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Abstract— In this paper we provide direct data-driven ex-
pressions for the Linear Quadratic Regulator (LQR), the
Kalman filter, and the Linear Quadratic Gaussian (LQG)
controller using a finite dataset of noisy input, state, and output
trajectories. We show that our data-driven expressions are
consistent, since they converge as the number of experimental
trajectories increases, we characterize their convergence rate,
and we quantify their error as a function of the system and data
properties. These results complement the body of literature on
data-driven control and finite-sample analysis, and they provide
new ways to solve canonical control and estimation problems
that do not assume, nor require the estimation of, a model of the
system and noise and do not rely on solving implicit equations.

I. INTRODUCTION

Consider the discrete-time, linear, time-invariant system

x(t+ 1) = Ax(t) +Bu(t) + w(t),

y(t) = Cx(t) + v(t), t ≥ 0,
(1)

where x(t) ∈ Rn denotes the state, u(t) ∈ Rm the control
input, y(t) ∈ Rp the measured output, w(t) and v(t) the
process and measurement noise at time t. The LQG control
problem asks for the input that minimizes the cost function

lim
T→∞

E

[
1

T

( T−1∑
t=0

x(t)TQxx(t) + u(t)TRuu(t)
)]

, (2)

where Qx ⪰ 0, Ru ≻ 0 are weight matrices and T is the
control horizon. With the standard assumptions that1

(A1) the process and measurement noise sequences and the
initial state are independent at all times and satisfy
w(t) ∼ N (0, Qw), v(t) ∼ N (0, Rv), and x(0) ∼
N (0,Σ0), with Qw ⪰ 0, Rv ≻ 0, and Σ0 ≻ 0;

(A2) the pairs (A,B) and (A,Q
1
2
w) are controllable, and the

pairs (A,C) and (A,Q
1
2
x ) are observable;

the input that solves the LQG problem can obtained by
concatenating the Kalman filter for (1) with the (static)
controller that solves the LQR problem for (1) with weight
matrices Qx and Ru [1]. That is,

u∗(t) = KLQRxKF(t), (3)

where xKF(t) is the Kalman estimate of the state x(t).
The classic, model-based computation of the LQR gain and
Kalman filter in (3) requires the complete knowledge of
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1-0235. A. A. Al Makdah and F. Pasqualetti are with the Department of
Electrical and Computer Engineering and Mechanical Engineering at the
University of California, Riverside, {aalm005,fabiopas}@ucr.edu.

1These assumptions also hold throughout this paper.

the system (1), including the noise statistics. Motivated by
the recent successes of data-driven and machine-learning
methods, we seek here a solution to the LQG problem that
relies only on a (finite) dataset of experimental data, without
the need to estimate the system dynamics and noise statistics.
Related work. Data-driven methods for system analysis and
control have flourished in the last years and are revolution-
izing the field [2]. The methods developed in this paper
fall in the category of direct data-driven methods [3], where
controls are obtained directly from data bypassing the classic
system identification step [4]. In line with earlier work and
differently from optimization-based approaches [5], [6], we
pursue here closed-form data-driven expressions, which are
typically computationally advantageous [7], are transparent,
and can reveal novel insights into the problems [8].

This paper focuses on data-driven LQG control, while
most of the literature on data-driven control has focused
on the LQR problem with noiseless data [9]–[11]. Recent
work [12] has studied the design of data-driven controllers
from noisy data [13], [14], the design of data-driven Kalman
filters [15], imitation-based LQG control design [16], and
some versions of the output-weighted LQG control problem
[17], [18]. Compared to [18], in particular, this paper does
not assume perfect knowledge of the Markov parameters or
any part of the system dynamics and noise, and it does not
estimate them to solve the state-weighted LQG problem. To
the best of our knowledge, this paper contains the first direct,
closed-form data-driven solution to the state-weighted LQG
problem, with finite-sample performance guarantees.

The recent literature on the analysis of the sample com-
plexity of estimation and control problems is also relevant
to this work. In particular, [19], [20] follow an indirect
approach, where sample complexity bounds are derived for
the identification of the system dynamics and such errors are
propagated towards the design of LQR and LQG controllers.
Differently from this paper, this analysis is valid only for
stable systems and output-weighted LQG costs. Bounds on
the performance of the learned LQG controller are also
derived in [21] assuming a sufficiently small error in the
system identification step [22]–[25], and in [26] where the
optimal LQR is learned in a model-free setting using gradient
methods. Although this paper makes use of similar technical
tools, the approach pursued here is direct and does not rely on
the identification of the system matrices, nor on optimization
algorithms to design or tune robust controllers. Further, this
paper considers the canonical LQG setting, rather than the
noisy LQR problem or the output-weighted LQG problem
with noisy controls, and it provides closed-form expressions
for the optimal controllers rather than their performance.
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Contributions of the paper. The main contributions of this
paper is the characterization of direct data-driven formulas
for the LQR gain, Kalman filter, and LQG gain using a
dataset of trajectories of the input, state, and output of the
system (1). Importantly, since the experimental data is noisy
and the system dynamics and noise statistics are unknown,
we show that our formulas are consistent, as they converge to
the true expressions when the amount of experimental data
increases. Additionally, we characterize the convergence rate
of our expressions, as well as their error when the data is
of finite size. Finally, we provide illustrative examples and
remarks to highlight how the properties of the system and of
the experimental data affect the accuracy of our formulas.
Organization of the paper. The remainder of the paper
is organized as follows. Section II formalizes our problem
setting and contains some preliminary results. Section III
contains our main results and examples, and Section IV
concludes the paper. Finally, all proofs are in the Appendix.
Notation. A Gaussian random variable x with mean µ and
covariance Σ is denoted as x ∼ N (µ,Σ). The n×n identity
matrix is denoted by In, and the n × m zero matrix is
denoted by 0n×m. The expectation operator is denoted by
E[·]. The trace of a square matrix A is denoted by tr [A]. A
positive definite (semidefinite) matrix A is denoted as A ≻ 0
(A ⪰ 0). The Kronecker product is denoted by ⊗, and the
vectorization operator is denoted by vec(·). The left (right)
pseudo inverse of a tall (fat) matrix A is denoted by A†.
A block-diagonal matrix with block matrices A and B is
denoted by blkdiag(A,B). The smallest (largest) singular
value of a matrix A is denoted by σmin(A)

