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Abstract— We investigate methods to provide safety as-
surances for autonomous agents that incorporate learning-
based predictions of other, uncontrolled agents’ behavior
into their own trajectory planning. Given a learning-based
forecasting model that predicts agents’ trajectories, we
introduce a method for providing probabilistic assurances
on the model’s prediction error with calibrated confi-
dence intervals. Through quantile regression, conformal
prediction, and reachability analysis, our method generates
probabilistically safe and dynamically feasible prediction
sets. We showcase their utility in certifying the safety
of planning algorithms, both in simulations using actual
autonomous driving data and in an experiment with Boeing
vehicles.

I. INTRODUCTION

In safety-critical situations in which an autonomous
agent interacts with humans, it is often necessary to
predict human behavior in order for the agent to ap-
propriately react. For example, in self-driving tasks, the
autonomous car is responsible for assuring the safety of
itself and the other vehicles it encounters. State-of-the-
art systems try to achieve this through behavior predic-
tion and motion forecasting models, oftentimes black-
box neural networks that do not provide interpretation of
their inner workings [2]–[4]. However, these models lack
rigorous safety assurances, especially in the presence of
data distribution shifts. While lower dimensional models
can provide safety assurances, these methods rely on
parametric assumptions on, for example, a human’s
rationality [5]. These assumptions can be inadequate
for complex, multi-modal, and noisy decision-making
scenarios. In this work, we provide safety assurances for
state-of-the-art black-box trajectory forecasting methods
by quantifying these models’ uncertainty.

However, uncertainty quantification methods alone
are insufficient for providing safety assurances. This
is because they do not provide guarantees on model
behavior and may be unreliable or uninterpretable [6]–
[8]. Additionally, using prediction model uncertainty for
assuredly safe decision-making in downstream planning
and control is a challenging problem.
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Fig. 1. Our method generates dynamically-feasible, probabilistic
confidence sets that are derived from a conformal-calibrated quantile
regression model.

In our work, we first utilize conformal prediction to
calibrate measures of uncertainty [9]. Conformal predic-
tion is a statistical tool that uses a heuristic notion of risk
to non-parametrically estimate quantiles of risk given a
sequence of past observations [10]. Existing methods
that leverage conformal prediction in the context of
trajectory forecasting do not explicitly use interpretable
metrics of prediction uncertainty [11]–[15]. We propose
a method that provides rigorous confidence intervals on
model error, a form of probabilistic assurance, given
any interpretable heuristics on a trajectory forecasting
model’s prediction uncertainty. Our approach also allows
us to examine the efficacy of various uncertainty quan-
tification heuristics when attempting to predict model
error. In addition, we extend our analysis to multi-agent
environments to closely reflect real-world assurance
cases. We analyze the problem of a single autonomous
agent, commonly described as an “ego agent”, interact-
ing with other, uncontrolled agents.

By producing estimates of model error, we are able to
couple statistical assurances with dynamical assurances
to allow for safe downstream navigation. In particular,
we turn to Hamilton-Jacobi (HJ) reachability analysis
[16], which provides guarantees on dynamical systems
by means of reachable sets and associated controllers.
In HJ reachability, a Hamilton-Jacobi partial differential
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equation is solved to obtain an optimal value function
and controller. The sub-zero level sets of this value
function are the reachable sets (possible states of an
agent at a given time) and tubes (possible states of an
agent up to and including a given time).

Our method can be outlined as follows: given a tra-
jectory forecasting model with an associated uncertainty
heuristic, we design a quantile regression model that cor-
relates uncertainty with prediction error, creating an ap-
proximate confidence interval on the model’s prediction.
We then apply conformal prediction to calibrate the con-
fidence intervals and provide guarantees on miscoverage
rate. We map the calibrated intervals in control action
space to sets in state space through reachability analysis,
and we demonstrate the utility of these confidence sets in
planning tasks. The contributions of this paper include:

1) A novel way to interpret trajectory forecasting
models’ prediction uncertainty and obtain approx-
imate confidence intervals (Section III-B);

2) A technique to calibrate the aforementioned inter-
vals using conformal prediction (Section III-C);

3) Dynamically-feasible, probabilistic reachable sets
using calibrated intervals (Section IV-A);

4) A planning framework that leverages assurances
developed in the previous steps (Section IV-C).

This paper is organized as follows: Section II discusses
related works in conformal prediction and assurances in
trajectory forecasting models, Section III and Section IV
describe the contributions outlined above, and Section V
showcases the safety and performance of our methods
compared to baseline methods.

