm which solves the constrained optimization
problem.

I. INTRODUCTION

This paper presents an ES algorithm which can be used
to minimize an unknown objective function J(θ) over pa-
rameters θ while also keeping the system safe. Safety is
considered to be a measured unknown function h(θ) and
is maintained by keeping h positive. The analysis is based
on the framework in [9], preceded by notable papers [14],
[15] proving semi-global practical asymptotic (SPA) stability
properties of extremum seeking. We use the basic ideas
of [9] but instead consider the constrained optimization
problem, and present a Lyapunov function for showing SPA
stability of the reduced constrained dynamics. Additionally
we present a notion analogous to that of practical stability,
called ‘practical safety’. The dynamics we present are based
on the QP safety filter [2] and therefore it gives the designer
a choice to weight the importance of the objective versus
the safety, through a parameter c, while the trajectory of
θ tracks toward the constrained optimum. Our algorithm
approximately solves the following problem:

min
θ(t)

J(θ(t)) s.t. h(θ(t)) ≥ 0 for all t ∈ [0,∞). (1)

Solving constrained optimization problems using ES has
been explored in other contexts in the literature, both using
the framework described in [9] as well as other methods
such as [4]. The results in [10] prove SPA stability of an
ES based controller which not only converges to set, but
also an optimum constrained to a set. Other dynamics have
also been considered in similar settings such as [7] and
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1Alan Williams and Miroslav Krstić are with the Department of Mechan-
ical and Aerospace Engineering, University of California, San Diego, CA
92093-0411, USA, {awilliam,krstic}@ucsd.edu.

2Alan Williams and Alexander Scheinker are with Los Alamos National
Lab, Los Alamos, NM 87545, USA ascheink@lanl.gov

[8]. Switching ES algorithms have also been used to solve
constrained optimization problems [3].

Safe optimization of systems is relevant in many areas.
Particle accelerators are complex, time varying systems
which must be constantly tuned for optimal operation. Be-
cause of its model-independence, robustness to noise, and
ability to handle large numbers of parameters simultaneously,
ES is especially well suited for particle accelerator appli-
cations. For example, in [11], the authors used a bounded
form of ES [12] for real-time multi-objective optimization
of a particle accelerator beam in which analytic bounds are
guaranteed on each parameter update despite acting on an
analytically unknown and noisy measurement function. In
[11] the algorithm was pushed towards achieving safety by
weighing a measure of how far the beam was off from
a prescribed optimal trajectory. Such a cost-weighing ES
approach requires hand tuning of weights associated with
safety and offers no guarantees that safety will be maintained.

Authors in [6] tune the several beamlines using Bayesian
optimization and do so without violating safety constraints
like beam loss. Here “safety” means that the particle beam
does not damaging key accelerator components during tuning
based on hand-picked safety margins which result in a trade-
off between safety and performance. Authors in [13] apply
constrained optimization schemes using Gaussian processes
to recommender systems and therapeutic spinal cord stimu-
lation. In these examples, it is desired that recommendations
to users (for movies) must not be heavily disliked, and
stimulation patterns for patients must not exceed a certain
pain threshold.

This work is heavily inspired by recent work [16]. Here,
the QP based modification of standard ES was introduced,
which approximately solves the constrained optimization
problem. It was shown that from the QP safety formu-
lation, an additive safety term can be introduced in the
parameter’s dynamics. The algorithm in [16] was shown to
be a practically safe scheme, but only locally and under
restrictive assumptions on J and h. In this work, we explore
more general assumptions on J and h, in n-dimensions, and
present a semi-global result for both safety and stability.
The dynamics presented in this work are slightly different
from that of [16], due to the time scaling by kωf , and the
parameter M+. The parameter M+ is chosen large to bound
the dynamics if the estimate of ∇h goes to zero. This is
because the safety term in its exact form contains ∇hT∇h
in the denominator. The gain kωf scales the dynamics of
the optimization parameter θ̂. This provides a tuning knob
which has can adjust the timescale of θ̂ proportionally, a re-
quirement for SPA stability, which allows the estimator states
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to converge arbitrarily quickly. Additionally, our Lyapunov
analysis provides a stability result which includes non convex
h and J , although J having a unique minimum on the safe
set is required for SPA stability results. We provide a 2D
example with a non convex h to conclude.