(
σmax(A)

)
.

II. PROBLEM FORMULATION AND PRELIMINARY RESULTS

In this work we aim to compute the LQG inputs in a
data-driven setting where datasets from offline experiments
are available but the system matrices and noise statistics are
unknown. In particular, we have access to the following data:

U=
[
u1 · · · uN

]
, X=

[
x1 · · · xN

]
, Y =

[
y1 · · · yN

]
, (4)

where xi and yi are the i-th state and output trajectories of
(1) generated by the input ui. That is, for i ∈ {1, . . . , N},

ui =

 ui(0)
...

ui(T − 1)

 , xi =

xi(0)
...

xi(T )

 , yi =

yi(0)
...

yi(T )

 ,

where T is the horizon of the control experiments. We make
the following assumption on the experimental inputs.

Assumption 2.1: (Experimental inputs) The inputs in (4)
are independent and identically distributed, that is, ui(t) ∼
N (0,Σu), with Σu ≻ 0, for all i ∈ {1, . . . , N} and times.□

In our analysis we will make use of an equivalent charac-
terization of the LQG inputs derived in [27, Theorem 2.1],

which shows that these inputs can also be computed as

u∗(t+ n) = KLQG



u∗(t)
...

u∗(t+ n− 1)
y∗(t+ 1)

...
y∗(t+ n)


, (5)

where the static gain KLQG depends on the system and noise
matrices, and y∗ is the output of (1) with input u∗.

Remark 1: (State vs output measurements) We assume
here that the state of the system (1) can be directly measured.
This assumption is easily satisfied in certain lab experiments,
where additional sensors (e.g., a motion capture system for
robotic applications) can be deployed during the design
stage to measure the system state and collect training data.
Further, state measurements are necessary to solve the state-
weighted LQG problem, since the state weight matrix Qx

uses specific coordinates that cannot be inferred from output
measurements only [28], but they can be substituted with
input and output measurements for different versions of the
LQG problem. See also [27] for a reformulation of the LQG
problem that uses only input and output measurements. □

III. DATA-DRIVEN FORMULAS FOR LQG CONTROL

In this section we derive our main results, that is, direct
data-driven formulas for the LQR controller, the Kalman
filter, and the LQG controller using the data (4). Additionally,
we show that these formulas are consistent, i.e., they con-
verge to the true model-based expressions as the data grows,
and we finally quantify their error when the data is finite.

We start by introducing some additional notation. Let

Xt =
[
x1(t)T · · · xN (t)T

]T
, (6)

and, given input and state trajectories uv ∈ RmT and
xv ∈ RnT , let um ∈ Rm×T and xm ∈ Rn×T be the
matrices obtained by reorganizing the inputs and states in
the vectors uv and xv in chronological order. The next result
characterizes the LQR gain from data.

Theorem 3.1: (Data-driven LQR gain) Let x0 ∈ Rn and[
uv
xv

]
=

[
H
M

]
P−1/2

([
In 0n×mT

]
P−1/2

)†
x0, (7)

where

H =
[
0mT×n ImT

]
,M = X

[
X0

U

]†
, and

P = MT (IT+1⊗Qx)M + blkdiag (0n×n, IT ⊗Ru) .

(8)

Let x∗
v ∈ RnT be the trajectory of (1) with initial state x0,

control input u∗(t) = KLQRx(t), and w(t) = 0 at all times.
Then, the data-driven estimate KD

LQR = umx
†
m of KLQR

∥KLQR −KD
LQR∥2 ≤ 1

σmin(x∗
m) (1− κ(x∗

m))