II. RELATED WORKS

A. Conformal Prediction

Conformal prediction [9], [10] is a class of uncertainty
quantification methods for constructing prediction sets
that satisfy a significance level (false negative rate)
requirement. Traditionally, conformal prediction creates
empirical histograms of measures of risk, called non-
conformity scores, and uses these to estimate prediction
intervals. Classical techniques include split conformal
prediction, which creates empirical histograms from
hold-out sets, and full conformal prediction, which
creates empirical histograms using all available data
[9]. Inductive conformal prediction, a variant of split
conformal prediction, uses a non-conformity score that
measures distance between train and test data [17].
These methods require that the data are identically
distributed and exchangeable (any permutation of data
points are identically distributed). Methods such as [18]
relax the requirement for identically distributed data,
and [19], [20] relax the exchangeability requirement.
Adaptive Conformal Inference [21] and Rolling Risk
Control (RollingRC) [22] have been proposed to relax

all assumptions by further calibrating the significance
level to match a desired error rate. We adapt RollingRC
to provide safety assurances in any multi-agent scenario.

B. Probabilistic Reachability Frameworks

In this work, we introduce a method to generate
probabilistic reachable sets to account for agents’ dy-
namics. Previous work in this space typically involves
randomly generating inputs and observing corresponding
outputs of a dynamics model, with some associated
guarantees in the sampling process [23]. Other methods,
much like ours, leverage neural network uncertainty
[24]. Specifically, the method of Nakamura and Bansal
[24] uses Gaussian mixture models (GMMs) output by
a trajectory forecasting model to generate parametric
confidence intervals on control actions, which are then
used as control bounds in reachability calculations. In
our work, we attempt to relax assumptions that the
control actions follow any parametric distribution by
applying non-parametric inference techniques.

C. Safety Assurances in Trajectory Prediction

Various methods for incorporating uncertainty quan-
tification have been examined for the purposes of provid-
ing safety assurances in trajectory prediction problems.
Some methods provide probabilistic assurances by infer-
ring parameters of a distribution on an agent’s control
actions [5], [25]. Methods such as [11] and [12] estimate
confidence intervals with conformal prediction, implic-
itly leveraging prediction uncertainty through the non-
conformity measure. Specifically, the method of Luo et
al. [11] uses split conformal prediction to create a warn-
ing system, alerting drivers of “dangerous” situations.
These warnings can be transformed into confidence
sets, as shown in [12], which additionally eliminates
exchangeability assumptions and incorporates trajectory
optimization, much like our approach. Other methods
emphasize the design process of the trajectory prediction
neural networks, for instance by opting to use ReLU
networks [14] or by opting to incorporate conformal
prediction in the neural network’s loss function [13]. In
contrast to our approach, none of these methods consider
the dynamic feasibility of confidence sets, and some
methods that investigate conformal prediction, such as
[14] and [11], assume exchangeability. Our method re-
laxes these assumptions while providing interpretability
in the uncertainty quantification process and dynamic
feasibility in confidence sets.

III. ASSURANCES FROM UNCERTAINTY

Our approach can be summarized in four primary
steps: trajectory forecasting with uncertainty quantifi-
cation (Section III-A), leveraging uncertainty to obtain
approximate prediction intervals (Section III-B), cali-
brating approximate prediction intervals (Section III-C),



and obtaining dynamically feasible prediction sets (Sec-
tion IV-A). We summarize our algorithm in Section IV-
B, and we apply our approach to ego agent planning
tasks in Section IV-C.

Running Example: To motivate and illustrate our
method, we introduce a simple running example with
two vehicles at an intersection, one of them designated
as the “ego” vehicle. In Figure 2, the autonomous ego
vehicle, shown in red, aims to safely navigate to the
pink-colored star while avoiding the blue vehicle.

A. Trajectory Forecasting Model

We start by assuming access to a known dynamics
model for each agent and a trajectory forecasting model
capable of predicting an agent’s control input. This tra-
jectory forecasting model may maintain the capability to
predict control actions for multiple agents at once, while
considering interactions between agents. We denote the
model as fT (·) : X → U , where X is some arbitrary
input space and U is a space over control actions. The
network predicts ut:t+h ∈ U , which is a collection of
control action vectors indexed by timesteps t through
t + h, for each of N total agents. Here, h is a fixed
prediction horizon. We also assume the existence of an
uncertainty measure on the network’s outputs, denoted
as σT (·) : X × U → Rd, with d as the dimension
of uncertainty representation. For example, a variance
prediction or a variance estimate from inference-time
dropout [6] is a valid uncertainty measure. Additionally,
some neural network architectures, such as Trajectron++
[2], provide alternative uncertainty measures. This net-
work architecture predicts a GMM over possible control
actions, leading to understandings of prediction uncer-
tainty such as the variance of the GMM’s modes.