Notation: For a differentiable function Q : Rn → R
we denote the gradient ∇Q : Rn → Rn as the vector
∇Q(x) = [∂Q(x)/∂x1, ∂Q(x)/∂x2, ..., ∂Q(x)/∂xn]

T and
where the ith component is ∇iQ(x) = ∂Q(x)/∂xi. For
v ∈ Rn, the notation ||v|| denotes the Euclidean norm.
The continuous function β : R≥0 → R≥0 is of class K
if β(0) = 0 and it is strictly increasing. The continuous
function β : R≥0 × R≥0 → R≥0 is of class KL if it is
strictly increasing in its first argument and strictly decreasing
to zero in its second argument. The image of a function h
is denoted by Im(h). The compact ball around a point p
is Br(p) = {θ ∈ Rn : ∥θ − p∥ ≤ r}. We use the term
“SPA stability” to refer to the notion of semi-global practical
asymptotic stability [14]. A function f(x, ϵ) is O(ϵ) if for
any compact set Ω there exists a positive pair (ϵ∗, k) such
that ||f(x, ϵ)|| ≤ kϵ for all ϵ ∈ (0, ϵ∗] for all x ∈ Ω.

II. ALGORITHM DESIGN

For a better understanding of how the dynamics were
derived, see [16]. We introduce the algorithm:

˙̂
θ = kωf (−GJ+

min{G−2
h ,M+}max{GT

JGh − cηh, 0}Gh)
(2)

ĠJ =− ωf (GJ − (J(θ̂(t) + S(t))− ηJ)M(t)) (3)

η̇J =− ωf (ηJ − J(θ̂(t) + S(t))) (4)

Ġh =− ωf (Gh − (h(θ̂(t) + S(t))− ηh)M(t)) (5)

η̇h =− ωf (ηh − h(θ̂(t) + S(t))) (6)

where the state variables θ̂, GJ , Gh ∈ Rn, ηJ , ηh ∈ R. The
overall the dimension of the system is 3n + 2. The map is
evaluated at θ, defined by

θ(t) := θ̂(t) + S(t) . (7)

The integer n denotes the number of parameters one wishes
to optimize over. The design coefficients are k, c, ωf ,M

+ ∈
R>0. The perturbation signal S and demodulation signal M
are given by

S(t) = a [sin(ω1t), ... , sin(ωnt)]
T
, (8)

M(t) =
2

a
[sin(ω1t), ... , sin(ωnt)]

T
, (9)

and contain additional design parameters ωi, a ∈ R>0.

III. ASSUMPTIONS

We define

C = {θ ∈ Rn : h(θ) ≥ 0}, (10)
∂C = {θ ∈ Rn : h(θ) = 0}, (11)
U = {θ ∈ Rn : h(θ) ≤ 0}, (12)

where C is called the ‘safe set’ and ∂C is its boundary. We
also define the notation of a superlevel set of h, parameter-
ized by the parameter ρ ≤ 0 as

Cρ = {θ ∈ Rn : h(θ) ≥ ρ, ρ ∈ Im(h) ∩ R≤0}. (13)

The sets of the form Cρ always contain C along with some
unsafe region given by ρ, a non-positive value in the image
of h. We also use the following assumptions throughout.

Assumption 1 (Objective Function Conditions). The objec-
tive function J : Rn → R is continuously differentiable with
locally Lipschitz Jacobian and satisfies:

1) θ∗c ∈ C is the unique constrained minimizer of J on C,
2) if there exists a θ such that ∇J(θ) = 0 for θ ∈ C, then

θ = θ∗c .

Assumption 2 (Barrier Function Conditions). The barrier
(or safety) function h : Rn → R is continuously differen-
tiable with locally Lipschitz Jacobian and satisfies:

1) the safe set C is non-empty,
2) for any Cρ, there exists a L ∈ (0,∞) such that

∥∇h(θ)∥ > L for θ ∈ U ∩ Cρ.

Assumption 3 (Optimizer Condition). If ∇h(θ)T∇J(θ) =
||∇h(θ)||||∇J(θ)|| (∇h(θ) and ∇J(θ) are collinear) for θ ∈
∂C, then θ = θ∗c .

Assumption 4 (Angle Condition). There exists a r∗ > 0 and
f∗ ∈ [0, 1) such that

∇J(θ)T∇h(θ)

||∇J(θ)||||∇h(θ)||
≤ f∗, (14)

for θ ∈ {ρ ≤ h(θ) ≤ 0} ∩ {r∗ ≤ ||θ − θ∗c ||} for any ρ ∈
Im(h) ∩ R<0.