(
c1√
N

+ c2ρ
T

)
,
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Fig. 1. This figure shows the error between the data-driven and the model-based gains as a function of the size of the data in (4) for the setting described
in Example 1, 2, and 3. Panel (a) shows the error between the model-based LQR gain and the data-based LQR gain obtained from Theorem 3.1 as a
function of N for the setting described in Example 1. Panel (b) shows the error between the model-based Kalman filter and the data-based Kalman filter
obtained from Theorem 3.2, and panel (c) shows the error between the corresponding state estimates as a function of N for the setting in Example 2. Panel
(d) shows the error between the model-based LQG input generated by (3) and the data-based LQG input generated by (11) as a function of N . Panel (e)
shows the error between the model-based LQG gain in (5) and the data-based LQG gain obtained from Theorem 3.3 as a function of N for the setting in
Example 3. We observe that all the quantities in the plots decrease as the number of trajectories, N , increases, which agrees with our theoretical results.

for sufficiently large N and probability at least 1−6δ, where

κ(x∗
m) =

σmax(xm − x∗
m)

σmin(x∗
m)

,

where the constants c1 and c2 are independent of N and are
defined in (29), ρ < 1, and δ ∈ [0, 1/6]. □

A proof of Theorem 3.1 is postponed to Appendix B.
Some comments are in order. First, Theorem 3.1 provides a
direct, data-driven way to estimate the LQR gain from noisy
data, namely, KD

LQR, and characterizes the error between the
true and the estimated gains. Such error vanishes as the
number (N ) and length (T ) of the experimental trajectories
grow.2 Further, the term κ(x∗

m) also vanishes as the number
of experimental trajectories increases (see Theorem B.3).
Second, the vectors uv and xv contain an estimate of the
optimal input and state trajectories that minimize the LQR
cost with matrices Qx and Ru for the system (1) with initial
state x0 and without process noise. Notably, these trajectories
are estimated using the noisy dataset (4). Thus, this result
extends the analysis in [7]. Third, Theorem 3.1 is valid when
N is sufficiently large. In particular, N needs to be at least
large enough to satisfy κ(x∗

m) < 1 (see Appendix B for other
conditions on N ). Also, the result holds with probability
1 − 6δ, and the specific choice of δ affects the magnitude
of the constant c1. Fourth and finally, although formulas
with similar convergence rates for the estimation of the LQR
exist [19], [21], Theorem 3.1 provides an alternative, direct,
closed-form expression of the gain, as opposed to indirect
and optimization-based approaches. This will allow us to
estimate the LQG controller.

Example 1: (Estimating the LQR gain from noisy data)
Consider System (1) with

A =

[
0.7 1.2
0 0.4

]
, B =

[
0
1

]
, C =

[
1 0

]
,

Qx = 5I2, Qw = 2I2, Ru = Rv = Σu = 1, and Σ0 = I2.
We collect open-loop trajectories as in (4) generated by
inputs satisfying Assumption 2.1 with horizon T=50. The
model-based LQR gain is KLQR = [0.241 0.788]. We

2The constant c1, as well as other constants defined later in the paper,
depend also on the horizon T . While a detailed characterization of the effects
of this dependency requires a dedicated analysis, notice that our expressions
remain consistent if N grows sufficiently faster than T . The formulas in
the paper quantify the error for finite choices of these two parameters.

use Theorem 3.1 to compute the data-driven LQR gain,
KD

LQR for different values of N . Fig. 1(a) shows the error
∥KD

LQR−KLQR∥ as a function of the number of trajectories. □
We now focus on estimating the Kalman filter from noisy

data with unknown system dynamics and noise statistics.
Theorem 3.2: (Data-driven Kalman filter) Let Ut and Yt

be the submatrices of U and Y in (4) obtained by selecting
only the inputs and outputs up to time t. Let

LD
t = Xt

[
Ut−1

Yt

]†
, (9)

where Xt is as in (6). Then, for every t ∈ [0, T ],∥∥∥∥xKF(t)− LD
t

[
ut−1
0

yt0

]∥∥∥∥
2

≤ c3√
N

∥∥∥∥[ut−1
0

yt0

]∥∥∥∥
2

, (10)

with probability at least 1 − 2δ, where ut
0 and yt0 are the

vectors of inputs and outputs of (1), respectively, from time
0 up to time t, c3 is a constant independent of N as defined
in (35), and δ ∈ [0, 1/2]. □

A proof of Theorem 3.2 is postponed to Appendix C.
Theorem 3.2 provides a way to construct an approximate
Kalman filter using a finite set of experimental data, without
knowing the system dynamics and the statistics of the noise.
As can be seen from (10), the error vanishes with rate 1/

√
N

as the number of experimental data grows, showing the
consistency of the data-driven Kalman filter expressions (9).

Example 2: (Estimating the Kalman filter from noisy
data) Following the setting introduced in Example 1, we use
Theorem 3.2 to obtain the data-driven Kalman filter, LD

KF,
and the corresponding data-driven state estimate, xD

KF. Fig.
1(b) and 1(c) show the errors ∥LD

KF−LKF∥ and ∥xD
KF−xKF∥. □

Theorems 3.1 and 3.2 allow us to compute the LQG inputs
from time 0 up to time T . In particular, recalling the structure
of the LQG inputs due to the separation principle [1],

udLQG(t) = KD
LQR LD

t



udLQG(0)
...

udLQG(t− 1)
ydLQG(0)

...
ydLQG(t)


︸ ︷︷ ︸

xD
KF(t)