Running Example: Given some sequence of the other
vehicle’s position history, Trajectron++, our trajectory
forecasting model of choice, predicts a GMM in ac-
tion space, and then integrates the actions to obtain
states. We assume that vehicles follow the extended
Dubins’ car dynamics model. The state of this system
is x =

[
x y v θ

]⊤
, and the dynamics are given

by ẋ =
[
v cos(θ) v sin(θ) u1 u2

]⊤
. The variance

of the highest-probability Gaussian component, among
other features of the GMM, are incorporated into the
design of the uncertainty measure.

B. Estimating Model Error from Uncertainty

To obtain confidence intervals on a black-box model’s
outputs, we estimate the neural network’s confidence
in an online manner, correlating its prediction uncer-
tainty with prediction error. Quantile regression models
enable us to map heuristic notions of uncertainty to
an approximate confidence interval [26] along each
action dimension. We choose a linear model since its

simple parametrization allows for fast online updates
and interpretability in how it perceives uncertainty. We
demonstrate an example of interpretability in Section V-
D.1. Intuitively, our quantile regression models are ap-
proximately “calibrating” the network’s uncertainty to
obtain an estimate of its error.

As we observe new datapoints online, we collect
ut−h:t, the last h ground truth control actions prior
to timestep t. In practice, we estimate control actions
by observing the state history of an agent, and then
numerically computing derivatives to estimate actions
from an assumed dynamics model. We contrast ut−h:t

with the network’s previous prediction h timesteps ago,
i.e., ût−h:t, and define et−h:t := ut−h:t − ût−h:t as the
prediction error.

Now, suppose we require a 1 − α approximate con-
fidence interval on the ground truth control action. We
can construct two quantile regression models q̂α

2
: Rd →

U and q̂1−α
2

: Rd → U where q̂ε estimates the ε-
quantile on the network’s prediction error from timesteps
t to t + h for each agent, denoted êε. For notational
convenience, let us denote Pt(A) as the probability of
event A conditioned on information until time t. We
obtain an approximate 1 − α confidence interval as
follows:

Pt

(
êα

2
≤ et:t+h ≤ ê1−α

2

)
(1)

= Pt

(
êα

2
≤ ut:t+h − ût:t+h ≤ ê1−α

2

)
(2)

= Pt

(
ût:t+h + êα

2
≤ ut:t+h ≤ ût:t+h + ê1−α

2

)
(3)

≈ 1− α. (4)

Thus, our approximate 1 − α confidence interval on
ut:t+h is Ît:t+h = [ût:t+h + êα

2
, ût:t+h + ê1−α

2
].

Traditionally, quantile regression models are trained
using computationally expensive linear programs [26],
so instead, we opt for a faster, online gradient descent
approach. We define our loss function for the quantile
regression model q̂ε to be L(y, ŷ) = (y−ŷ)ε1{y ≥ ŷ}+
(ŷ−y)(1−ε)1{y < ŷ} (the “pinball loss”) [27]. We set
y to be the true model error, e, and ŷ = βββ⊤σσσ, where βββ
represents the weights of the regression model, and σσσ is
the uncertainty measure from the trajectory forecasting
model. We update the weights according to βββ ← βββ −
ζ∇βββL(et−h:t,βββ), with learning rate ζ.

C. Calibrating Approximate Confidence Intervals

Given that the confidence intervals we obtained in
the previous section are merely approximate, we aim
to calibrate these intervals. To this end, we apply the
RollingRC algorithm [22], which perfectly adapts to
the online requirements of our method. We are mo-
tivated to use the RollingRC algorithm compared to
other conformal prediction methods due to a desire



(a) Output of Trajectron++ in a simple scene
with two vehicles.

(b) Approximate (opaque) and calibrated
(translucent) reachable sets.

(c) Probabilistically-safe plan generated by
the reachability-based planner.

Fig. 2. Visualization of the running example. The autonomous ego vehicle is shown in red, and the human driver is shown in blue. The ego
vehicle aims to navigate to the pink star while avoiding a collision with the human-driven vehicle. Confidence sets for the next three prediction
steps are shown. In fig. 2b, the redder regions represent confidence sets for earlier prediction timesteps, and the translucent regions represent
conformal prediction’s calibration effect.

to remove the data exchangeability assumption, since
we allow for sequentially-dependent data and potential
distribution shifts. In addition, we would like to train
and calibrate the quantile regression models in a sample-
efficient manner. RollingRC guarantees that the error
rate deviates from α as O

(
1/T

)
, where T is the total

number of datapoints provided to the algorithm.
Following the notation from the RollingRC algorithm,

we define θt ∈ R as our conformal parameter, and φ(·) :
R → U as the algorithm’s “stretching function”. Now,
we claim that

Pt

(
êα

2
− φ(θθθ) ≤ et:t+h ≤ ê1−α

2
+ φ(θθθ)

)
≥ 1− α−O

(
1/t

)
.

