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Abstract— The reliable deployment of neural networks in
control systems requires rigorous robustness guarantees. In
this paper, we obtain tight robustness certificates over convex
attack sets for min-max representations of ReLU neural net-
works by developing a convex reformulation of the nonconvex
certification problem. This is done by “lifting” the problem to
an infinite-dimensional optimization over probability measures,
leveraging recent results in distributionally robust optimization
to solve for an optimal discrete distribution, and proving that
solutions of the original nonconvex problem are generated by
the discrete distribution under mild boundedness, nonredun-
dancy, and Slater conditions. As a consequence, optimal (worst-
case) attacks against the model may be solved for exactly. This
contrasts prior state-of-the-art that either requires expensive
branch-and-bound schemes or loose relaxation techniques.
Experiments on robust control and MNIST image classification
examples highlight the benefits of our approach.

I. INTRODUCTION

Neural networks are rapidly being deployed in control
systems as a means to efficiently model nonlinear systems
[1], controllers [2], and reinforcement learning policies [3].
However, the performance of neural networks can be ex-
tremely sensitive to small fluctuations in their input data
[4]. For example, [5], [6] show that image classification
models can be fooled into misclassifying vehicle traffic signs
when subject to digital or physical adversarial attacks, i.e.,
human-imperceptible data perturbations designed to cause
failure. This unreliable behavior is directly at odds with
the robustness guarantees required in safety-critical control
settings such as autonomous driving [7].

In light of these sensitivities, much effort has been placed
on developing methods to rigorously certify the robustness
of neural networks, with a large emphasis on models using
the popular ReLU activation function. However, certifying a
neural network’s robustness generally amounts to solving an
intractable nonconvex optimization problem [8]. Three major
lines of work have focused on overcoming this intractability:
convex relaxations, Lipschitz bounding, and branch-and-
bound methods (all discussed further in Section I-A).

In this paper, we utilize an alternative representation of
ReLU neural networks as a means to efficiently compute
tight robustness certificates using convex optimization (and
hence in polynomial time). As a consequence, we are able
to exactly compute optimal (worst-case) attacks, which is
generally not possible using the popular local search-based
attack methods such as projected gradient descent [9] and
the Carlini-Wagner attack [10].
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A. Related Works

1) Robustness Certification: Certifying the robustness of
a model amounts to solving the nonconvex optimization
infx∈X g(x), where X is a set of possible inputs or attacks
(i.e., the “threat model”), and g(x) is either the model output
at an input x, or some linear transformation of the model
output (e.g., a classifier’s margin between two classes).

Convex relaxations work by optimizing over a convex
outer-approximation of the set g(X) of possible outputs.
Popular relaxations involve linear bounding and program-
ming [11], [12], and semidefinite programming [13], [14],
which constitutes a line of increasingly accurate yet com-
putationally complex relaxations. Convex relaxation-based
certificates remain loose in general, and their looseness has
been shown to increase with model size [15].

The Lipschitz constant of a model provides a certified
bound on how much the model output may change given
some change in its input. Thus, bounds on the Lipschitz
constant can yield efficient robustness certificates [16]. A
number of works are devoted to computing Lipschitz bounds,
but it has proven difficult to obtain tight enough bounds to
grant meaningful certificates [16], [17], [18], [19].

Mixed-integer programming and branch-and-bound have
also been applied to robustness certification for ReLU neural
networks [20], [21], [22]. In contrast to convex relaxations
and Lipschitz bounding, these methods are capable of ob-
taining tight certificates if they are run to convergence, but
this incurs exponential computational complexity, preventing
them from scaling to practically-sized models [22]. Some
methods allow for early termination of their optimizations to
yield more efficient, yet loose certificates [22].

2) Representations of ReLU Neural Networks: ReLU
neural networks are defined by compositions g = AL ◦
σ ◦ · · · ◦ σ ◦ A1 with affine functions Al and elementwise
activation functions σ = ReLU: x 7→ max{0, x}. The most
prevalent alternative representation of such a model is as a
piecewise linear function, i.e., a finite polyhedral partition of
Rd with associated affine functions that agree with g on each
polyhedron [23], [24]. Another representation is as a rational
function when working with tropical algebra, where addition
⊕ and multiplication ⊗ are defined by x ⊕ y = max{x, y}
and x⊕ y = x+ y [25]. Finally, min-max representations—
discussed in Section II—have recently been introduced,
where g is expressed as the pointwise minimum of pointwise
maxima of affine functions. These works restrict their focus
to showcasing the impressive approximation capabilities of
ReLU models and their alternative representations.
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B. Contributions

1) We show that ReLU neural networks admit min-max
representations and hence such representations are
universal function approximators.

2) By lifting the certification to an infinite-dimensional
problem over probability measures, we prove that,
under mild boundedness, nonredundancy, and Slater
conditions, exact solutions to the original nonconvex
problem are efficiently obtained for min-max represen-
tations via reduction to a tractable finite-dimensional
convex optimization problem.

3) Experiments on robust control and MNIST image
classification examples demonstrate the effectiveness
of our approach.