, (11)



where xD
KF is the state estimate obtained using our data-

driven scheme. Fig. 1(d) shows how these data-driven inputs
compare to the model-based LQG inputs as a function of the
amount of data. As expected, the performance gap between
the data-driven and the model-based schemes shrinks as the
amount of data increases. We next provide an estimate of
the LQG gain (5), which allows us to compute LQG inputs
beyond the horizon T of the experimental trajectories. We
start by collecting M ≥ n + nm + np closed-loop input-
output trajectories of system (1) driven by the LQG inputs
generated from (11). In particular,

UdLQG=
[
u1

dLQG · · · uM
dLQG

]
, YdLQG=

[
y1dLQG · · · yMdLQG

]
,

(12)

where yidLQG is the i-th output trajectory of (1) generated by
the LQG input ui

dLQG in (11). That is, for i ∈ {1, . . . ,M},

ui
dLQG=

 ui
dLQG(0)

...
ui

dLQG(T−1)

, yidLQG=

yidLQG(0)
...

yidLQG(T )

.
Theorem 3.3: (Data-driven LQG gain) Let Un

dLQG and
Y n

dLQG be the submatrices of UdLQG and YdLQG in (12)
obtained by selecting only the inputs from time T −n up to
time T−1 and the outputs from time T−n+1 up to time T ,
respectively. Define the data-driven LQG gain as

KD
LQG =KD

LQRL
D
t

[
UdLQG
YdLQG

] [
Un

dLQG
Y n

dLQG

]†
︸ ︷︷ ︸

c4

,

Then, the data-driven estimate of the LQG gain satisfies

∥KLQG −KD
LQG∥2 ≤ ∥c4∥2

(
c5 + c6ρ

T

√
N

+ c7ρ
T

)
, (13)

for sufficiently large T and N and probability at least 1−8δ,
where the constants c5, c6, and c7 are independent of N and
are defined in (38), ρ < 1, and δ ∈ [0, 1/8]. □

We postpone the proof of Theorem 3.3 to Appendix D.
Theorem (3.3) provides a direct data-driven expression of
the LQG gain that converges with polynomial rate as the
experimental data increases. To the best of our knowledge,
this result is the first of its kind, and it provides a new way to
compute the LQG controller using offline experimental data
and a finite number of online experiments, without knowing
or identifying the system and noise matrices.

Example 3: (Estimating the LQG gain from noisy data)
Following the setting introduced in Example 1 and Example
2, we use Theorem 3.3 to obtain the data-driven LQG gain,
KD

LQG. Fig. 1(e) shows the error ∥KD
LQG−KLQG∥ as a function

of the number of trajectories, N . □

IV. CONCLUSION

In this paper we derive direct data-driven expressions for
the LQR gain, Kalman filter, and LQG controller using
a dataset of input, state, output trajectories. We show the
convergence of these expressions as the size of the dataset
increases, we characterize their convergence rate, and we

quantify the error incurred when using a dataset of finite size.
Our expressions are direct, as they do not use a model of the
system nor require the estimation of a model, and provide
new insights into the solution of canonical control and
estimation problems. Directions of future research include
the direct data-driven solution to H2 and H∞ problems,
as well as the extension of the results to accomodate for
incomplete, heterogeneous and, possibly, corrupted datasets.

APPENDIX

A. Technical lemmas

Lemma A.1: (Product of Gaussian matrices [19, Lemma
1]) Let A = [a1, · · ·, aN ] and B = [b1, · · ·, bN ], where
ai ∈ Rn and bi ∈ Rm are independent random vectors with
ai ∼ N (0,Σa) and bi ∼ N (0,Σb) for i = 1, · · · , N .
Let δ ∈ [0, 1] and N ≥ 2(n + m) log (1/δ). Then, with
probability at least 1− δ

∥ABT∥2 ≤ 4∥Σa∥1/22 ∥Σb∥1/22

√
N(n+m) log (9/δ).

□
Lemma A.2: (Singular values of a Gaussian matrix) Let

δ ∈ [0, 1], and let A ∈ Rn×N be a random matrix with
independent entries distributed as N (0, 1). Then, for N ≥
8n + 16 log (1/δ), each of the following inequalities hold
with probability probability at least 1− δ

σmin(A) ≥
√
N/2, σmax(A) ≤ 3

√
N/2,

where σmin (σmax) is the smallest (largest) singular value. □
Proof: For notational convenience, we use σmin, σmax, and
δ′ to denote σmin(A), σmax(A), and 2 log (1/δ), respectively.
From [29, Corollary 5.35], we have each of the following
inequalities holds with probability at least 1− δ

σmin ≥
√
N −

√
n−

√
δ′, σmax≤

√
N+

√
n+

√
δ′. (14)

Assume that N ≥ 8n+ 8δ′. Then,
√
N/2 ≥

√
n+

√
δ′, (15)

where we have used the inequality 2(a2 + b2) ≥ (a + b)2.
The proof follows by substituting (15) into (14).