(5)

Following similar steps as before, we obtain our newly
calibrated confidence interval on ut:t+h as It:t+h =
[ût:t+h + êα

2
− φ(θθθ), ût:t+h + ê1−α

2
+ φ(θθθ)].

IV. PROBABILISTIC REACHABILITY AND PLANNING

A. Probabilistic Reachability among Multiple Agents

In the previous sections, we have designed a method
to provide confidence intervals on agents’ control ac-
tions. However, for some downstream tasks, such as
safe planning, confidence sets in spatial dimensions
are more desirable. Hence, we use HJ reachability to
obtain spatial sets, in the form of forward reachable
tubes, on each agent’s location given its dynamics and
the probabilistic bound on control [28]. This procedure
asserts that an agent’s location will be contained in the
produced reachable tube with probability 1− α.

Suppose we wish to upper bound the probability that
the ego vehicle collides with any agent. Let x(i)

t be the
location of non-ego agent i at timestep t and S[t](i)
be the corresponding agent’s forward reachable tube,
as computed by our algorithm. We define miscoverage
rate as the proportion of instances in which the ground
truth position of any agent i at time t is outside S[t](i).

We aim to obtain an upper bound on miscoverage
rate, such that the ego agent can navigate in regions
outside of S[t](i) for all i ∈ {1, . . . , N} and guarantee
that the probability of collision is at most γ, a pre-
specified parameter. Consequently, we set the confidence
interval significance level α according to our desired
total miscoverage rate γ and number of agents N .

THEOREM IV.1 (SIGNIFICANCE LEVEL CORRECTION)
Suppose that we wish to have a total miscoverage rate
of γ, where total miscoverage rate is an upper bound on
the probability that any human agent is miscovered:

Pt

 N⋃
i=1

{
x
(i)
t ̸∈ S[t](i)

} ≤ γ. (6)

We claim that the following α achieves an (asymptotic)
total miscoverage rate of γ for N human agents:

α = 1− (1− γ)
1
N . (7)

The proof of Theorem IV.1 is available in Appendix A,
which uses the fact that the N agents act independently
conditioned on past information [1]. Since α must be
a fixed quantity in our algorithm, we must also fix N .
Hence, we fix our algorithm to only consider the N
agents closest to the ego vehicle.

Running Example: Suppose we want a 95% prob-
ability safety assurance. Since there is only one other
vehicle, we get α = 0.05 from Theorem IV.1. Given the
previous predictions of the blue agent’s trajectory, we
generate uncalibrated, time-indexed intervals on ranges
of possible control actions, denoted Ît, Ît+∆t, Ît+2∆t.
We calibrate these using conformal prediction to obtain
It, It+∆t, It+2∆t. As we explain in the next subsection,
HJ reachability allows us to take any sequence of
intervals on control actions and generate a time-indexed
set of states. In Figure 2b, we distinguish the effects of
quantile regression and RollingRC’s calibration.



Algorithm 1 Conformal Reachability Calibration.
1: procedure GENERATESETS(θθθ, ût:t+h, σσσ)
2: êα

2
← q̂α

2
(σσσ) ▷ Obtain lower α

2
quantile

3: ê1−α
2
← q̂1−α

2
(σσσ) ▷ Obtain upper α

2
quantile

4: It:t+h ←
[
ût:t+h + êα

2
− φ(θθθ),

ût:t+h + ê1−α
2
+ φ(θθθ)

]
5: S ← []
6: for t′ ∈ {t, t+∆t, . . . , t+ h} do
7: S[t′]← HJREACHABILITY(It′ )
8: return S, It:t+h

9: procedure UPDATE(θθθ, ut−h:t, It−h:t)
10: for t′ ∈ {t, t+∆t, . . . , t+ h} do
11: θθθ

{
t′
}
← θθθ

{
t′
}
+ ξ

(
1
{
ut′−h ̸∈ It′−h

}
− α

)
12: GRADIENTDESCENT(q̂α

2
, ut−h:t)

13: GRADIENTDESCENT(q̂1−α
2

, ut−h:t)
14: return q̂α

2
, q̂1−α

2
, θθθ

15: procedure MAIN(γ, N )
16: α← 1− (1− γ)

1
N

17: θθθ{t, t+∆t, . . . , t+ h} ← 0
18: q̂α

2
, q̂1−α

2
← INITIALIZERANDOMWEIGHTS( )

19: I← {}
20: t← 0
21: while true do
22: ût:t+h,σσσ ← fT (·), σT (·) ▷ Get trajectory predictions

and uncertainty from model
23: S, It:t+h ← GENERATESETS(θθθ, ût:t+h, σσσ)
24: I← I ∪ It:t+h