Assumption 5 (Radial Unboundedness). The function V =
max{−h(θ), 0}+max{J(θ)− J(θ∗c ), 0} is positive definite
and ||θ − θ∗c || → ∞ =⇒ V → ∞.

Assumption 6 (Bounded Levels of h). The family of sets Cρ
are compact.

Assumption 7 (ES Constants). The design constants are
chosen as ωf , ωi, δ, a, k, c > 0, where ωi/ωj are rational
with frequencies ωi chosen such that ωi ̸= ωj and ωi+ωj ̸=
ωk for distinct i, j, and k.

Assumptions 1, 2, and 3 are used to show that the exact
dynamics yield only a single equilibrium, and Assumptions
4, 5 and 5 are used in the Lyapunov analysis.

Assumption 3 is a general condition on the gradients
of J and h on the boundary, which is used to force a
unique equilibrium of the dynamics. This assumption is
congruent with necessary conditions known about solutions
in optimization (such as the so called “method of Lagrange
multipliers”). More restrictive assumptions can also be made
in place of this. For example, in place of Assumption 3 we
can assume C is convex and J is strictly convex on C. Then
the dynamics can be shown to yield a unique equilibrium
and the convergence analysis proceeds the same otherwise.



Fig. 1. Safe Extremum Seeking block diagram. Note that
A(GJ , Gh, ηh) = min{G−2

h ,M+}max{GT
J Gh − cηh, 0}.

Assumption 4 is concerned with the cosine of the angle
between ∇J and ∇h far away from the constrained equilib-
rium in the unsafe set. We utilize this assumption in finding a
Lyapunov function with negative time derivative everywhere.
It can be shown that this condition is true for J quadratic
and convex with h linear - an example of a problem with
a semi-infinite safe set. Assumption 5 is used because we
use the implication that that the sublevel sets of a particular
Lyapunov function (introduced later) can be chosen compact
and arbitrarily large.

We give our main results for either Assumption 4-5 hold-
ing or Assumption 6 holding. This is because Assumption 6
is strong enough to show SPA stability of the reduced system
as it readily yields compact and arbitrarily large invariant
sets. If we have a semi-infinite safe set, then we require
Assumption 4-5.

IV. GLOBAL CONVERGENCE OF THE EXACT ALGORITHM

Before conducting analysis of the ES scheme, we study
the optimization algorithm in its’ exact form, in order to find
the appropriate Lyapunov function which will be used in the
next section. Consider the following dynamics:

θ̇ = F (θ) = −∇J(θ)+

∇h(θ)

||∇h(θ)||2
max{∇J(θ)T∇h(θ)− ch(θ), 0}. (15)

We do not risk dividing by zero in the expression of (15) as
∇h(θ) = 0 =⇒ h(θ) > 0 by Assumption 2.2. Therefore,
lim||∇h(θ)||→0 F (θ) = −∇J(θ) on compact sets.

The differential inequality ḣ+ ch ≥ 0 is commonly used
to show the forward invariance of the safe set [2], where it
is assumed that the initial condition of any given trajectory
is safe. But it also shows attractivity to the safe set. Because
when h(θ(t)) < 0, for some θ(t), then we have ḣ(θ(t)) > 0
and h is increasing in time. So unsafe trajectories become
‘safer’ in an exponential fashion. Therefore, the family of
sets Cρ is also positively invariant, and not just the case of
ρ = 0. We state this formally below.

Proposition 1. Under Assumption 2, the dynamics (15)
satisfy dh(θ(t))

dt + ch(θ(t)) ≥ 0 for all θ ∈ Rn and C
is forward invariant. Moreover, all sets Cρ are forward
invariant and h(θ(t)) ≥ h(θ(t0))e

−ct for all θ(t0) ∈ Rn.

To prove this, simply compute ḣ + ch and use the fact
that −x + max{x, 0} ≥ 0. This proposition will help us
establish global convergence of the algorithm for trajectories
starting outside of C. The next lemma verifies that all trajec-
tories starting from the safe set, converge to the constrained
minimum of J .

Lemma 2. Let Assumptions 1-3 hold. The function V1(θ) =
J(θ)− J(θe) is a Lyapunov function for the equilibrium θe

on C, yielding strictly V̇1 < 0 for all θ ∈ C \ {θe}. The
dynamics (15) are asymptotically stable for θ(t0) ∈ C.