B. Proof of Theorem 3.1

Let u∗
v ∈ RmT and x∗

v ∈ RnT be the optimal LQR trajec-
tories of (1) from the initial state x0. Then, KLQR = u∗

mx
∗†
m

asymptotically as the control horizon T grows. Further, from
[7], [30], the trajectories u∗

v and x∗
v can be obtained using (7)

when the state data is not corrupted by the process noise. Let
Xclean be such data, that is, the state trajectories of (1) with
inputs U and noise w(t) = 0 at all times. Notice that in our
setting X is different from Xclean since the process noise is
nonzero when the data is collected. Because of this deviation
in the data, the vectors uv and xv in (7) are a perturbed
version of the optimal trajectories u∗

v and x∗
v . Accordingly,

KD
LQR = umx

†
m is a perturbed version of KLQR. To quantify

the deviation between KD
LQR and KLQR, we quantify (i) the

deviation in the data induced by the process noise, (ii) the
sensitivity of the map (7) that generates LQR trajectories, and
(iii) how the induced errors propagate to compute KD

LQR.



(i) Data deviation induced by the process noise. Note that

X =
[
O Fu

]︸ ︷︷ ︸
F

[
X0

U

]
︸ ︷︷ ︸

U

+FwW, (16)

where W ∈ RnT×N is a matrix that contains the correspond-
ing N process noise realizations of horizon T − 1, and

O =

 In
A
...

AT

 , Fu =

 0 · · · 0
B · · · 0
...

. . .
...

AT−1B · · · B

 , Fw =

 0 · · · 0
In · · · 0
...

. . .
...

AT−1 · · · In

 .

Note that Xclean = FU . Let the data matrices in (4) and (6)
be partitioned as

U =
[
Ud Un

]
, X =

[
Xd Xn

]
, X0 =

[
X0,d X0,n

]
,

(17)

where Ud, Xd, and X0,d contain the first Nd ≥ mT + n
columns of U , X , and X0, respectively, and let U = [U d, U n]
be partitioned similarly. For notational convenience, we de-
fine QT = (IT+1⊗Qx) and RT = blkdiag(0n×n, IT ⊗Ru).
Noting that U dU d

†
= In+mT , we rewrite uv in (7) as

uv = HP−1/2
([

In 0n×mT

]
P−1/2

)†
x0, (18)

with

P =
(
X̃cU

†
d

)T

QT

(
X̃cU

†
d

)
+RT , and X̃c =XU†U d. (19)

Further, let

Xc = XcleanU
†U d and ∆X = X̃c −Xc. (20)

Notice that if the process noise, W , is zero, then ∆X = 0 and
X̃c = Xc and, from (7), uv = u∗

v and xv = x∗
v . Thus, we use

∆X as a proxy for the deviation between X and Xclean, which
is induced by the process noise, FwW . The next Lemma
provides a non-asymptotic upper bound to ∥∆X∥2.

Lemma B.1: (Non-asymptotic bound on ∥∆X∥2)
Let ∆X be as in (20), and let δ ∈ [0, 1/3].
Assume that N > max {N1, Nd} , with N1 =
2 ((n+m)T + n) log (1/δ) and Nd ≥ 8(mT + n) +
16 log (1/δ). Then, with probability at least 1− 3δ,

∥∆X∥2 ≤ d1

√
Nd ((n+m)T + n) log (9/δ)

N
, (21)

where d1 = 24∥Fw∥2∥Qw∥1/22 and Qw = IT ⊗Qw. □
Proof: Let U = Σ

1/2
u Z and U d = Σ

1/2
u Zd, where Σu =

blkdiag(Σ0, IT ⊗ Σu), Z ∈ Rn+mT×N is a random matrix
whose columns are independent copies of N ∼ (0, In+mT ),
and Zd contains the first Nd columns of Z. From (19), (20),

∥∆X∥2=∥FwWUT(UUT)−1U d∥2=∥FwWZT(ZZT)−1Zd∥2
≤ ∥Fw∥2∥WZT∥2∥(ZZT)−1∥2∥Zd∥2.

The proof follows by using Lemma A.1 to bound ∥WZT∥2,
Lemma A.2 to bound ∥(ZZT)−1∥2 and ∥Zd∥2, and using
the union bound to compute the probability.

(ii) Sensitivity of map (7) w.r.t. ∆X . We focus our analysis on
the map f : Rn(T+1)Nd × R(n+mT )Nd → Rn+mT that gen-
erates uv as in (18). Then, u∗

v = f(vec(Xc), vec(U d)). Since
f is Fréchet-differentiable with respect to vec(Xc) [30], [31],
we can write its first-order Taylor-series expansion as

f(vec(X̃c), vec(U d))=f(vec(Xc), vec(U d))

+∇fX
(
vec(Xc), vec(U d)

)
vec(∆X),

(22)

where ∇fX is the Jacobian matrix of f(vec(Xc), vec(U d))
with respect to vec(Xc). We quantify the sensitivity of the
map (18) to the change in Xc by ∇fX (large values of
∇fX implies higher sensitivity). Next, we derive an upper
bound on ∥∇fX∥2, and upper bounds on ∥uv − u∗

v∥2 and
∥xv − x∗

v∥2 using the first-order approximation in (22).

Lemma B.2: (Non-asymptotic bound on ∥∇fX∥2) Let
U d, Xc, and ∇fX

(
vec(Xc), vec(U d)

)
be as in (20) and (22).