25: if t ≥ h then
26: ut−h:t ← OBSERVEHISTORY( )
27: It−h:t ← I[t− h : t]
28: q̂α

2
, q̂1−α

2
, θθθ ← UPDATE(θθθ, ut−h:t, It−h:t)

29: t← t+∆t

B. Full Algorithm

In Algorithm 1, we demonstrate the final algorithm to
generate probabilistic reachable sets. The HJREACHA-
BILITY function generates reachable sets given a proba-
bilistic range of control actions, It:t+∆t. Since the range
can differ over time (e.g., It ̸= It+∆t necessarily),
we iteratively compute time-indexed forward reachable
tubes by computing the forward reachable tube over
[t, t + ∆t] and using the reachable set at t + ∆t as
the initial condition to compute the reachable tube over
[t + ∆t, t + 2∆t]. We also utilize a GRADIENTDES-
CENT function that updates the weights of the quantile
regression models as described in Section III-B. In
Algorithm 1, ξ is the “learning rate” associated with
the RollingRC algorithm.

C. Safe Planning Framework

Given the time-indexed sets S[t] ⊆ S[t + ∆t] ⊆
· · · ⊆ S[t + h], we desire that the autonomous agent’s
location at time t′ is outside S[t + k∆t], where t +
(k − 1)∆t ≤ t′ ≤ t + k∆t. We can plan by treating
each agent’s time-indexed forward reachable tube as a
dynamic obstacle that grows with time. The obstacle-
aware planning requirement motivates the application of

a forward reach-avoid tube for the ego agent [16], [29].
We use this to derive an optimal control trajectory by
selecting the Hamiltonian-maximizing control trajectory
to a desired final state within the forward reach-avoid
tube. In practice, this trajectory can involve bang-bang
control, so one can track it using a tracker with a
provable tracking error bound, such as a constrained
iterative linear quadratic regulator. The planner’s output
is visualized in Appendix D.

Running Example: From the previous section, we
obtained S[t],S[t + ∆t],S[t + 2∆t] as a probabilistic
occupancy region on the location of the other vehicle.
Now, we can use the time-varying avoidance regions to
plan a safe path to the goal in Figure 2c. Notice that the
planner allows the ego agent to traverse in the yellow-
colored region: it is aware that the ego vehicle would not
violate the safety assurance as it can leave the yellow
region by the time the other agent would enter it.

V. RESULTS

We compare the empirical safety and efficiency of
our contribution to two baselines, Online Update of
Safety Assurances Using Confidence-Based Predictions
by Nakamura and Bansal [24] and Sample-Efficient
Safety Assurances using Conformal Prediction by Luo et
al. [11]. For both baselines, we perform the significance
level correction described in Section IV-A.

For all benchmarking purposes, we use Trajectron++
trained on the relevant datasets. We follow the same
architecture and hyperparameters as [2] by using 4
seconds (8 steps) of history to predict 3 seconds (6
steps) into the future. This is consistent with the other
baselines’ approaches. Set sizes are shown in square
meters. We use a pre-specified total miscoverage rate
of γ = 0.05, and we generate predictions for the closest
N = 3 agents, which strikes a balance between the speed
of our HJ reachability calculations and the practical
safety of the system.

A. nuScenes Dataset Results

We compare the coverage rate and efficiency of our
method against the two baselines on nuScenes self-
driving data [30]. We calculate average coverage rate and
average set sizes individually for each forward prediction
step t, t + ∆t, . . . , t + h on 100 randomly sampled
scenes. For each scene, we use the first 13 seconds
to calibrate each method and make predictions on the
last 5.5 seconds. Table I shows step coverage and set
sizes at all prediction steps. Note that an ideal algorithm
maintains a coverage rate over 1−γ while providing the
smallest prediction sets.

B. Waymo Open Motion Dataset Results

To demonstrate the planning safety and efficiency
of each method, we also perform experiments on the



TABLE I
COVERAGE RATES AND SET SIZES FOR 1− γ = 0.95.