To the best of our knowledge, our work is the first to
grant tight robustness certificates in polynomial time amongst
those considering general ReLU neural networks and their
alternative representations.1

C. Organization

In Section II, we introduce and analyze the min-max rep-
resentation of ReLU neural networks. We develop our tight
robustness certificates in Section III. Experiments illustrating
the effectiveness of our approach are given in Section IV, and
concluding remarks are made in Section V.

D. Notations

The sets of natural, real, nonnegative real, and extended
real numbers are denoted by N, R, R+, and R = R ∪
{−∞,∞} respectively. Throughout, we let I,J ,K ⊆ N
denote index sets {1, . . . ,m}, {1, . . . , n}, and {1, . . . , p},
respectively. The cardinality, convex hull, conic hull, and
relative interior of a subset X of Rd are denoted by |X|,
conv(X), cone(X), and ri(X), respectively. Furthermore,
we define B(X) to be the Borel σ-algebra on X . We denote
the set of probability measures on the measurable space
(X,B(X)) by P(X). For x ∈ Rd, the Dirac measure
centered at x is denoted by δx, which we recall is the
probability measure defined by δx(A) = 0 if x /∈ A
and δx(A) = 1 if x ∈ A for all A ∈ B(X). The set
of all Dirac measures with center in X is defined to be
D(X) = {µ ∈ P(X) : µ = δx for some x ∈ X}. The
set of continuous functions from Rd into R is denoted by
C(Rd,R). The effective domain of a function f : Rd → R
is defined to be the set dom(f) = {x ∈ Rd : f(x) < ∞}.
If f is Borel measurable and µ is a probability measure
on (X,B(X)), then we denote the expected value of f
with respect to µ by Ex∼µf(x) =

∫
X
f(x)dµ(x). If f is

convex, the subdifferential of f at x is denoted by ∂f(x).
Throughout, we let ∥·∥ denote an arbitrary norm on Rd, and
we denote its dual norm by ∥ · ∥∗.

1See [26] for a polynomial time solution to the special case of 2-layer
ReLU models.

II. MIN-MAX AFFINE FUNCTIONS

In this section, we formally define min-max affine func-
tions, discuss works related to these functions, and show that
every ReLU neural network admits such a representation.

Definition 1. A function g : Rd → R is a min-max affine
function if there exist I,J1, . . . ,J|I| ⊆ N and associated
aij ∈ Rd, bij ∈ R such that g(x) = mini∈I maxj∈Ji(a

⊤
ijx+

bij) for all x ∈ Rd. In this case, the function x 7→
mini∈I maxj∈Ji

(a⊤ijx + bij) is called the min-max repre-
sentation of g.

The class of all min-max affine functions on Rd is denoted
by G. Notice that g ∈ G is the pointwise minimum of m =
|I| convex functions gi : x 7→ maxj∈Ji

(a⊤ijx + bij), and is
therefore nonconvex in general. Without loss of generality,
we henceforth assume that, for every g ∈ G, there exists some
J ⊆ N with n = |J | such that the min-max representation
of g satisfies Ji = J for all i ∈ I.2

Related Works on Min-Max Affine Functions. In the
mathematics literature, min-max affine functions are also
termed lattice polynomials [28]. The work [29] shows that
piecewise linear activation functions can be written in min-
max affine form, and that neural networks learned with such
representations perform highly in image classification tasks.
The works [30], [31] study the theoretical and algorithmic
aspects of training min-max affine functions to separate
data, and show that separating {x1, . . . , xp} ⊆ Rd from
{y1, . . . , yq} ⊆ Rd requires no more that pq affine com-
ponents. The authors of [32] use min-max representations
of neural networks to characterize the training optimization
landscape. The conversion of ReLU neural networks into
min-max affine form is characterized in [33, Theorem 4.15].
An algorithm for nonlinear system identification using min-
max affine functions is developed in [34]. Finally, min-
max affine functions have been used as consistent statistical
estimators, termed “Riesz estimators,” in the mathematical
economics literature [35]. To the best of our knowledge,
our work is the first to exploit min-max representations for
purposes of robustness certification.

We now proceed with analyzing the representation power
min-max affine functions. Let F be the class of all ReLU
neural networks on Rd. The following theorem shows that
every ReLU neural network can be represented as a min-max
affine function, and therefore min-max affine functions are
universal function approximators.

Theorem 1. For every f ∈ F , there exist I,J ⊆ N and
(aij , bij) ∈ Rd × R for i ∈ I, j ∈ J such that

f(x) = min
i∈I

max
j∈J

(a⊤ijx+ bij) for all x ∈ Rd. (1)

2This is without loss of generality, since the value g(x) does not
change upon appending affine global underestimators of the convex function
gi : x 7→ maxj∈Ji

(a⊤ijx + bij) to the set of affine components x 7→
a⊤ijx + bij of g. In other words, mini∈I maxj∈Ji

(a⊤ijx + bij) =

mini∈I maxj∈J (a⊤ijx + bij) if one defines J = {1, . . . , n} with
n = maxi∈I |Ji| and aij = vi, bij = gi(0) for j ∈ J \ Ji, for
all i ∈ I, where vi ∈ Rd is a subgradient of gi at 0 (which exists by [27,
Theorem 23.4]).