In light of Proposition 1 (attractivity to C) and Lemma 2
(convergence within C), it should be intuitive that all trajecto-
ries eventually converge on the equilibrium point θe. We can
demonstrate this fact with the following Lyapunov argument
on any compact, invariant set Cρ around the equilibrium. A
key idea used is that any initial condition is an element of
some set of the form Cρ.

Lemma 3. Let Assumptions 1-3 hold, and let either Assump-
tions 4-5 or Assumption 6. Consider the Lypaunov function

V (θ) = max{−αh(θ), 0}+max{J(θ)− J(θe), 0}. (16)

For any Cρ, there exists α ∈ (0,∞) such that V̇ (θ) < 0 for
θ ∈ Cρ\{θe}. The dynamics (15) are globally asymptotically
stable.

To prove the result in Lemma 3, time derivatives of the
Lyapunov function V must be computed in all regions of
the state space within any arbitrary invariant set Cρ. In this
paper we will sketch part of the proof and compute the time
derivative of V in the case where θ ∈ U ∩ {J(θ)− J(θe) ≥
0} ∩ {∇J(θ)T∇h(θ)− ch(θ) ≥ 0} (the max term is active
in the dynamics).

First compute expressions for V̇ :

V̇ =− αc|h(θ)|+ V̇1,

= c|h(θ)|
(
−α+

∇J(θ)T∇h(θ)

∥∇h(θ)∥2

)
−

∇J(θ)T
(
I − ∇h(θ)∇h(θ)T

∥∇h(θ)∥2

)
∇J(θ).

(17)

Denoting

f(θ) := ∇J(θ)T∇h(θ)/(||∇J(θ)||||∇h(θ)||) ≤ 1, (18)

we can rewrite and bound V̇ as
V̇ = − αc|h(θ)| − (1− f2(θ))||∇J(θ)||2+

f(θ)
c|h(θ)|
||∇h(θ)||

||∇J(θ)||,

≤c|h(θ)|
(
−α+

||∇J(θ)||
L

)
− (1− f2(θ))||∇J(θ)||2.

(19)

The existence of L is assumed by Assumption 2 and recall
we assume that θ ∈ Cρ for some Cρ.

Case A) Assumption 6: Consider the case of Assumption
6, then Cρ is compact and we can choose

α > L−1 sup
θ∈Cρ

∥∇J(θ)∥, (20)



which yields V̇ ≤ 0 in (19).
Case B) Assumptions 4 - 5: Consider the case of

Assumptions 4 - 5. If ||∇J(θ)|| is bounded on Cρ then we can
choose α as in (20). So consider the nontrivial case where
||∇J(θ)|| unbounded on Cρ. Then from Assumption 4, there
exists a scalar f∗ and a compact set Ω containing θe such
that 0 < f(θ) ≤ f∗ < 1 for all θ /∈ Ω. Therefore letting
f̃ = 1− f∗2 with f̃ ∈ (0, 1) we have

V̇ ≤ c|h(θ)|
(
−α+

||∇J(θ)||
L

)
− f̃ ||∇J(θ)||2 (21)

for θ /∈ Ω, which also yields the bound

V̇ ≤ −αc|h(θ)|+ c|ρ|
L

||∇J(θ)|| − f̃ ||∇J(θ)||2. (22)

This implies when ||∇J(θ)|| > |ρ|c
Lf̃

, then V̇ < 0 for θ /∈ Ω.
Therefore choosing

α > max

{
L−1 sup

θ∈Ω
∥∇J(θ)∥, c|ρ|

L2f̃

}
(23)

yields V̇ ≤ 0.
For a complete proof, which lies outside the scope of this

paper, one must also consider computing the time derivative
of V in the other regions of the state space.

This Lyapunov function has an interesting connection to
literature. We note that a closely related Lyapunov function
for ‘gradient flow’ systems in a more general setting was
also discovered and can also be used to show stability [1].

V. SAFE EXTREMUM SEEKING OF STATIC MAPS

The basic outline of this section starts by following the
framework in [9]. As a preliminary, we first present Lemma
4 to aid the reader in understanding later results. Then, we
perform a series of transformations starting from the original
system, resulting in the construction of a ‘reduced model’.
We then use a Lyapunov argument and the help of Lemma
3 to show the reduced model is SPA stable, which yields the
original system SPA stable. Finally, we present our notion
of practical safety which follows from the SPA stability of
the ES scheme.