Coverage Rates for Prediction Step

Methods 1st (.5s) 2nd (1s) 3rd (1.5s) 4th (2s) 5th (2.5s) 6th (3s)

nuScenes Dataset
Nakamura and Bansal 0.926 ±0.012 0.854 ±0.017 0.816 ±0.023 0.842 ±0.023 0.868 ±0.022 0.902 ±0.020

Luo et al. 1.000 ±0.000 1.000 ±0.000 1.000 ±0.000 0.998 ±0.002 0.989 ±0.006 0.968 ±0.012

Our Method 0.964 ±0.008 0.962 ± 0.011 0.968 ±0.010 0.975 ±0.008 0.981 ±0.007 0.985 ±0.007

Waymo Dataset
Nakamura and Bansal 0.981 ±0.007 0.954 ±0.012 0.938 ±0.014 0.937 ±0.015 0.952 ±0.014 0.955 ±0.015

Luo et al. 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 0.998 ±0.002 0.985 ±0.009 0.955 ±0.015

Our Method 0.997 ±0.002 0.986 ±0.006 0.980 ±0.008 0.967 ±0.011 0.965 ±0.011 0.965 ±0.013

Set Sizes for Prediction Step

nuScenes Dataset
Nakamura and Bansal 57 ±2 320 ±12 886 ±35 2060 ±85 3259 ±128 4285 ±160

Luo et al. 425 ±11 523 ±16 683 ±34 1097 ±109 1426 ±140 1814 ±186

Our Method 39 ±3 157 ± 13 462 ±39 1078 ±88 2150 ±170 3713 ±268

Waymo Dataset
Nakamura and Bansal 64 ±7 311 ±32 951 ±96 2117 ±195 3814 ±328 5892 ±475

Luo et al. 448 ±8 736 ±43 1110 ±94 1568 ±169 2126 ±237 2687 ±301

Our Method 61 ±6 246 ±27 655 ±71 1361 ±143 2422 ±240 3885 ±365

Waymo Open Motion Dataset [31], coupled with the
Nocturne simulator [32]. This allows us to apply control
actions to the ego vehicle while all other agents replay
their respective sequences of control actions from the
dataset. We use the same planning method discussed
in Section IV-C for all three methods, since neither of
the baselines have associated planners. For each scene,
we calibrate using the first 7 seconds and use model-
predictive control to plan for the last 3 seconds, where
the goal is the final position of the ego vehicle in
the ground truth data. We measure three quantities: (1)
progress to goal, defined as the ratio of the distance
from the final state of the ego vehicle to the goal
compared to the distance from the start to the goal,
subtracted from 1; (2) collision rate; (3) conservatism
of each method compared to the ego vehicle’s ground
truth trajectory, defined as the ratio of minimum distance
between the ego vehicle to other agents at all times
as a result of the planner, compared to that of the
ground truth. The formulas and computations of these
metrics are described in detail in Appendix B [1]. In
Appendix C, we additionally demonstrate the impact of
the aforementioned theoretical guarantees by providing
safety and efficiency metrics in the absence of conformal
prediction [1]. We performed the benchmarks on 200
randomly sampled scenes. Table I depicts coverage rates
and set sizes for all prediction timesteps. Table II depicts
average collision rate, average progress to goal, and
conservatism.

TABLE II
WAYMO PLANNING BENCHMARKS

Method Progress Collision Conservatism
to Goal Rate

Nakamura and Bansal 0.494 ±0.029 0.0 1.504 ±0.068
Luo et al. 0.305 ±0.028 0.005 1.626 ±0.072
Our Method 0.544 ±0.028 0.0 1.507 ±0.068

C. Discussion of Results

For the nuScenes dataset, we notice that our method
achieves more efficient set sizes for initial prediction
steps, while Luo et al. achieves more efficient set sizes
for later prediction timesteps. Nevertheless, neither of
these two methods violates the miscoverage requirement
of γ = 0.05. The method of Nakamura and Bansal
violates the miscoverage rate, however, supporting the
introduction of uncertainty calibration into the algo-
rithm. Hence, calibrating neural network uncertainty is
important, not only to provide the desired coverage rate
but also to generate efficient prediction sets.

For the Waymo dataset, we notice a very similar
phenomenon with set sizes and coverage rates. In the
planning benchmarks, our method has the best progress
to goal, likely due to the initial-timestep sets being
smaller. This is also reflected in the conservatism scores,
with reachability-based methods performing the best.
The method of Luo et al. also encountered one collision
scenario in which the produced set was very large and
forced the planner to take a sharp avoid action. Thus,
we note the importance of initial-timestep sets being
small to allow the reachability-based methods to perform
better in the planning benchmarks. This allows the ego
vehicle to make some progress, whereas a large initial-



(a) Sample scenario in which we observe the
reachable sets of the three agents closest to
the ego vehicle.

(b) Calibrated confidence sets generated by
quantile regression without covariance fea-
tures.

(c) Calibrated confidence sets generated by
quantile regression with covariance features.

Fig. 3. Case Study of Uncertainty Metrics. We demonstrate a simple example in which the choice of uncertainty measure affects the size of
sets, with coverage rate held constant.

Fig. 4. Our algorithm is applied to assure safety in potential runway
incursion scenarios. Once the ground vehicle is determined to have
crossed a designated safety threshold, the aircraft is cleared to land.

timestep set would inhibit any progress regardless of the
relative size of later timesteps’ sets.