Hence, the class G of min-max affine functions is dense in
C(Rd,R) with respect to the topology of uniform conver-
gence on compact sets.

Proof. Every f ∈ F is piecewise affine, i.e., there is a
finite collection Q of closed subsets of Rd such that Rd =⋃

Q∈QQ and f is affine on every Q ∈ Q. Hence, by [36,
Theorem 4.1], there exist I,J ⊆ N and (aij , bij) ∈ Rd ×R
for i ∈ I, j ∈ J such that (1) holds. Thus, since F ⊆ G
and F is dense in C(Rd,R) with respect to the topology of
uniform convergence on compact sets [37, Theorem 3.1], it
holds that G is dense in C(Rd,R) in the same sense.

III. THEORETICAL ROBUSTNESS CERTIFICATES

In this section, we develop our theoretical robustness
certificates. Consider a model g : Rd → R, which may, for
example, represent the output of a scalar-valued controller
or the confidence of a binary classifier f : Rd → {1, 2}
defined by f(x) = 1 if g(x) ≥ 0 and f(x) = 2 if
g(x) < 0. We consider the asymmetric robustness setting
introduced in [38], where nonnegative outputs g(x) ≥ 0
are “sensitive” and we seek to certify that no input within
some convex uncertainty set X ⊆ Rd causes the output
to leave the sensitive operating regime. This asymmetric
setting accurately models realistic adversarial situations. For
example, an adversary may seek some imperceptible attack
x ∈ X = {x′ ∈ Rd : ∥x′ − x∥ ≤ ϵ} to cause a vehicle’s
image classifier to predict “no pedestrian” (g(x) < 0) when
the nominal image x has a pedestrian in view (the sensitive
regime; g(x) ≥ 0), but not the other way around. We leave
as future work the extension to vector-valued models.

Formally, the certification problem we seek to solve in this
work is written

p⋆ := inf
x∈X

g(x).

The model g is robust if and only if p⋆ ≥ 0. On the other
hand, if x⋆ solves p⋆, then x⋆ is an optimal (worst-case)
attack in X , and it is successful if p⋆ < 0.

The problem p⋆ is nonconvex due to the nonconvexity of g.
When g is a min-max affine function, a naive reformulation
of p⋆ yields that

p⋆ = inf
(x,i,t)∈X×I×R

{t : a⊤ijx+ bij ≤ t for all j ∈ J },

which removes the nonconvexity in x but is inefficient to
solve in general due to the integer variable i. Alternatively,
one may attempt to directly reformulate the problem into
a convex one by minimizing the convex envelope of g.
Although the resulting problem coincides with our convex
reformulation c (introduced in Section III-A) on the relative
interior of the direct reformulation’s feasible set, it is diffi-
cult to obtain regularity conditions under which the direct
reformulation holds with respect to its entire feasible set.

We propose an alternative approach to solving p⋆ that
consists of three steps: 1) lift the problem to an optimization
over probability measures, 2) leverage results and regularity
conditions in distributionally robust optimization to make a
finite-dimensional reduction of the problem, and 3) reformu-
late and solve the finite-dimensional reduction.

A. Lifting the Problem

We lift the problem to an optimization over probabil-
ity measures by noting that g(x) =

∫
X
g(x′)dδx(x

′) =
Ex′∼δxg(x

′) whenever x ∈ X:

p⋆ = inf
δx∈D(X)

Ex′∼δxg(x
′).

With this reformulation, the optimization objective is linear
in the variable δx, but the feasible set D(X) is nonconvex,
making the problem intractable as written. Therefore, we
consider relaxing the problem to an optimization over all
probability measures:

p′ := inf
µ∈P(X)

Ex′∼µg(x
′).

The problem p′ is convex, but infinite-dimensional. We start
by showing that the relaxation is exact:

Proposition 1. It holds that p′ = p⋆.

Proof. Since D(X) ⊆ P(X), it holds that p′ ≤ p⋆. Now, let
µ ∈ P(X). Then, since p⋆ ≤ g(x′) for all x′ ∈ X , it holds
that

p⋆ =

∫
X

p⋆dµ(x′) ≤
∫
X

g(x′)dµ(x′) = Ex′∼µg(x
′).

Since µ ∈ P(X) is arbitrary, we conclude that p⋆ ≤
infµ∈P(X) Ex′∼µg(x

′) = p′. Hence, p′ = p⋆.

Next, we show that solutions of the nonconvex problem
p⋆ are generated by discrete solutions of the relaxation p′.

Proposition 2. If µ⋆ =
∑

i∈I λiδxi is a discrete probability
measure that solves p′, then x⋆ := xi solves p⋆ for all i ∈ I
such that λi > 0.