Remark 1. Authors in [9] require that the reduced model
be “robust” to “disturbances” (SPA stable) which arise as
a result of the averaging procedure. We use the terminology
“robust” and “disturbance” in the following Lemma and
the current section to refer to this fictitious disturbance of
the reduced system. This reduced system is fully constructed
later in (43) and is required for the analysis.

Consider the estimated quantities:

Q(θ)T := [∇J(θ)T ,∇h(θ)T , h(θ)]. (24)

The dynamics in (15) can be thought of as a function
of the estimated variables F = F (Q(θ)). And with a
small disturbance w(t)T = [w1(t)

T , w2(t)
T , w3(t)] we can

consider a disturbed system written as

θ̇ = F (Q(θ) + w(t)). (25)

The next result is a useful preliminary as it says that the
algorithm, without perfect estimates of the gradients, can be
written as the exact version of the algorithm with a small
additive disturbance. It is also useful as it shows that this
holds for a large enough M+.

Lemma 4 (Additive Disturbance). Under Assumptions 1 -
2, for any compact set Ω there exists a M+, ϵ∗ > 0 such
that for all ϵ ∈ (0, ϵ∗) and ||w|| < ϵ, the disturbed dynamics
in (25) can be written as

F (Q(θ) + w(t)) = −∇J(θ)+

∇h(θ)

||∇h(θ)||2
max{∇J(θ)T∇h(θ)− ch(θ), 0}+O(ϵ). (26)

for all θ ∈ Ω.

The proof of Lemma 4 is outside the scope of the paper.
We now turn our attention to the original dynamics in (2)
- (6), and make a series of transformations, following the
general ideas in [9]. Defining

F0 (ξ) := −ξ1 +min{ξ−2
2 ,M+}max{ξT1 ξ2 − cξ4, 0}ξ3,

(27)

with

ξT := [GT
J , ηJ , G

T
h , ηh], (28)

ζT := [(J(θ)− ξ2)M(t)T , J(θ), (h(θ)− ξ4)M(t)T , h(θ)],
(29)

we can rewrite (2) - (6) as

˙̂
θ = kωfF0(ξ), (30)

ξ̇ = −ωf (ξ − ζ(t, θ, ξ, a)), (31)

recalling θ = θ̂+S(t). Letting θ̃ = θ̂− θ∗c and τ = ωf t, the
system in the new time scale is

dθ̃

dτ
= kF0(ξ), (32)

dξ

dτ
= −

(
ξ − ζ

(
τ

ωf
, θ̃ + θ∗c + S

(
τ

ωf

)
, ξ, a

))
. (33)

We can take the average of the system (see [5], [9]) to
compute

dθ̃av
dτ

=kF0(ξav), (34)

dξav
dτ

=−
(
ξav − µ(θ̃av, a)

)
, (35)

D(θ̃av + θ∗c ) := [∇J(θ̃av + θ∗c )
T , J(θ̃av + θ∗c ),

∇h(θ̃av + θ∗c )
T , h(θ̃av + θ∗c )]

T ,
(36)

µ(θ̃av, a) :=D(θ̃av + θ∗c ) +O(a). (37)

Making another time transformation s = kτ we have

dθ̃av
ds

= F0(ξav), (38)

k
dξav
ds

= −
(
ξav − µ(θ̃av, a)

)
. (39)



Taking k = 0, we can derive the singularly perturbed (or
reduced) system with a quasi steady state

zs := ξav = µ(θ̃av, a). (40)

Defining
y = ξav − µ(θ̃av, a), (41)

the boundary layer system (with τ = s/k) is

dy

dτ
= −

(
ξav − µ(θ̃av, a)

)
= −y. (42)

The boundary layer system is UGAS uniformly in ξav and
t0. The reduced system is

dθr
ds

= F0(µ(θr, a)) = F0(D(θr + θ∗c ) +O(a)). (43)

The reduced system (43) is SPA stable in a. This is due
to the following argument: take any positive pair (∆, ν), and
θr(0) ≤ ∆. Using Lemma 3 and 4 we can find a Lyapunov
function V such that

V̇ (θr) = −W (θr) +O(a), (44)

ḣ(θr) + ch(θr) ≥ O(a), (45)

for strictly positive definite V and W , for a sufficiently large
M+ on any compact set. In Lemma 3 we considered two
cases: 1) Assumption 6 (all Cρ are compact) 2) Assumptions
4-5 (V is radially unbounded and the angle condition is
obeyed). In either case we can construct S, a compact
invariant set containing B(0)∆.