D. Case Studies

1) Understanding Uncertainty Measures: In this case
study, we demonstrate the usefulness of our interpretable
quantile regression model when understanding the ef-
ficacy of uncertainty metrics. Consider the scene in
Figure 3a. We choose the uncertainty measure based on
properties of the GMM, including the distance between
peaks and the (co)variance of the highest-weighted
mode. The learned regression model indicates a positive
correlation between prediction error and variance of the
most-likely GMM mode. In Figure 3b and Figure 3c,
we can visually discern the benefit of including these
features.

Overall, this case study shows the importance of
understanding the usefulness of different components
of the uncertainty measure. A more useful uncertainty
metric can provide more efficient sets, since a more
accurate quantile regression model would require less
calibration (less “stretching” from conformal predic-
tion). Conformal prediction cannot derive confidence
intervals conditional on some input, so quantile regres-
sion’s accuracy is crucial for providing efficient sets.

2) Safety in Aerospace Applications: In this case
study, we apply our algorithm to satisfy a real-world

safety assurance requirement by demonstrating our al-
gorithm on Boeing vehicles. We consider the case of an
aircraft attempting to land on a runway while accounting
for potential runway incursions from ground vehicles.
We use our algorithm to provide assurances on the
motion of a ground vehicle on the runway. Given a fixed
landing plan for the plane, we adapt the sets from our
algorithm to design a warning system similar to Luo
et al.’s original algorithm. If a prediction set intersects
the runway, a warning is issued. A visualization of this
application is shown in Figure 4. The ground vehicle’s
state history is shown in red, and its uncalibrated pre-
diction set is shown in purple. The “stretching” effect
from conformal prediction is shown in orange.

VI. DISCUSSION AND FUTURE WORK

In this paper, we introduced a non-parametric ap-
proach to using interpretable uncertainty measures from
black-box models for generating calibrated prediction
intervals. We demonstrated an efficient reachability-
based approach to generating prediction sets, and we
showed the goal-oriented efficiency and safety of our
algorithm in planning tasks for an ego agent through
simulations and real-world experiments.

For future investigations, we would be interested in
seeing the effects of longer planning horizons. Although
many state of the art models cannot provide reliable
predictions for agent behavior 1 minute into the future,
for example, we would like to see the efficiency of our
method compared to the other methods discussed. We
would also like to generalize our method to arbitrary
measures of risk, instead of only coverage rate. For
example, one might want greater confidence in the
behavior of nearby or fast-moving agents, than for agents
that are far away or stationary. Thus, in certain practical
scenarios, a heuristic measure of risk may be more
appropriate than miscoverage rate. Along these lines,
we would also like to explore adapting the confidence
interval significance α for different agents depending



on their properties with respect to maintaining safety.
Finally, we are interested in decreasing conservatism
across the pipeline to help ensure that the planning
framework can always find a feasible solution to the
problem.
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APPENDIX

A. Proof of Theorem IV.1

The theorem is restated for convenience below:
THEOREM .1 (SIGNIFICANCE LEVEL CORRECTION)
Suppose that we wish to have a total miscoverage rate
of γ, where total miscoverage rate is an upper bound on
the probability that any human agent is miscovered:

Pt

 N⋃
i=1

{
x
(i)
t ̸∈ S[t](i)

} ≤ γ. (8)

We claim that the following α achieves an (asymptotic)
total miscoverage rate of γ for N human agents:

α = 1− (1− γ)
1
N . (9)

Proof: To obtain this, we assume that each agent
reacts to other agents entirely based on past observa-
tions. Mathematically, we define a filtration over the
probability space of all agents’ time-dependent actions
F0 ⊂ F∆t ⊂ . . . ⊂ Ft−∆t ⊂ Ft. We assume that
any probability event corresponding to agent i’s future
behavior, denoted A

(i)
t′ , is conditionally independent of

any probability event corresponding to agent j’s future
behavior, denoted A

(j)
t′ . Implicitly, we write t′ > t.

Specifically,

P
(
A

(i)
t′ A

(j)
t′

∣∣∣ Ft

)
= P

(
A

(i)
t′

∣∣∣ Ft

)
P
(
A

(j)
t′

∣∣∣ Ft

)
. (10)

Intuitively, no agent makes decisions on unseen observa-
tions. Hence, we may rewrite eq. (8) as follows using the
conditional independence and the corresponding lower
bound on coverage rate for each agent:

P

 N⋃
i=1

{
x
(i)
t ̸∈ S[t](i)

} ∣∣∣∣∣∣ Ft

 (11)

= 1− P

 N⋂
i=1

{
x
(i)
t ∈ S[t](i)

} ∣∣∣∣∣∣ Ft

 (12)