Proof. Let i⋆ ∈ argmini∈I g(xi). Since λi ≥ 0 for all i,∑
i∈I λi = 1, and g(xi⋆) ≤ g(xi) for all i, it holds that

p⋆ ≤ g(xi⋆) =
∑
i∈I

λig(xi⋆)

≤
∑
i∈I

λig(xi) = Ex′∼µ⋆g(x′) = p′,

so xi⋆ solves p⋆ by Proposition 1. If xi′ does not solve p⋆ for
some i′ ∈ I such that λi′ > 0, then p⋆ = g(xi⋆) < g(xi′),
implying that

∑
i∈I λig(xi⋆) <

∑
i∈I λig(xi) and hence

that p⋆ < p′, which contradicts Proposition 1.

The above results show that we may solve the problem p⋆

of interest by solving p′ for a discrete optimal distribution.
The remainder of this section is dedicated to this approach.

B. Finite-Dimensional Reduction

To make our finite-dimensional reduction, we recall the
definitions of conjugate and perspective functions.

Definition 2. The conjugate of a function f : Rd → R is the
function f∗ : Rd → R defined by

f∗(y) = sup
x∈dom(f)

(y⊤x− f(x)).

We write f∗∗ to denote the biconjugate (f∗)∗.



Definition 3. The perspective of a proper, closed, and convex
function f : Rd → R is the function Pf : Rd × R+ → R
defined by

Pf (x, t) =

{
tf(x/t) if t > 0,

supy∈dom(f∗) y
⊤x if t = 0.

Recall that the perspective Pf of a convex function f is
also convex, and that the conjugate f∗ is convex even when
f is nonconvex [39].

Throughout the remainder of the paper, we fix g and X to
be min-max affine and convex, respectively, via the following
structural assumptions:

Assumption 1. It holds that g ∈ G, taking the form g(x) =
mini∈I gi(x) with gi(x) = maxj∈J (a⊤ijx+ bij).

Assumption 2. The set X takes the form X = {x ∈ Rd :
ck(x) ≤ 0, k ∈ K} with ck : Rd → R a proper, closed, and
convex function for all k ∈ K.

We now make the reduction by introducing two finite-
dimensional convex optimization problems:

c := minimize
λi,ηi∈R
xi∈Rd

∑
i∈I

ηi

subject to Pck(xi, λi) ≤ 0, i ∈ I, k ∈ K,
Pgi(xi, λi) ≤ ηi, i ∈ I,∑
i∈I

λi = 1, λ ≥ 0.

c := maximize
α,βik∈R
yi,zik∈Rd

− α

subject to g∗i (yi) +
∑
k∈K

Pc∗k
(zik, βik) ≤ α, i ∈ I,

yi +
∑
k∈K

zik = 0, i ∈ I,

βik ≥ 0, i ∈ I, k ∈ K.

Intuitively, c is minimizing a sort of “average” of the
components gi at a finite number of points xi with weights
given by the probability vector λ, and c is its dual. We now
leverage recent results in distributionally robust optimization
to show that the finite reductions c, c allow us to solve the
infinite-dimensional problem p′ under mild assumptions.

Definition 4. Let f0, f1, . . . , fm and h1, . . . , hn be extended
real-valued functions defined on Rd. The optimization prob-
lem p = inf{f0(x) : f1(x) ≤ 0, . . . , fm(x) ≤ 0, h1(x) =
0, . . . , hn(x) = 0, x ∈ Rd} admits a Slater point if there
exists x ∈

⋂m
i=0 ri(dom(fi)) ∩

⋂n
j=1 ri(dom(hj)) such that

fi(x) ≤ 0 and hj(x) = 0 for all i and all j, and such that
fi(x) < 0 for all i ̸= 0 such that fi is nonlinear.

Assumption 3. The set X is bounded and the optimization
problem c admits a Slater point.

The above boundedness assumption on X is standard in
the adversarial robustness literature. The Slater condition

may be verified by simply solving c with a small number
ϵ > 0 added to all of the nonlinear inequality constraints;
replace fi(x) ≤ 0 with fi(x) + ϵ ≤ 0 for all nonlinear
constraint functions fi.

Theorem 2. If Assumption 3 holds, then c = p′ = c, and the
discrete probability distribution

∑
i∈I:λ⋆

i ̸=0 λ
⋆
i δx⋆

i /λ
⋆
i

solves
p′ for all solutions (η⋆, λ⋆, x⋆) to c.

Proof. Since X is defined by a finite intersection of 0-
sublevel sets of proper, closed, and convex functions (As-
sumption 2), and since every gi : x 7→ maxj∈J (a⊤ijx + bij)
is a proper, closed, and convex function, the result follows
from [40, Theorem 12(ii)].

Theorem 2 together with our Propositions 1 and 2 show
that we are able to exactly compute an optimal attack
solving the nonconvex problem p⋆ by solving the convex
optimizations c, c.