Also, let δ ∈ [0, 1] and assume that Nd ≥ 8(n + mT ) +
16 log (1/δ). Then, with probability at least 1− δ,

∥∥∇fX
(
vec(Xc), vec(U d)

)∥∥
2
≤ 4d2

√
n(T + 1)

Nd
, (23)

where d2 > 0 is independent of Nd. □
Proof: The proof can be adapted from the proof of [30,

Lemma IV.4], then using Lemma A.2 and ∥ · ∥2 ≤ ∥ · ∥F.

Theorem B.3: (Non-asymptotic bound on the devia-
tion of the LQR trajectories) Let uv and xv be as
in (7) and u∗

v and x∗
v be the optimal LQR trajectories

of length T of (1) from the initial state x0. Let δ ∈
[0, 1/6] and assume that N ≥ max {N1, N2, N3}, with
N1 = 2 ((n+m)T + n) log (1/δ), N2 = 8(mT + n) +
16 log (1/δ), and N3 = ((n + m)T + n) log (9/δ). Then,
with probability at least 1− 4δ,

∥uv − u∗
v∥2 ≤ d3

√
((n+m)T + n) log (9/δ)

N
. (24)

Further, with probability at least 1− 6δ,

∥xv − x∗
v∥2 ≤d4

√
((n+m)T + n) log (9/δ)

N
, (25)

with

d3 = 4d1d2
√

qn(T + 1),

d4 = ∥F∥2d3 + 16∥Fw∥2∥Σ
−1/2
u ∥2∥Qw∥

1/2

2

(
∥u∗

v∥2 + d3
)
,

where d1, F , and Fw are as in (21) and (16), respectively,
d2 > 0 is independent of N , q = Rank (∆X) ≤ n(T + 1),
u∗

v = [xT
0 , u

∗
v
T]T, and Qw and Σu are as in Lemma B.1. □

Proof: Inequality (24) follows from (22) by using Lemma
B.1, Lemma B.2, and ∥vec(∆X)∥2 = ∥∆X∥F ≤ √

q∥∆X∥2,
with q = Rank (∆X). Next, we derive (25). For notational
convenience, we use ∆u and ∆x to denote uv − u∗

v and



xv − x∗
v , respectively. From (7), we can write

∥∆x∥2 =

∥∥∥∥X̃cU
†
d

[
x0

uv

]
−XcU

†
d

[
x0

u∗
v

]∥∥∥∥
2

(26)

=

∥∥∥∥XcU
†
d

[
0
∆u

]
+∆XU

†
d

[
x0

u∗
v

]
+∆XU

†
d

[
0
∆u

]∥∥∥∥
2

≤ ∥XcU
†
d∥2∥∆u∥2 + ∥∆XU

†
d∥2∥u∗

v∥2 + ∥∆XU
†
d∥2∥∆u∥2.

Note that U dU
†
d = In+mT . Then we have

∥XcU
†
d∥2 = ∥XcleanU

†∥2 = ∥F∥2,

∥∆XU
†
d∥2=∥(X−Xclean)U

†∥2 = ∥FwWU†∥2
≤∥Fw∥2∥WUT∥2∥(UUT)−1∥2,

Inequality (25) follows from (26) by using (24), Lemma
A.1, and Lemma A.2 to bound ∥∆u∥2, ∥WUT∥2, and
∥(UUT)−1∥2, respectively, and noting that for N ≥ N3 we
have δ′

N ≤
√

δ′
N , with δ′ = ((n+m)T + n) log (9/δ). The

probabilities follow from the union bound.

(iii) Error between KLQR and KD
LQR. We are now ready to

conclude the proof of Theorem 3.1. Notice that

u∗
m = KLQRx

∗
m, and u∗

m + δu = KD
LQR (x∗

m + δx) , (27)

where δu = um − u∗
m and δx = xm − x∗

m. Note that um and
xm are the matrices obtained by reorganizing the inputs and
states in the vectors uv and xv in chronological order. For
notational convenience, we use K and KD to denote KLQR
and KD

LQR. Let ∆K = K −KD. In what follows, subscript
i denotes the i-th row, with i ∈ {1, · · · ,m}. Using [32,
Theorem 5.1] and assuming that x∗

m is of full row rank,3

∥∆K,i∥2 ≤ d5
(
ϵ∥Ki∥2∥x

∗
m∥2 + ∥δu,i∥2 + ϵα∥r∥2

)
, (28)

where

d5 =
α

1− αϵ∥x∗
m∥2

, ϵ =
∥δx∥2
∥x∗

m∥2
, r = u∗

m,i −Kix
∗
m,

and α = ∥x∗
m∥2∥x∗

m
†∥2 is the spectral condition number of

x∗
m. From [7, Theorem 3.2], we have ∥r∥2 ≤ d6ρ

T , where
d6>0 and ρ<1, which are independent of N . Since ∥x∗

m∥2=
σmax(x

∗
m), ∥(x∗

m)
†∥2=1/σmin(x

∗
m). Then, we can write d5 as

d5 =
1

σmin(x∗
m) (1− κ(x∗

m))
, with κ(x∗

m) =
σmax(δx)

σmin(x∗
m)

,

For sufficiently large N such that σmax(∆X) < σmin(X
∗),

we have κ(x∗
m) < 1 and ϵα < 1. Then, we can write (28) as

∥∆K,i∥2 ≤ d5

(
∥Ki∥2∥δx∥2 + ∥δu,i∥2 + d6ρ

T
)
,

(a)
≤ d5

(
∥K∥2∥∆x∥2 + ∥∆u∥2 + d6ρ

T
)
,

where in step (a), we have used ∥δx∥2 ≤ ∥δx∥F =
∥vec(δx)∥2 = ∥∆x∥2, and ∥δu,i∥2 = ∥δu,i∥F ≤ ∥δu∥F =
∥vec(δu)∥2 = ∥∆u∥2, where ∆x and ∆u are as in The-
orem B.3. Noting that ∥∆K∥F =

√
tr [∆K(∆K)T] =

3This condition is typically satisfied for generic choices of the initial state.