= 1−
N∏
i=1

P
(
x
(i)
t ∈ S[t](i)

∣∣∣ Ft

)
︸ ︷︷ ︸

≥1−α−O(1/T)

(13)

≤ 1−
N∏
i=1

(
1− α−O

(
1/T

))
(14)

= 1−
(
1− α−O

(
1/T

))N

≤ γ. (15)

Since we aim for an asymptotic bound, we take T →∞
which allows us to omit the O

(
1/T

)
term. To obtain the

smallest value of α possible, we meet the loose inequal-
ity with equality, and find α such that 1−(1−α)N = γ.
Solving for α yields the value α = 1− (1− γ)

1
N .

B. Metrics Computation

• Coverage rate: Letting previous notation prevail,
we determine kth prediction step coverage rate for
any given scene by computing

1


N⋂
i=1

{
x
(i)
t+k∆t ∈ S[t+ k∆t](i)

}
per timestep. We average this quantity over
timesteps to obtain average coverage rate for the
specific scene.

• Conservatism: Define x(E)
t to be the state of the ego

vehicle in the ground truth data at time t, and define
x̂
(E)
t to be the state of the ego vehicle controlled

by the planner, at time t. For any given scene, we
compute

min
t

min
i∈[N ]

∥∥∥x̂(E)
t − x

(i)
t

∥∥∥
xy

min
t

min
i∈[N ]

∥∥∥x(E)
t − x

(i)
t

∥∥∥
xy

,

where ∥·∥xy computes the norm only along the x
and y spatial coordinates of the given state vector.
We average this quantity across all scenes. Intu-
itively, this is a measure of how close the planner
is willing to get to other vehicles, compared to the
ground truth ego vehicle movement.

• Progress: Let xg denote the goal state of the ego
vehicle, and let xs denote its starting state. Next,
let xf denote the final state of the ego vehicle once
the planner no longer provides any new plans. We
define progress as

1−

∥∥xg − xf

∥∥
xy∥∥xg − xs

∥∥
xy

.

C. Un-Calibrated Confidence Set Metrics, Waymo
Dataset

Below, we compare the coverage rate and set sizes be-
tween the un-calibrated version of our algorithm, using
only quantile regression as a confidence-set-generating
tool, and the calibrated version of our algorithm, lever-
aging conformal prediction.

TABLE III
UN-CALIBRATED CONFIDENCE SET COVERAGE METRICS

Prediction Step Calibrated Set Un-Calibrated Set
Coverage Rate Coverage Rate

0.5 0.997 ±0.002 0.968 ±0.007
1.0 0.986 ±0.006 0.887 ±0.015
1.5 0.980 ±0.008 0.839 ±0.019
2.0 0.967 ±0.011 0.817 ±0.022
2.5 0.965 ±0.011 0.818 ±0.025
3.0 0.965 ±0.013 0.800 ±0.028



TABLE IV
UN-CALIBRATED CONFIDENCE SET SIZES

Prediction Step Calibrated Un-Calibrated
Set Size Set Size

0.5 61 ±6 42 ±4
1.0 246 ±27 153 ±16
1.5 655 ±71 406 ±46
2.0 1361 ±143 815 ±86
2.5 2422 ±240 1434 ±145
3.0 3885 ±365 2300 ±226

We primarily notice that conformal prediction en-
forces that set coverage remains above the desired 95%
threshold, although this comes at the cost of provid-
ing larger sets. Additionally, conformal prediction aids
in reducing the variance of coverage rates, especially
for later-timestep predictions. This demonstrates the
O
(
1/T

)
convergence guarantee on the deviation of the

realized, empirical error rate from the desired error rate –
with more data, the absolute deviation in conformal pre-
diction’s error rate from the desired error rate decreases,
whereas this is not guaranteed for quantile regression
alone.

D. Planner Visualization

Fig. 5. Visualization of the planner. The autonomous ego vehicle is
shown in red, and the human drivers are shown in blue. The plan is
shown in green, representing the tracking of the original HJ-generated
plan using iLQR.

E. Additional Algorithm Implementation Details

We opt for the version of Trajectron++ without the
encoder for maps and the encoder for future ego-agent
motion plans due to the lack of availability of these in the
datasets. The model architecture and hyperparameters
are kept the same as in [2].

We explored graph-based planning algorithms such as
A* and Dijkstra but found them to be computationally

intractable as a result of the high dimensionality of
the Extended Dubins’ car model and the presence of
time-varying dynamic obstacles. Our reachability-based
planner does not suffer from such issues.

In the case in which no feasible plan to the desired
target state exists, for example due to the large sizes
of the probabilistic reachable sets, our reachability-
based planner produces a plan minimizing the distance
between the final ego state and the desired target state.
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