C. Reformulating and Solving the Finite Reduction

In order to solve c, c, we must derive the appropriate
conjugates and perspectives. In this subsection, we do so for
the common cases where X is defined in terms of norm
balls or polyhedra. We will also see that computing the
conjugate g∗i is highly nontrivial, and as a result we turn
to tractably reformulating the constraint involving g∗i using
duality theory.

Proposition 3. The perspective of gi : x 7→ maxj∈J (a⊤ijx+
bij) is given by Pgi(x, t) = maxj∈J (a⊤ijx + bijt) for all
(x, t) ∈ Rd × R+.

Proof. Let x ∈ Rd. If t > 0, then

Pgi(x, t) = tgi(x/t)

= tmax
j∈J

(a⊤ijx/t+ bij) = max
j∈J

(a⊤ijx+ bijt).

If t = 0, then

Pgi(x, t) = lim inf
(x′,t′)→(x,0)

Pgi(x
′, t′)

= lim inf
(x′,t′)→(x,0)

max
j∈J

(a⊤ijx
′ + bijt

′)

= max
j∈J

a⊤ijx = max
j∈J

(a⊤ijx+ bijt),

where the first equality comes from Theorem 13.3 and
Corollary 8.5.2 in [27] and the third equality comes from
the continuity of (x, t) 7→ maxj∈J (a⊤ijx+ bijt).

Proposition 4. The perspective of ck : x 7→ ∥x − x∥ − ϵ is
given by Pck(x, t) = ∥x−tx∥−ϵt for all (x, t) ∈ Rd×R+.

Proof. Following the same reasoning as in the proof of
Proposition 3, we find that Pck(x, t) = t(∥x/t − x∥ −
ϵ) = ∥x − tx∥ − ϵt for t > 0 and Pck(x, t) =
lim inf(x′,t′)→(x,0)(∥x′ − t′x∥ − ϵt′) = ∥x∥ = ∥x− tx∥ − ϵt
for t = 0.



Proposition 5. The conjugate of ck : x 7→ ∥x − x∥ − ϵ is
given for all z ∈ Rd by

c∗k(z) =

{
z⊤x+ ϵ if ∥z∥∗ ≤ 1,

∞ if ∥z∥∗ > 1.

Proof. Let z ∈ Rd be such that ∥z∥∗ ≤ 1. Then

sup
x∈Rd:x ̸=x

z⊤(x− x)

∥x− x∥
= sup

x′∈Rd:∥x′∥≤1

z⊤x′ = ∥z∥∗ ≤ 1,

so z⊤(x − x) − ∥x − x∥ ≤ 0 for all x ̸= x. Also, z⊤(x −
x)−∥x−x∥ = 0 for x = x, and therefore supx∈Rd(z⊤(x−
x)− ∥x− x∥) = 0, indicating that

c∗k(z) = sup
x∈Rd

(z⊤(x− x)− ∥x− x∥) + z⊤x+ ϵ = z⊤x+ ϵ.

On the other hand, let z ∈ Rd be such that ∥z∥∗ > 1. Then
there exists x′ ∈ Rd \ {0} such that z⊤x′

∥x′∥ > 1, implying that
z⊤x′ − ∥x′∥ > 0, and hence

c∗k(z) ≥ z⊤(x+ αx′)− ∥αx′∥+ ϵ

= α(z⊤x′ − ∥x′∥) + z⊤x+ ϵ→ ∞

as α→ ∞. Thus, c∗k(z) = ∞.

Proposition 6. The perspective of the conjugate of ck : x 7→
∥x− x∥ − ϵ is given for all (z, t) ∈ Rd × R+ by

Pc∗k
(z, t) =

{
z⊤x+ ϵt if ∥z∥∗ ≤ t,

∞ if ∥z∥∗ > t.

Proof. Let t > 0. If z ∈ Rd is such that ∥z∥∗ ≤ t, then
∥z/t∥∗ ≤ 1, so Pc∗k

(z, t) = tc∗k(z/t) = t((z/t)⊤x + ϵ) =
z⊤x + ϵt. If ∥z∥∗ > t, then ∥z/t∥∗ > 1, so Pc∗k

(z, t) =
tc∗k(z/t) = ∞.

On the other hand, let t = 0. Then

Pc∗k
(z, t) = sup

x∈dom(c∗∗k )

z⊤x = sup
x∈Rd

z⊤x =

{
0 if z = 0,

∞ if z ̸= 0,

since c∗∗k = ck which has domain Rd, as ck is proper, closed,
and convex [27, Theorem 12.2]. Since, when t = 0, the
condition z = 0 is equivalent to ∥z∥∗ ≤ t and the condition
z ̸= 0 is equivalent to ∥z∥∗ > t, the proof is complete.

We also provide the conjugates and perspectives for poly-
hedral X:

Proposition 7. Let ck : x 7→ ψ⊤
k x + ωk for some ψk ∈ Rd

and some ωk ∈ R. Then the following all hold:
1) Pck(x, t) = ψ⊤

k x+ ωkt,

2) c∗k(z) =

{
−ωk if z = ψk,

∞ if z ̸= ψk,

3) and Pc∗k
(z, t) =

{
−ωkt if z = tψk,

∞ if z ̸= tψk.