√∑m
i=1 ∥∆Ki∥22 and using the bounds in Theorem B.3, we

have with probability at least 1− 6δ

∥∆K∥2 ≤ 1

σmin(x∗
m) (1− κ(x∗

m))

(
c1√
N

+ c2ρ
T

)
,

where,

c1=(d3+∥KLQR∥2d4)
√
m ((n+m)T+n) log (9/δ),

c2 = d6
√
m,

(29)

and d3 and d4 are as in Theorem B.3. Finally, the probability
follows from the union bound. This concludes the proof.

C. Proof of Theorem 3.2

The Kalman filter computes the estimate xKF(t) given
{u(0), . . . , u(t− 1), y(0), . . . , y(t)} that minimizes the cost

T∑
t=0

E
[
(x(t)− xKF(t))

T (x(t)− xKF(t))
]
, (30)

which is then used to generate LQG inputs. Equivalently,
xKF(t) can be obtained with the following linear estimator,

xKF(t)=
[
Lu
t,0 · · ·Lu

t,t−1

]︸ ︷︷ ︸
Lu

t

 u(0)
...

u(t− 1)


︸ ︷︷ ︸

ut−1
0

+
[
Ly
t,0 · · ·Ly

t,t

]︸ ︷︷ ︸
Ly

t

y(0)...
y(t)


︸ ︷︷ ︸

yt
0

,

=
[
Lu
t Ly

t

]︸ ︷︷ ︸
LKF

t

[
ut−1
0

yt0

]
︸ ︷︷ ︸

zt

,

where LKF
t ∈ Rn×mt+p(t+1), with Lu

t ∈ Rn×mt and Ly
t ∈

Rn×p(t+1), is the estimator gain that minimizes (30). Let
e(t) = x(t) − xKF(t) and Σe,t ∈ Rn×n ⪰ 0 denote the
estimation error and the estimation error covariance matrix,
respectively. For an optimal linear estimator, LKF

t , we have
e(t) ∼ N (0,Σe,t), and we can write the state x(t) as

x(t) = LKF
t zt + e(t).

Let

xt = [x1(t), . . . , xN (0)], et = [e1(t), . . . , eN (0)], (31)

where xi(t) and ei(t) denote the state and the state estimation
error incurred by LKF

t at time t for the i-th trajectory of the
data (4), respectively. Further, let Zt = [UT

t−1, Y
T
t ]T, where

Ut and Yt are the submatrices of U and Y in (4) obtained
by selecting the inputs and outputs up to some t. Then,

xt = LKF
t Zt + et. (32)

To estimate the optimal filter Lt from the data (4), we
consider the following least squares problem

LD
t = argmin

Lt

∥xt − LtZt∥2F. (33)

Problem (33) admits a unique solution since Zt is full-row
rank, which is given by (9). Next, we bound ∥LD

t − LKF
t ∥2.

Theorem C.1: (Non-asymptotic bound on ∥LD
t −LKF

t ∥2)
Let LKF

t and LD
t be as in (32) and (9), respectively, and



let δ ∈ [0, 1/2]. Assume that N ≥ max {N1, N2}, with
N1 = 2 ((n+m)T + n) log (1/δ) and N2 = 8(mT + n) +
16 log (1/δ). Then, with probability at least 1− 2δ,

∥LD
t − LKF

t ∥2 ≤ d7

√
((m+ p)t+ n+ p) log (9/δ)

N
, (34)

with

d7 ≜ 16∥Σ−1/2
Z ∥2∥Σe,t∥1/22 ,

where ΣZ ∈ R(m+p)t+p×(m+p)t+p ≻ 0 comprises the noise
statistics, Σ0, and Σu in Assumption 2.1, and Σe,t is the
optimal estimation error covariance matrix at time t. □

Proof: Let Z = Σ
1/2
Z G and where ΣZ ≻ 0 is

as in the theorem statement, and G ∈ R(m+p)t+p×N is
a random matrix whose columns are independent random
vectors distributed as N ∼(0, I(m+p)t+p). From (9) and (32),

∥LD
t − LKF

t ∥2 = ∥etZ†∥2 = ∥etGT(GGT)−1Σ
−1/2
Z ∥2

≤ ∥Σ−1/2
Z ∥2∥etG

T∥2∥(GGT)−1∥2.