Either S = Cρ, for some Cρ in case 1 or S = Cρ ∩
{V (θr) ≤ V̄ }, for some V̄ > 0 in case 2 for sufficiently
small a and sufficiently large M+. One may then choose an a
even smaller to achieve limt→∞ ||θr(t)|| < ν for any ν > 0.
Therefore there exists an a∗ such that for any a ∈ (0, a∗)
the solutions of (43) satisfy

||θr(s)|| ≤ βθ(||θr(0)||, s) + ν (46)

for some βθ ∈ KL, M+ > 0 and for all ||θr(0)|| ≤ ∆. SPA
stability of (43) satisfies Assumption 2 in [9]).

Using [9, Theorem 1] we make the conclusion below in
Theorem 5. Note: The authors in [9] prove this result based
upon the earlier work [14, Lemma 1,2]. [14, Lemma 2]
concludes the SPA stability in [a, k] of (38)-(39) from the
SPA stability in a of (43). [14, Lemma 1] concludes the SPA
stability of (30)-(31) from SPA stability in [a, k] of (38)-(39).
Let

z = ξ − µ(θ̃, a). (47)

Theorem 5 (Semi-Global Practical Stability). Let Assump-
tions 1-3, 7 hold. Also, let either 4 and 5 hold or 6 hold.
Then there exists βθ, βξ ∈ KL such that: for any positive
pair (∆, ν) there exist M+, ω∗

f , a
∗ > 0, such that for any

ωf ∈ (0, ω∗
f ), a ∈ (0, a∗), there exists k∗(a) > 0 such that

for any k ∈ (0, k∗(a)) the solutions to (30)-(31) satisfy

||θ̃(t)|| ≤ βθ

(
||θ̃(t0)||, k · ωf · (t− t0)

)
+ ν, (48)

||z(t)|| ≤ βξ (||z(t0)||, ωf · (t− t0)) + ν, (49)

for all ||[θ̃(t0)T , z(t0)T ]T || ≤ ∆, and all t ≥ t0 ≥ 0.

Equation (49) tell us about convergence of estimated
quantities ξ(t) to their exact values D(θ̃(t)+θ∗c ). Using (37)
we can write

e := ξ −D(θ̃ + θ∗c ), (50)
||e(t)|| ≤ βξ(||z(t0)||, ωf (t− t0)) + v + |O(a)|. (51)

The variable e can be though of as the estimator error of the
various measurements and gradients of the static maps. The
bound above says that the estimated quantities can be made
to converge arbitrarily close to their true values, at a time
scale faster than the movement of the parameter θ̃ (which
is governed by the gain k). Note, the functions βθ, βξ are
independent of a, k, ωf [14]. Because ˙̃

θ is proportional to k
(30), we can choose a k such that the change in θ̃(t) over
some time interval can be small relative to the change in
e(t) over the same interval. From Lemma 4 we know that
there must be a small enough disturbance in the estimated
quantities such that the dynamics can be written linearly,
but only after the transient of βξ has been sufficiently
diminished. Therefore, we make the following claim.

Theorem 6 (Semi-Global Practical Safety). Suppose Theo-
rem 5 holds. For any ∆ > 0 there exists δ∗ > 0 such that
for any δ ∈ (0, δ∗) : there exists M+, a∗∗, ω∗∗

f > 0 such that
for any a ∈ (0, a∗∗), ωf ∈ (0, ω∗∗

f ), there exists k∗∗(a) > 0
such that for any k ∈ (0, k∗∗(a)),

h(θ(t)) ≥ h(θ(t0))e
−ckωf (t−t0) +O(δ) (52)

for all ||[θ̃(t0)T , z(t0)T ]T || ≤ ∆ for all t ∈ [t0,∞].