The proof of Proposition 7 follows from a straightforward
application of the definitions of conjugate and perspective,
and is hence omitted for brevity.

The conjugate g∗i is all that remains to compute. However,
although computing g∗i in closed form for the univariate (d =
1) function gi : x 7→ maxj∈J (aijx+ bij) can be straightfor-
ward, generalizing the formula to higher-dimensional settings
is nontrivial. In theory, it is possible to express g∗i for d > 1
in closed form via [27, Theorem 19.2]. However, this requires
solving a vertex enumeration problem, i.e., determining finite
sets V,R ⊆ Rd × R such that the polyhedron epi(g∗i ) :=
{(x, t) ∈ Rd × R : a⊤ijx+ bij ≤ t for all j ∈ J } equals
conv(P ) + cone(R). The vertex enumeration problem is
NP-hard in general [41]. See the Minkowski-Weyl theorem
[27, Theorem 19.1] for the theory on such representations
of polyhedra. In Theorem 3 that follows, we instead take a
duality-based robust optimization approach to tractably deal
with the conjugate g∗i in a direct manner.

Lemma 1. It holds that dom(g∗i ) = conv{aij : j ∈ J }.

Proof. Let y ∈ conv{aij : j ∈ J }. Then y =
∑

j∈J θjaij
for some θ ∈ Rn such that θ ≥ 0 and

∑
j∈J θj = 1. Hence,

for all x ∈ Rd, we find that

y⊤x−max
j∈J

(a⊤ijx+ bij) =
∑
j∈J

θja
⊤
ijx−max

j∈J
(a⊤ijx+ bij)

=
∑
j∈J

θj(a
⊤
ijx+ bij)

−max
j∈J

(a⊤ijx+ bij)−
∑
j∈J

θjbij

≤
∑
j∈J

θj max
l∈J

(a⊤ilx+ bil)

−max
j∈J

(a⊤ijx+ bij)−
∑
j∈J

θjbij

= −
∑
j∈J

θjbij ,

and thus g∗i (y) ≤ −
∑

j∈J θjbij <∞, so y ∈ dom(g∗i ).
On the other hand, let y ∈ dom(g∗i ), so that g∗i (y) <

∞. An epigraphic reformulation of g∗i (y) yields that
∞ > g∗i (y) = supx∈Rd(y⊤x − maxj∈J (a⊤ijx + bij)) =
sup(x,t)∈Rd×R{y⊤x−t : a⊤ijx+ bij ≤ t for all j ∈ J }. This
reformulation is a linear program with a finite optimal value,
and hence by [42, Proposition 3.1.3], the reformulation is
attained by some (x, t) ∈ Rd × R, and since it must be the
case that t = a⊤ijx+bij for some j ∈ J at this point (x, t), we
conclude that this x solves the supremum defining g∗i (y) in
its original form (i.e., pre-epigraphic reformulation). There-
fore, by the first-order optimality condition for unconstrained
convex optimization [27, Theorem 23.2], it holds that 0 ∈
∂hi(x), where hi : Rd → R is the convex function defined
by hi(x) = maxj∈J (a⊤ijx + bij) − y⊤x. Using the rules
for subdifferentials of pointwise maxima and sums of proper
convex functions [42, Proposition B.22],[27, Theorem 23.8],
we have that ∂hi(x) = conv

(⋃
j∈A(x){aij}

)
+{−y}, where

A(x) denotes the set of active indices at x: A(x) = {j ∈ J :
a⊤ijx + bij = maxl∈J (a⊤ilx + bil)}. Since 0 ∈ ∂hi(x), this

yields that y ∈ conv
(⋃

j∈A(x){aij}
)
⊆ conv{aij : j ∈ J }.

This completes the proof.



Assumption 4. The functions gi are nonredundant in the
sense that for all j ∈ J there exists x ∈ Rd such that
gi(x) = a⊤ijx+ bij .

It is easy to see that nonredundancy of gi is efficiently
verified by solving the linear (feasibility) programs inf{0 :
(ail − aij)

⊤x + (bil − bij) ≤ 0 for all l ∈ J , x ∈ Rd}
for all j ∈ J . Removing the affine components of gi with
infeasible programs ensures that Assumption 4 holds and
does not change the model’s predictions.

Theorem 3. Suppose that Assumption 4 holds, and let
h : Γ → R be an arbitrary real-valued function defined on
some nonempty set Γ. Then, for all y ∈ Rd and all γ ∈ Γ, it
holds that g∗i (y) ≤ h(γ) if and only if, for all j ∈ J , there
exists νij ∈ Rn such that the following all hold:

1) y =
∑

j∈J θjaij for some θ ∈ Rn such that θ ≥ 0
and

∑
j∈J θj = 1,

2) νij ≥ 0,
3) y − aij +

∑
l∈J (νij)l(aij − ail) = 0,

4) and −bij +
∑

l∈J (νij)l(bij − bil) ≤ h(γ).