The proof follows by using Lemma A.1 to bound ∥etGT∥2,
and Lemma A.2 to bound ∥(GGT)−1∥2. Finally, The prob-
ability follows from the union bound.
To conclude the proof of Theorem 3.2, we have∥∥∥∥xKF(t)− LD

t

[
ut−1
0

yt0

]∥∥∥∥
2

=

∥∥∥∥LKF
t

[
ut−1
0

yt0

]
− LD

t

[
ut−1
0

yt0

]∥∥∥∥
2

≤ ∥LKF
t − LD

t ∥2

∥∥∥∥[ut−1
0

yt0

]∥∥∥∥
2

,

where ut
0 and yt0 are the vectors of inputs and outputs of (1),

respectively, from time 0 up to time t. Using Theorem C.1,∥∥∥∥xKF(t)− LD
t

[
ut−1
0

yt0

]∥∥∥∥
2

≤ c3√
N

∥∥∥∥[ut−1
0

yt0

]∥∥∥∥
2

, (35)

where c3 = d7
√
((m+ p)t+ n+ p) log (9/δ), and d7 is

as in Theorem C.1. The above inequality holds with proba-
bility at least 1 − 2δ, which follows from Theorem C.1 for
δ ∈ [0, 1/2]. This concludes the proof of Theorem 3.2.

D. Proof of Theorem 3.3
Consider the closed-loop trajectories in (12), and let Un

dLQG
and Y n

dLQG be the submatrices of UdLQG and YdLQG in (12)
obtained by selecting only the inputs from time T −n up to
time T−1 and the outputs from time T−n+1 up to time T ,
respectively. We can write the data-based and the model-
based LQG inputs at time T for the trajectories in (12) as[

u1
dLQG(T ) · · · uM

dLQG(T )
]︸ ︷︷ ︸

UdLQG(T )

= KD
LQRL

D
T

[
UdLQG
YdLQG

]
,

[
u1

LQG(T ) · · · uM
LQG(T )

]︸ ︷︷ ︸
ULQG(T )

= KLQRL
KF
T

[
UdLQG
YdLQG

]
︸ ︷︷ ︸

Z

.

For notational convenience, let ∆KLQR = KD
LQR − KLQR,

∆L = LD
T − LKF

T , and ∆U = UdLQG(T )− ULQG(T ). Then,

∆U = KD
LQRL

D
TZ −KLQRL

KF
T Z

= KLQR∆LZ +∆KLQRL
KF
T Z +∆KLQR∆LZ.

(36)

For sufficiently large T , we use (5) to write

UdLQG(T ) = KD
LQG

[
Un

dLQG
Y n

dLQG

]
, ULQG(T ) = KLQG

[
Un

dLQG
Y n

dLQG

]
︸ ︷︷ ︸

Zn

.

Then, KD
LQG =UdLQG(T )Z

†
n and KLQG = ULQG(T )Z

†
n. For

notational convenience, let ∆KLQG = KD
LQG −KLQG, and let

∥ · ∥ denote ∥ · ∥2. Then, using (36), we can write

∥∆KLQG∥2 = ∥(UdLQG(T )− ULQG(T ))Z
†
n∥ = ∥∆UZ†

n∥
≤∥KLQR∥∥∆L∥∥ZZ†

n∥+ ∥∆KLQR∥∥LKF
T ∥∥ZZ†

n∥
+ ∥∆KLQR∥∥∆L∥∥ZZ†

n∥.
(37)

Let δ ∈ [0, 1/8] and assume that N ≥ max {N1, N2, N3},
where N1, N2, and N3 are as in Theorem B.3. Then,
inequality (13) follows by using Theorem 3.1 and Theorem
C.1 to bound ∥∆KLQR∥ and ∥∆L∥ in (37), respectively, with
probability at least 1− 8δ and with

c5=
c1∥LKF

t ∥+ c1c3
σmin(x∗

m) (1− κ(x∗
m))

+ c3∥KLQR∥,

c6=
c2c3

σmin(x∗
m)(1−κ(x∗

m))
, c7=

c2∥LKF
t ∥

σmin(x∗
m)(1−κ(x∗

m))
,

(38)

where c1, c2, x∗
m, and κ(x∗

m) are as in Theorem 3.1, and c3
is as in Theorem 3.2. Finally, the probability follows using
the union bound. This concludes the proof of Theorem 3.3.
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Towards a theoretical foundation of policy optimization for learning
control policies. Annual Review of Control, Robotics, and Autonomous
Systems, 6(1):123–158, 2023.

[6] F. Dörfler, P. Tesi, and C. De Persis. On the role of regularization
in direct data-driven LQR control. In IEEE Conf. on Decision and
Control, pages 1091–1098, Cancún, Mexico, December 2022. IEEE.

[7] F. Celi, G. Baggio, and F. Pasqualetti. Closed-form estimates of the
LQR gain from finite data. In IEEE Conf. on Decision and Control,
pages 4016–4021, Cancún, Mexico, December 2022.

[8] F. Celi and F. Pasqualetti. Data-driven meets geometric control: Zero
dynamics, subspace stabilization, and malicious attacks. IEEE Control
Systems Letters, 6:2569–2574, 2022.

[9] I. Markovsky and P. Rapisarda. On the linear quadratic data-driven
control. In European Control Conference, pages 5313–5318. IEEE,
2007.
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