Idea of proof: Consider the system in the form of (30)-
(31), and also recall that z = ξ − µ(θ̃, a). From Theorem
5 it was shown that the solutions satisfy the bounds in (48)
- (49), with rates of decay kωf and ωf respectively. We
choose M+, ω∗

f , a
∗ > 0 such that the ν is sufficiently small,

and the estimator state ξ converges to a region which is close
to µ(θ̃, a). Next, one can further restrict a such that µ(θ̃, a)
is close to true gradients. Therefore, one can argue that after
some finite time T , ξ(t) will be within some small error
away from the true gradients. Therefore the system, after
this transient, (30) can be written as ˙̂

θ = kωfF0(D(θ̂) +
e(t)). From Lemma 4, we can write F0(D(θ̂) + e(t)) =
F0(D(θ̂)) +O(δ) for ||e(t)|| ≤ δ. Therefore for t in [T,∞)
we have ḣ+ch ≥ O(δ), implying (52). During the finite time
from [0, T ] we can bound changes in θ̂ with k as the time
T is independent of k, implying (52). Note this argument
makes use of the crucial fact that the functions βθ, βξ are
independent of a, k, ωf [14].

This argument implies the intervals of a, ωf , k given in
Theorem 6 are perhaps a more strict set of intervals than
the ones given in Theorem 5 - if the user desires the type
of safety given in (52). Nonetheless, the safety result is
elegantly analogous to the statement on stability. Theorem
5 says that for any set of initial conditions, one should be
able to adjust a, ωf , k such that trajectories are ν-practically



Fig. 2. Simulation of the algorithm with various c and k.

stable. Theorem 6 says that for any set of initial conditions,
one should be able to adjust a, ωf , k such that trajectories
are δ-practically stable.

VI. EXAMPLE

Consider the following maps and parameters: J(θ) =
(θ1 + 3)2 + θ22 , h(θ) = e−(θ1−1)2−θ2

2 + e−(θ1+1)2−θ2
2 − 0.5,

a = 0.1, ωf = 10, M+ = 10, 000, ω1 = 10, ω2 = 13.
The safety function chosen has the characteristic that all the
level sets for h ≤ 0 (Cρ) are compact, and there is a unique
minimum of J on C. The levels of J and h can also be shown
to obey the optimizer criterion in Assumption 3. Note that the
safe set is non convex. In Fig. 2 we simulate a grid of initial
conditions (all estimator states GJ , ηh, Gh, ηh are initialized
to zero) with three scenarios a) c = 1, k = 0.0005 b) c = 3,
k = 0.0005 c) c = 3, k = 0.0001.

In Fig. 2, notice that trajectories converge to a region
around the minimizer of J on C. Also, trajectories that enter
the safe set always remain in the safe set. Consider the
effect of c. When in the safe set, a smaller c restricts the
approach towards the barrier. This can be see with black
trajectories favoring the center-line (the safest part of the
set) over the blue/red around the region θ̂ ≈ [0.5, 0.0].
Outside the safe set, compare black and blue/red trajectories
at θ̂(0) = [−2.5,−0.5]. Here, a higher constant c dictates
a slow escape towards the boundary of the safe set which
is shown by the blue/red trajectories going first towards the
barrier, before converging. Therefore, higher c has the effect
that the optimization of J is favored in the safe region, but
in the unsafe region, safety is favored.

Note the increased transient wiggles introduced at the
start of the blue trajectories (compared to black), when
increasing c with no adjustment in k. We can fix this sign

of instability by lowering k, and achieve the more smooth
trajectories in red. This may be necessary because changing
c fundamentally changes the dynamics, and the same gain
k may no longer be appropriate for SPA stability - although
in this example the stability still remains for the region we
have chosen.

VII. CONCLUSION

We have introduced an ES algorithm that not only mini-
mizes an objective but does so with a guarantee of practical
safety. A Lyapunov analysis shows that for a semi-global
region of attraction there exist intervals of design coefficients
such that both practical safety and practical stability exist.
Our example demonstrates a convergence of a non-convex
problem.

REFERENCES

[1] A. Allibhoy and J. Cortés, “Control barrier function based design of
gradient flows for constrained nonlinear programming,” arXiv preprint
arXiv:2204.01930, 2022.

[2] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876,
2016.

[3] X. Chen, J. I. Poveda, and N. Li, “Continuous-time zeroth-order
dynamics with projection maps: Model-free feedback optimization
with safety guarantees,” 2023.

[4] M. Guay, E. Moshksar, and D. Dochain, “A constrained extremum-
seeking control approach,” International Journal of Robust and Non-
linear Control, vol. 25, no. 16, pp. 3132–3153, 2015.

[5] H. K. Khalil, Nonlinear systems; 3rd ed. Upper Saddle River, NJ:
Prentice-Hall, 2002.
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