Proof. Let y ∈ Rd and γ ∈ Γ. If y ̸=
∑

j∈J θjaij for
all θ ∈ Rn such that θ ≥ 0 and

∑
j∈J θj = 1, then y /∈

conv{aij : j ∈ J } and hence y /∈ dom(g∗i ) by Lemma 1.
In this case, g∗i (y) = ∞ > h(γ) since h is real-valued.
Therefore, the first condition enumerated in the theorem is
necessary for g∗i (y) ≤ h(γ).

Going forward, assume that y =
∑

j∈J θjaij for some
θ ∈ Rn such that θ ≥ 0 and

∑
j∈J θj = 1. Hence, g∗i (y) <

∞. Breaking up the conjugate’s supremum into n suprema
over the affine components of gi yields

g∗i (y) = sup
x∈Rd

(y⊤x−max
j∈J

(a⊤ijx+ bij))

= max
j∈J

sup
x∈Rd

{(y − aij)
⊤x− bij :

(ail − aij)
⊤x+ (bil − bij) ≤ 0 for all l ∈ J }.

Denote the inner suprema by pij := supx∈Rd{(y−aij)⊤x−
bij : (ail − aij)

⊤x+ (bil − bij) ≤ 0 for all l ∈ J }. Since,
by Assumption 4, for all j ∈ J there exists x ∈ Rd such
that maxl∈J (a⊤ilx+ bil) = gi(x) = a⊤ijx+ bij , it holds that
{x ∈ Rd : a⊤ijx+ bij ≥ a⊤ilx+ bil for all l ∈ J } ≠ ∅ for
all j ∈ J , implying that every pij is feasible, i.e., pij >
−∞. Furthermore, since g∗i (y) < ∞, it must be the case
that pij < ∞ for all j ∈ J . Thus, every optimal value
pij is finite. Therefore, by [42, Proposition 3.1.3], every pij
is attained, and therefore by [42, Proposition 4.4.2] strong
duality holds between pij and its dual problem, which we
denote by dij , and it also holds that dij is attained. A routine
derivation via Lagrangian duality therefore yields that

pij = dij

= inf
νij∈Rn

{∑
l∈J

(νij)l(bij − bil)− bij :

y − aij +
∑
l∈J

(νij)l(aij − ail) = 0, νij ≥ 0

}
.

Hence, g∗i (y) ≤ h(γ) if and only if maxj∈J pij ≤ h(γ) if
and only if pij ≤ h(γ) for all j ∈ J . Thus, since dij is
attained, it holds that g∗i (y) ≤ h(γ) if and only if, for all
j ∈ J , there exists νij ∈ Rn such that νij ≥ 0, y − aij +∑

l∈J (νij)l(aij − ail) = 0, and −bij +
∑

l∈J (νij)l(bij −
bil) ≤ h(γ). This completes the proof.

With the above conjugate and perspective derivations, our
reformulations of c, c are complete; they may now be directly
solved using off-the-shelf convex optimization solvers.
Remark 1. Our developments can be generalized, so long
as one can compute the appropriate conjugates and perspec-
tives. In particular, the mathematical machinery yielding a
discrete distribution solution to p′ from a solution to an
associated finite-dimensional convex optimization problem
may be applied to general convex functions gi and other
(non-norm-based and non-polyhedral) convex attack sets X
[40]. In fact, moment constraints on µ ∈ P(X) may even
be added to the semi-infinite program p′, which may allow
for modeling alternative “distributional attacks” beyond the
standard “Dirac attack” at a single point considered here.

IV. EXPERIMENTS

In this section, we illustrate the utility of our method in
both robust control and image classification settings.3

A. Robust Control Certification

We take an illustrative robust control example adapted
from the well-known autonomous vehicle collision avoidance
problem [43], [44]. Consider two planar vehicles approach-
ing an intersection located at the origin (0, 0) ∈ R2. One
vehicle travels east with state x(t) = (x(t), ẋ(t)) ∈ R2 at
time t. The other vehicle, which we control and hence term
the “ego vehicle,” travels north with state y(t) = (y(t), ẏ(t)).
The eastbound uncontrolled vehicle has a fixed velocity
(ẍ(t) = 0 for all t). The full state (x(t), ẋ(t), y(t), ẏ(t)) is
randomly initialized at t = 0 within [−3,−2]× [1/2, 5/2]×
[−3,−2]× [0, 2]. The vehicles are each 1 unit long and 1/2
unit wide, matching the width of the road. Thus, a vehicle
is considered to be in the intersection if the absolute value
of its position is less than 3/4. If the vehicles collide, the
simulation is stopped. We simulate standard double integrator
dynamics with a time step ∆t = 0.05 for 100 steps.

We control the northbound vehicle using a learned pol-
icy u(t) = −πθ (x(t),y(t)) that enters the dynamics as
ÿ(t) = Π[−1,1] (u(t)), where πθ : R4 → R is a min-max
affine function with m = n = 10 and Π[−1,1] is the
natural projection mapping of R onto [−1, 1]. Our robustness
certificates apply for all training schemes, e.g., reinforcement
learning and imitation learning. We train πθ using imitation
learning on 500 trajectories generated by a hand-programmed
expert policy π⋆. We use the mean squared error loss function
and train for 20 epochs using the Adam optimizer at a
learning rate of 0.01. The expert policy π⋆ is designed to stop
the ego vehicle δ = 0.1 units before the intersection with a

3All experiments are conducted on a Ubuntu 22.04 instance with an Intel
i7-9700K CPU and NVIDIA RTX A6000 GPU.
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Fig. 1. Largest possible acceleration over all uncontrolled vehicle states
for particular values of the ego vehicle state. The output is always negative,
ensuring some level of braking.

constant acceleration, then apply no acceleration until the tail
of the uncontrolled vehicle is δ units past the intersection,
and then accelerate with the maximum input of 1.

We now consider certifying the safety of our control
system. Our goal is to guarantee that the ego vehicle always
brakes when the uncontrolled vehicle is approaching or
inside the intersection. This enforcement of braking corre-
sponds to ensuring that the largest acceleration signal u(t)
is less than zero, which amounts to minimizing the output of
πθ over the set of states for which we desire braking. This
is formalized by requiring braking for all states in the set

X = [−3+ δ, 34 ]× [ 12 + δ, 52 − δ]× [−3+ δ,− 3
4 ]× [δ, 2− δ],

which consists of states where the uncontrolled vehicle is
approaching or in the intersection and the ego vehicle is
approaching the intersection. The small positive constant δ =
0.1 accounts for boundary states where expert trajectories
may not have been sampled.

Utilizing our robustness certificates from Section III, we
verify that indeed u(t) = −πθ (x(t),y(t)) < 0 for all states
(x(t),y(t)) ∈ X . For visual purposes, we also consider
fixing a particular y(t) and computing the largest possible
acceleration u(t) amongst all uncontrolled vehicle states x(t)
captured by X . The solutions to this problem over a range
of y(t) are plotted in Figure 1. As expected, for all y(t), the
ego vehicle is braking. As the ego vehicle approaches the
intersection (large y(t)) or becomes faster (large ẏ(t)), we
certify that the controller brakes more heavily.

B. Image Classification

We demonstrate the tightness and efficiency of our method
on an image classification example adapted from [38]. The
task is to distinguish between two visually similar MNIST
classes: the digits 3 and 8 [45]. As we consider the asymmet-
ric setting, we aim to certify predictions for one particular
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Fig. 2. Certified accuracies of our min-max representation and of α, β-
CROWN on the MNIST 3-versus-8 dataset.

class, which we take to be the class of 3’s, while maintaining
high clean accuracy for both classes. We consider the attack
set X = {x ∈ Rd : ∥x − x∥∞ ≤ ϵ} over a range of radii
ϵ > 0 around test images x. In this setting, certificates ensure
that pixelwise adversarial alterations of an image x of a 3
cannot fool the classifier into predicting an 8.

We compare two approaches: 1) directly learning our min-
max representation with n = m = 15 and certifying via
our convex optimization-based certificates, and 2) learning
a standard composition-based ReLU model and certifying
via the state-of-the-art verifier α, β-CROWN [22]. Since
α, β-CROWN’s worst-case runtime scales exponentially with
model size, we instantiate the standard ReLU model with
one hidden layer and 100 hidden units, which is the smallest
hidden layer size that yields comparable clean accuracy to
our min-max representation. We use adversarial training (see
[9]) with ℓ∞-attacks starting at a radius of 0.001 and linearly
interpolate to a radius of ϵtrain over the first 20 epochs,
where ϵtrain = 0.05 for our model and ϵtrain = 0.3 for the
standard ReLU model. Both models are trained using the
Adam optimizer with a learning rate of 0.001 for 60 epochs.

Figure 2 compares the certified accuracy (averaged over
the test inputs) of our method against that of α, β-CROWN.
As certifying at a particular ϵ using our method is fast, for
each test input, the largest certifiable ℓ∞-radius is found us-
ing binary search in order to yield a smooth certified accuracy
curve. On the other hand, due to the expensive runtime of
α, β-CROWN, we only certify at the select radii shown. Our
min-max representation exceeds the state-of-the-art baseline
certified radii at far faster runtimes: certifying a single input-
radius pair (x, ϵ) takes on average 3.67 seconds with α, β-
CROWN versus only 0.48 seconds with our method. We note
that our runtime comparisons are solely based off of models
with equivalent clean accuracy. Due to space constraints, we
leave more thorough analyses of relative expressivity and
computational complexity for future work.



V. CONCLUSIONS

In this work, we exactly solve the nonconvex robustness
certification problem over convex attack sets for min-max
representations of ReLU neural networks by developing
a tractable convex reformulation. An interesting line of
future work may include developing more efficient min-
max representations or estimations for arbitrary ReLU neural
networks, so that the advantageous optimization properties
derived in this paper may be easily applied. Other interest
lies in comparing the number of affine regions of a general
min-max affine function versus that of a general ReLU neural
network.
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